1
|
de Fernandes MG, Nascimento-Silva G, Rozas EE, Hardoim CCP, Custódio MR. From Sea to Freshwater: Shared and Unique Microbial Traits in Sponge Associated Prokaryotic Communities. Curr Microbiol 2025; 82:178. [PMID: 40056175 DOI: 10.1007/s00284-025-04153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
Despite their ecological significance and biotechnological potential, freshwater sponges remain relatively understudied compared to their marine counterparts. In special, the prokaryotic communities of species from isolated yet highly diverse ecosystems, such as the Amazon Rainforest, remain unknown, leaving an important part of the Porifera microbiome underexplored. Using high-throughput sequencing of the 16S rRNA gene, we unraveled the structure of the microbiota associated to the freshwater sponges Heteromeyenia cristalina and Metania reticulata for the first time. Their microbiome was compared with that of the haplosclerid marine sponges Amphimedon viridis and Haliclona melana; and the tetractinellid Cinachyrella alloclada. Our findings reveal not only a shared core microbiome between the freshwater and marine environments but also indicate functional redundancy in their communities, suggesting that certain microbial metabolic functions are conserved across diverse habitats. Comparisons between ecosystems also revealed that microbiomes of freshwater sponges can be richer and more diverse than those of marine species. Moreover, we compared the microbiome of adults and asexual reproduction structures (buds and gemmules) of sponges from both habitats, revealing a remarkable similarity between adults and their respective offsprings, indicating an important role of vertical transmission in this mode of reproduction. Our observations emphasize the dynamic interactions and the adaptability of the sponge-associated microbiota, providing insights into how these symbiotic associations were affected during the colonization of freshwater environments and shedding light into how symbiotic relationships are maintained throughout generations.
Collapse
Affiliation(s)
- Michelle Guzmán de Fernandes
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, CEP 05508-090, Brazil.
| | - Gabriel Nascimento-Silva
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, CEP 05508-090, Brazil
| | - Enrique Eduardo Rozas
- Dempster-Poli-USP, Chemical Engineering Department, University of São Paulo (USP), Av. Prof. Lineu Prestes 580, block 21, São Paulo, Brazil
| | - Cristiane Cassiolato Pires Hardoim
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, CEP 05508-090, Brazil
| | - Márcio Reis Custódio
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, CEP 05508-090, Brazil
| |
Collapse
|
2
|
de Freitas AS, Gan FC, de David DB, Wurdig Roesch LF. The microbiome shifts throughout the gastrointestinal tract of Bradford cattle in the Pampa biome. PLoS One 2022; 17:e0279386. [PMID: 36538559 PMCID: PMC9767327 DOI: 10.1371/journal.pone.0279386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
A deep understanding of the cattle gastrointestinal microbiome is crucial to selective breeding high-efficiency animals that produce more and generate less environmental damage. Here we performed the taxonomic identification of Bacterial and Archaeal communities using high throughput 16SrRNA gene sequencing from critical compartments of the gastrointestinal tract of Bradford cattle raised in a natural grassland in the Pampa biome, Brazil. We analyzed 110 samples, including saliva, ruminal fluid, and feces from 36 months old Bradford heifers (weighing on average 343 ± 30 kg by the sampling time). To reduce unexpected variation and confounders, we selected the animals from the same breed, submitted them to the same food source, and collected the samples for three consecutive years from different animals in the same season. Our main goal was to analyze the microbial shifts throughout the gastrointestinal tract to reference future works proposing management strategies and interventions to improve animal nutrition and increase production in the Pampa Biome. To accomplish our objective, we accessed the microbial community differences in groups with a high and low weight gain controlling for food ingestion and quality of grazed pasture. Few taxa were shared among the samples. About 40% of the phyla and 60% of the genera were unique from saliva samples, and 12.4% of the microbial genera were uniquely found in feces. All samples shared only 36.1% of phyla and 7.5% of genera. Differences in microbial diversity and taxa counts were observed. The ruminal fluid presented the lowest microbial richness, while saliva and feces presented the highest microbial richness. On the other hand, saliva and feces also presented more distinct communities between themselves when compared with ruminal samples. Our data showed that the saliva microbiome is not representative of the rumen microbiome and should not be used as an easy-to-collect sample for studies about the rumen microbiome.
Collapse
Affiliation(s)
| | - Flávia Caroline Gan
- Centro Interdisciplinar de Pesquisas em Biotecnologia–CIP-Biotec, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Diego Bittencourt de David
- Departamento de Diagnóstico e Pesquisa Agropecuária–DDPA, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural–SEADPR/RS, São Gabriel, Rio Grande do Sul, Brazil
| | - Luiz Fernando Wurdig Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
3
|
Waterworth SC, Parker-Nance S, Kwan JC, Dorrington RA. Comparative Genomics Provides Insight into the Function of Broad-Host Range Sponge Symbionts. mBio 2021; 12:e0157721. [PMID: 34519538 PMCID: PMC8546597 DOI: 10.1128/mbio.01577-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
The fossil record indicates that the earliest evidence of extant marine sponges (phylum Porifera) existed during the Cambrian explosion and that their symbiosis with microbes may have begun in their extinct ancestors during the Precambrian period. Many symbionts have adapted to their sponge host, where they perform specific, specialized functions. There are also widely distributed bacterial taxa such as Poribacteria, SAUL, and Tethybacterales that are found in a broad range of invertebrate hosts. Here, we added 11 new genomes to the Tethybacterales order, identified a novel family, and show that functional potential differs between the three Tethybacterales families. We compare the Tethybacterales with the well-characterized Entoporibacteria and show that these symbionts appear to preferentially associate with low-microbial abundance (LMA) and high-microbial abundance (HMA) sponges, respectively. Within these sponges, we show that these symbionts likely perform distinct functions and may have undergone multiple association events, rather than a single association event followed by coevolution. IMPORTANCE Marine sponges often form symbiotic relationships with bacteria that fulfil a specific need within the sponge holobiont, and these symbionts are often conserved within a narrow range of related taxa. To date, there exist only three known bacterial taxa (Entoporibacteria, SAUL, and Tethybacterales) that are globally distributed and found in a broad range of sponge hosts, and little is known about the latter two. We show that the functional potential of broad-host range symbionts is conserved at a family level and that these symbionts have been acquired several times over evolutionary history. Finally, it appears that the Entoporibacteria are associated primarily with high-microbial abundance sponges, while the Tethybacterales associate with low-microbial abundance sponges.
Collapse
Affiliation(s)
- Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Shirley Parker-Nance
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Environmental Observation Network, Elwandle Coastal Node, Gqeberha (Port Elizabeth), South Africa
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
4
|
Wilke DV, Jimenez PC, Branco PC, Rezende-Teixeira P, Trindade-Silva AE, Bauermeister A, Lopes NP, Costa-Lotufo LV. Anticancer Potential of Compounds from the Brazilian Blue Amazon. PLANTA MEDICA 2021; 87:49-70. [PMID: 33142347 DOI: 10.1055/a-1257-8402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
"Blue Amazon" is used to designate the Brazilian Economic Exclusive Zone, which covers an area comparable in size to that of its green counterpart. Indeed, Brazil flaunts a coastline spanning 8000 km through tropical and temperate regions and hosting part of the organisms accredited for the country's megadiversity status. Still, biodiversity may be expressed at different scales of organization; besides species inventory, genetic characteristics of living beings and metabolic expression of their genes meet some of these other layers. These metabolites produced by terrestrial creatures traditionally and lately added to by those from marine organisms are recognized for their pharmaceutical value, since over 50% of small molecule-based medicines are related to natural products. Nonetheless, Brazil gives a modest contribution to the field of pharmacology and even less when considering marine pharmacology, which still lacks comprehensive in-depth assessments toward the bioactivity of marine compounds so far. Therefore, this review examined the last 40 years of Brazilian natural products research, focusing on molecules that evidenced anticancer potential-which represents ~ 15% of marine natural products isolated from Brazilian species. This review discusses the most promising compounds isolated from sponges, cnidarians, ascidians, and microbes in terms of their molecular targets and mechanisms of action. Wrapping up, the review delivers an outlook on the challenges that stand against developing groundbreaking natural products research in Brazil and on a means of surpassing these matters.
Collapse
Affiliation(s)
- Diego V Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Paula C Jimenez
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Paola C Branco
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paula Rezende-Teixeira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Amaro E Trindade-Silva
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Norberto Peporine Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Leticia V Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Gut Microbiomes of the Eastern Oyster ( Crassostrea virginica) and the Blue Mussel ( Mytilus edulis): Temporal Variation and the Influence of Marine Aggregate-Associated Microbial Communities. mSphere 2019; 4:4/6/e00730-19. [PMID: 31826972 PMCID: PMC6908423 DOI: 10.1128/msphere.00730-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This work investigates the influence that extrinsic factors, diet, and the environment can have on the microbiomes of shellfish. Over the course of a year, the gut microbial communities of two species of bivalves, oysters and mussels, held under identical conditions in coastal marine waters were compared. While the mussels and oysters harbored gut microbial communities with similar composition, on a functional level, they exhibited species and temporal variation. These results indicate that intrinsic factors influence the bivalve microbiome, resulting in species variability, even when environmental conditions, feeding mechanism, and particle diet are constant. Seasonal and multispecies comparisons for bivalve-associated microbial communities are rare, and we believe this research represents an important contribution. The results presented here advance our understanding of the symbiotic interactions between marine invertebrates, the microbial communities they harbor, and the environment. Gut microbial community structure was evaluated for two species of bivalve molluscs, the eastern oyster (Crassostrea virginica) and the blue mussel (Mytilus edulis) collected from Long Island Sound, Connecticut, over the course of a year. These bivalves utilize a shared feeding mechanism, which may result in similar gut microbial communities. Their particle diet, marine aggregates, and surrounding environment, aggregate-free seawater (AFSW), were also collected for comparison. Due to the suspension-feeding activities of bivalves, the potential for aggregate- and AFSW-associated microbiota to influence their microbial communities may be significant. Both taxonomic and functional diversity of the samples were assessed. 16S rRNA gene amplicon sequencing indicated that oysters and mussels maintained similar, but not identical, gut microbiomes, with some temporal variation. Throughout the year, bivalve species had gut microbial community compositions that were more similar to one another than to aggregates. Within a month, bivalves shared on average a quarter of their total operational taxonomic units (OTUs) with each other and a 10th of their total OTUs with aggregates. During months with warm water temperatures, individuals within each of the four sample types had similar alpha diversity, but again, temporal variation was observed. On a functional level, bivalve gut microbial communities exhibited variation attributed to host species and season. Unlike oysters, mussel gut bacterial communities maintained high richness and evenness values throughout the year, even when values for the particle diet and AFSW were reduced. Overall, a core gut bivalve microbiome was present, and it was partially influenced by the marine aggregate microbial community. IMPORTANCE This work investigates the influence that extrinsic factors, diet, and the environment can have on the microbiomes of shellfish. Over the course of a year, the gut microbial communities of two species of bivalves, oysters and mussels, held under identical conditions in coastal marine waters were compared. While the mussels and oysters harbored gut microbial communities with similar composition, on a functional level, they exhibited species and temporal variation. These results indicate that intrinsic factors influence the bivalve microbiome, resulting in species variability, even when environmental conditions, feeding mechanism, and particle diet are constant. Seasonal and multispecies comparisons for bivalve-associated microbial communities are rare, and we believe this research represents an important contribution. The results presented here advance our understanding of the symbiotic interactions between marine invertebrates, the microbial communities they harbor, and the environment.
Collapse
|
6
|
Ki D, Awouafack MD, Wong CP, Nguyen HM, Thai QM, Ton Nu LH, Morita H. Brominated Diphenyl Ethers Including a New Tribromoiododiphenyl Ether from the Vietnamese Marine SpongeArenosclerasp. and Their Antibacterial Activities. Chem Biodivers 2019; 16:e1800593. [DOI: 10.1002/cbdv.201800593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Dae‐Won Ki
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| | - Maurice Ducret Awouafack
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of ScienceUniversity of Dschang, P.O. Box 67 Dschang Cameroon
| | - Chin Piow Wong
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| | - Hien Minh Nguyen
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| | - Quang Minh Thai
- Institute of OceanographyVietnam Academy of Science and Technology, Nha Trang Vietnam
| | | | - Hiroyuki Morita
- Institute of Natural MedicineUniversity of Toyama, 2630-Sugitani Toyama 930-0194 Japan
| |
Collapse
|
7
|
Pierce ML, Ward JE. Microbial Ecology of the Bivalvia, with an Emphasis on the Family Ostreidae. JOURNAL OF SHELLFISH RESEARCH 2018; 37:793-806. [DOI: 10.2983/035.037.0410] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Melissa L. Pierce
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - J. Evan Ward
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340
| |
Collapse
|
8
|
Rua CPJ, de Oliveira LS, Froes A, Tschoeke DA, Soares AC, Leomil L, Gregoracci GB, Coutinho R, Hajdu E, Thompson CC, Berlinck RGS, Thompson FL. Microbial and Functional Biodiversity Patterns in Sponges that Accumulate Bromopyrrole Alkaloids Suggest Horizontal Gene Transfer of Halogenase Genes. MICROBIAL ECOLOGY 2018; 76:825-838. [PMID: 29546438 DOI: 10.1007/s00248-018-1172-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Marine sponge holobionts harbor complex microbial communities whose members may be the true producers of secondary metabolites accumulated by sponges. Bromopyrrole alkaloids constitute a typical class of secondary metabolites isolated from sponges that very often display biological activities. Bromine incorporation into secondary metabolites can be catalyzed by either halogenases or haloperoxidases. The diversity of the metagenomes of sponge holobiont species containing bromopyrrole alkaloids (Agelas spp. and Tedania brasiliensis) as well as holobionts devoid of bromopyrrole alkaloids spanning in a vast biogeographic region (approx. Seven thousand km) was studied. The origin and specificity of the detected halogenases was also investigated. The holobionts Agelas spp. and T. brasiliensis did not share microbial halogenases, suggesting a species-specific pattern. Bacteria of diverse phylogenetic origins encoding halogenase genes were found to be more abundant in bromopyrrole-containing sponges. The sponge holobionts (e.g., Agelas spp.) with the greatest number of sequences related to clustered, interspaced, short, palindromic repeats (CRISPRs) exhibited the fewest phage halogenases, suggesting a possible mechanism of protection from phage infection by the sponge host. This study highlights the potential of phages to transport halogenases horizontally across host sponges, particularly in more permissive holobiont hosts, such as Tedania spp.
Collapse
Affiliation(s)
- Cintia P J Rua
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Louisi S de Oliveira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Adriana Froes
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Diogo A Tschoeke
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764 - São José do Barreto, Macaé - RJ, Macaé, RJ, CEP 27965-045, Brazil
| | - Ana Carolina Soares
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Luciana Leomil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Gustavo B Gregoracci
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Alm. Saldanha da Gama, 89, Santos, CEP 11030-400, Brazil
| | - Ricardo Coutinho
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto, 253, Praia dos Anjos, Arraial do Cabo, RJ, CEP 28930-000, Brazil
| | - Eduardo Hajdu
- Museu Nacional - UFRJ, Departamento de Invertebrados. Laboratório de Porifera, Quinta da Boa Vista, s/n. São Cristóvão, Rio de Janeiro, CEP 20940-040, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil.
| | - Fabiano L Thompson
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil.
| |
Collapse
|
9
|
Feng G, Sun W, Zhang F, Orlić S, Li Z. Functional Transcripts Indicate Phylogenetically Diverse Active Ammonia-Scavenging Microbiota in Sympatric Sponges. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:131-143. [PMID: 29423641 DOI: 10.1007/s10126-018-9797-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 05/06/2023]
Abstract
Symbiotic ammonia scavengers contribute to effective removal of ammonia in sponges. However, the phylogenetic diversity and in situ activity of ammonia-scavenging microbiota between different sponge species are poorly addressed. Here, transcribed ammonia monooxygenase genes (amoA), hydrazine synthase genes (hzsA), and glutamine synthetase genes (glnA) were analyzed to reveal the active ammonia-scavenging microbiota in the sympatric sponges Theonella swinhoei, Plakortis simplex, and Phakellia fusca, and seawater. Archaeal amoA and bacterial glnA transcripts rather than bacterial amoA, hzsA, and archaeal glnA transcripts were detected in the investigated sponges and seawater. The transcribed amoA genes were ascribed to two Thaumarchaeota ecotypes, while the transcribed glnA genes were interspersed among the lineages of Cyanobacteria, Tectomicrobia, Poribacteria, Alpha-, Beta-, Gamma-, and Epsilonproteobacteria. In addition, transcribed abundances of archaeal amoA and bacterial glnA genes in these sponges have been quantified, showing significant variation among the investigated sponges and seawater. The transcriptome-based qualitative and quantitative analyses clarified the different phylogenetic diversity and transcription expression of functional genes related to microbially mediated ammonia scavenging in different sympatric sponges, contributing to the understanding of in situ active ecological functions of sponge microbial symbionts in holobiont nitrogen cycling.
Collapse
Affiliation(s)
- Guofang Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Wei Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Fengli Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Sandi Orlić
- Ruđer Bošković Institute, Bijeničkacesta 54, 10000, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean region-STIM, Bijeničkacesta 54, 10000, Zagreb, Croatia
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| |
Collapse
|
10
|
Tracanna V, de Jong A, Medema MH, Kuipers OP. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev 2018; 41:417-429. [PMID: 28402441 DOI: 10.1093/femsre/fux014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
The bacterial kingdom provides a major source of antimicrobials that can either be directly applied or used as scaffolds to further improve their functionality in the host. The rapidly increasing amount of bacterial genomic, metabolomic and transcriptomic data offers unique opportunities to apply a variety of approaches to mine for existing and novel antimicrobials. Here, we discuss several powerful mining approaches to identify novel molecules with antimicrobial activity across structurally diverse natural products, including ribosomally synthesized and posttranslationally modified peptides, nonribosomal peptides and polyketides. We not only discuss the direct mining of genomes based on identification of biosynthetic gene clusters, but also describe more advanced and integrative approaches in ecology-based mining, functionality-based mining and mode-of-action-based mining. These efforts are likely to accelerate the discovery and development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Vittorio Tracanna
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands
| | - Anne de Jong
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9726AG Groningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9726AG Groningen, The Netherlands
| |
Collapse
|
11
|
Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, Sánchez-Carbente MDR, Sánchez-Reyes A, Dobson ADW, Folch-Mallol JL. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 2017; 12:e0173750. [PMID: 28339473 PMCID: PMC5365110 DOI: 10.1371/journal.pone.0173750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/24/2017] [Indexed: 12/03/2022] Open
Abstract
Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C) and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.
Collapse
Affiliation(s)
- Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Thomas Sutton
- School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Edgar Balcázar-López
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | - Ayixon Sánchez-Reyes
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
12
|
Li Z, Wang Y, Li J, Liu F, He L, He Y, Wang S. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:659-671. [PMID: 27819120 DOI: 10.1007/s10126-016-9725-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/14/2016] [Indexed: 05/20/2023]
Abstract
Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.
Collapse
Affiliation(s)
- Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China
| | - Jinlong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Fang Liu
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Liming He
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ying He
- Laboratory of Marine Oceanography, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shenyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China
| |
Collapse
|
13
|
Campos FF, Garcia JE, Luna-Finkler CL, Davolos CC, Lemos MVF, Pérez CD. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa). BRAZ J BIOL 2016; 75:431-4. [PMID: 26132028 DOI: 10.1590/1519-6984.16113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/20/2014] [Indexed: 11/21/2022] Open
Abstract
Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.
Collapse
Affiliation(s)
- F F Campos
- Programa de Pós-Graduação em Saúde Humana e Meio Ambiente, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - J E Garcia
- Programa de Pós-Graduação em Saúde Humana e Meio Ambiente, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - C L Luna-Finkler
- Programa de Pós-Graduação em Saúde Humana e Meio Ambiente, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - C C Davolos
- Laboratório de Genética de Bactérias, Departamento de Biologia Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - M V F Lemos
- Laboratório de Genética de Bactérias, Departamento de Biologia Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - C D Pérez
- Programa de Pós-Graduação em Saúde Humana e Meio Ambiente, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
14
|
Cuadrat RRC, Cury JC, Dávila AMR. Metagenomic Analysis of Upwelling-Affected Brazilian Coastal Seawater Reveals Sequence Domains of Type I PKS and Modular NRPS. Int J Mol Sci 2015; 16:28285-95. [PMID: 26633360 PMCID: PMC4691048 DOI: 10.3390/ijms161226101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
Marine environments harbor a wide range of microorganisms from the three domains of life. These microorganisms have great potential to enable discovery of new enzymes and bioactive compounds for industrial use. However, only ~1% of microorganisms from the environment can currently be identified through cultured isolates, limiting the discovery of new compounds. To overcome this limitation, a metagenomics approach has been widely adopted for biodiversity studies on samples from marine environments. In this study, we screened metagenomes in order to estimate the potential for new natural compound synthesis mediated by diversity in the Polyketide Synthase (PKS) and Nonribosomal Peptide Synthetase (NRPS) genes. The samples were collected from the Praia dos Anjos (Angel’s Beach) surface water—Arraial do Cabo (Rio de Janeiro state, Brazil), an environment affected by upwelling. In order to evaluate the potential for screening natural products in Arraial do Cabo samples, we used KS (keto-synthase) and C (condensation) domains (from PKS and NRPS, respectively) to build Hidden Markov Models (HMM) models. From both samples, a total of 84 KS and 46 C novel domain sequences were obtained, showing the potential of this environment for the discovery of new genes of biotechnological interest. These domains were classified by phylogenetic analysis and this was the first study conducted to screen PKS and NRPS genes in an upwelling affected sample
Collapse
Affiliation(s)
- Rafael R C Cuadrat
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Rio de Janeiro CEP 21040-360, Brazil.
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, OT Neuglobsow, Stechlin 16775, Germany.
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, Berlin 14195, Germany.
| | - Juliano C Cury
- Molecular Microbiology Laboratory, Federal University of São João del-Rei, Sete Lagoas Campus Rua Sétimo Moreira Martins 188, Itapoã II, Sete Lagoas CEP 35702-031, Brazil.
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Rio de Janeiro CEP 21040-360, Brazil.
| |
Collapse
|
15
|
Moreira APB, Meirelles PM, Santos EDO, Amado-Filho GM, Francini-Filho RB, Thompson CC, Thompson FL. Turbulence-driven shifts in holobionts and planktonic microbial assemblages in St. Peter and St. Paul Archipelago, Mid-Atlantic Ridge, Brazil. Front Microbiol 2015; 6:1038. [PMID: 26483769 PMCID: PMC4591530 DOI: 10.3389/fmicb.2015.01038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the planktonic and the holobiont Madracis decactis (Scleractinia) microbial diversity along a turbulence-driven upwelling event, in the world's most isolated tropical island, St Peter and St Paul Archipelago (SPSPA, Brazil). Twenty one metagenomes were obtained for seawater (N = 12), healthy and bleached holobionts (N = 9) before, during and after the episode of high seawater turbulence and upwelling. Microbial assemblages differed between low turbulence-low nutrient (LLR) and high-turbulence-high nutrient (HHR) regimes in seawater. During LLR there was a balance between autotrophy and heterotrophy in the bacterioplankton and the ratio cyanobacteria:heterotrophs ~1 (C:H). Prochlorales, unclassified Alphaproteobacteria and Euryarchaeota were the dominant bacteria and archaea, respectively. Basic metabolisms and cyanobacterial phages characterized the LLR. During HHR C:H < < 0.05 and Gammaproteobacteria approximated 50% of the most abundant organisms in seawater. Alteromonadales, Oceanospirillales, and Thaumarchaeota were the dominant bacteria and archaea. Prevailing metabolisms were related to membrane transport, virulence, disease, and defense. Phages targeting heterotrophs and virulence factor genes characterized HHR. Shifts were also observed in coral microbiomes, according to both annotation–indepent and -dependent methods. HHR bleached corals metagenomes were the most dissimilar and could be distinguished by their di- and tetranucleotides frequencies, Iron Acquision metabolism and virulence genes, such as V. cholerae-related virulence factors. The healthy coral holobiont was shown to be less sensitive to transient seawater-related perturbations than the diseased animals. A conceptual model for the turbulence-induced shifts is put forward.
Collapse
Affiliation(s)
- Ana Paula B Moreira
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Pedro M Meirelles
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Eidy de O Santos
- Fundação Centro Universitário Estadual da Zona Oeste (Uezo) Rio de Janeiro, Brazil
| | - Gilberto M Amado-Filho
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rio de Janeiro, Brazil
| | | | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Silva GGZ, Green KT, Dutilh BE, Edwards RA. SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data. Bioinformatics 2015; 32:354-61. [PMID: 26454280 PMCID: PMC4734042 DOI: 10.1093/bioinformatics/btv584] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/05/2015] [Indexed: 12/18/2022] Open
Abstract
SUMMARY Analyzing the functional profile of a microbial community from unannotated shotgun sequencing reads is one of the important goals in metagenomics. Functional profiling has valuable applications in biological research because it identifies the abundances of the functional genes of the organisms present in the original sample, answering the question what they can do. Currently, available tools do not scale well with increasing data volumes, which is important because both the number and lengths of the reads produced by sequencing platforms keep increasing. Here, we introduce SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reduced reference database to report the subsystems present in metagenomic datasets and profile their abundances. SUPER-FOCUS was tested with over 70 real metagenomes, the results showing that it accurately predicts the subsystems present in the profiled microbial communities, and is up to 1000 times faster than other tools. AVAILABILITY AND IMPLEMENTATION SUPER-FOCUS was implemented in Python, and its source code and the tool website are freely available at https://edwards.sdsu.edu/SUPERFOCUS. CONTACT redwards@mail.sdsu.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Kevin T Green
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH, Utrecht, The Netherlands Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Brazil
| | - Robert A Edwards
- Computational Science Research Center Department of Biology, San Diego State University, San Diego, CA 92182, USA Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Brazil Department of Computer Science, San Diego State University, San Diego, CA 92182, USA Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
17
|
From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci 2015; 72:4287-308. [PMID: 26254872 PMCID: PMC4611022 DOI: 10.1007/s00018-015-2004-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/30/2022]
Abstract
Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.
Collapse
|
18
|
Bacterial Diversity Associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the Coral Reef Ecosystem of Gulf of Mannar, Southeast Coast of India. PLoS One 2015; 10:e0123222. [PMID: 25938436 PMCID: PMC4418615 DOI: 10.1371/journal.pone.0123222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/02/2015] [Indexed: 11/22/2022] Open
Abstract
Sponges are abundant, diverse and functionally important organisms of coral reef ecosystems. Sponge-associated microorganisms have been receiving greater attention because of their significant contribution to sponge biomass, biogeochemical cycles and biotechnological potentials. However, our understanding of the sponge microbiome is limited to a few species of sponges from restricted geographical locations. Here, we report for the first time the bacterial diversity of two cohabiting sponges, viz. Cinachyra cavernosa and Haliclona pigmentifera, as well as that in the ambient water from the coral reef ecosystems of the Gulf of Mannar, located along the southeast coast of India. Two hundred and fifty two clones in the 16S rRNA gene library of these sponges were grouped into eight distinct phyla, of which four belonged to the core group that are associated only with sponges. Phylogenetic analysis of the core bacteria showed close affinity to other sponge-associated bacteria from different geographical locations. γ-Proteobacteria, Chloroflexi, Planctomycetes and Deferribacter were the core groups in C. cavernosa while β and δ-Proteobacteria performed this role in H. pigmentifera. We observed greater OTU diversity for C. cavernosa (Hǀ 2.07) compared to H. pigmentifera (Hǀ 1.97). UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water (p<0.001). The results of our study restate the existence of a host driven force in shaping the sponge microbiome.
Collapse
|
19
|
Rua CPJ, Gregoracci GB, Santos EO, Soares AC, Francini-Filho RB, Thompson F. Potential metabolic strategies of widely distributed holobionts in the oceanic archipelago of St Peter and St Paul (Brazil). FEMS Microbiol Ecol 2015; 91:fiv043. [PMID: 25873456 DOI: 10.1093/femsec/fiv043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2015] [Indexed: 11/13/2022] Open
Abstract
Sponges are one of the most complex symbiotic communities and while the taxonomic composition of associated microbes has been determined, the biggest challenge now is to uncover their functional role in symbiosis. We investigated the microbiota of two widely distributed sponge species, regarding both their taxonomic composition and their functional roles. Samples of Didiscus oxeata and Scopalina ruetzleri were collected in the oceanic archipelago of St Peter and St Paul and analysed through metagenomics. Sequences generated by 454 pyrosequencing and Ion Torrent were taxonomically and functionally annotated on the MG-RAST server using the GenBank and SEED databases, respectively. Both communities exhibit equivalence in core functions, interestingly played by the most abundant taxa in each community. Conversely, the microbial communities differ in composition, taxonomic diversity and potential metabolic strategies. Functional annotation indirectly suggests differences in preferential pathways of carbon, nitrogen and sulphur metabolisms, which may indicate different metabolic strategies.
Collapse
Affiliation(s)
- Cintia P J Rua
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Gustavo B Gregoracci
- Av. Alm. Saldanha da Gama, 89 - Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Santos, CEP 11030-400, Brazil
| | - Eidy O Santos
- Av. Nossa Senhora das Graças, 50 - Divisão de Metrologia Aplicada a Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Xerém, CEP 25250-020, Brazil
| | - Ana Carolina Soares
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Ronaldo B Francini-Filho
- Rua da Mangueira, s/nº - Centro de Ciências Aplicadas e Educação, Departamento de Engenharia e Meio Ambiente, Campus IV - Litoral Norte - Universidade Federal da Paraíba (UFPB), Rio Tinto, PB, CEP 58297-000, Brazil
| | - Fabiano Thompson
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| |
Collapse
|
20
|
Ul Haq I, van Elsas JD. Metagenomics and Metatranscriptomics for the Exploration of Natural Products from Soil Fungi. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Carlos C, Castro DBA, Ottoboni LMM. Comparative metagenomic analysis of coral microbial communities using a reference-independent approach. PLoS One 2014; 9:e111626. [PMID: 25379670 PMCID: PMC4224422 DOI: 10.1371/journal.pone.0111626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022] Open
Abstract
By comparing the SEED and Pfam functional profiles of metagenomes of two Brazilian coral species with 29 datasets that are publicly available, we were able to identify some functions, such as protein secretion systems, that are overrepresented in the metagenomes of corals and may play a role in the establishment and maintenance of bacteria-coral associations. However, only a small percentage of the reads of these metagenomes could be annotated by these reference databases, which may lead to a strong bias in the comparative studies. For this reason, we have searched for identical sequences (99% of nucleotide identity) among these metagenomes in order to perform a reference-independent comparative analysis, and we were able to identify groups of microbial communities that may be under similar selective pressures. The identification of sequences shared among the metagenomes was found to be even better for the identification of groups of communities with similar niche requirements than the traditional analysis of functional profiles. This approach is not only helpful for the investigation of similarities between microbial communities with high proportion of unknown reads, but also enables an indirect overview of gene exchange between communities.
Collapse
Affiliation(s)
- Camila Carlos
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Daniel Bedo Assumpção Castro
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Laura M M Ottoboni
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Alves Junior N, Meirelles PM, de Oliveira Santos E, Dutilh B, Silva GGZ, Paranhos R, Cabral AS, Rezende C, Iida T, de Moura RL, Kruger RH, Pereira RC, Valle R, Sawabe T, Thompson C, Thompson F. Microbial community diversity and physical–chemical features of the Southwestern Atlantic Ocean. Arch Microbiol 2014; 197:165-79. [DOI: 10.1007/s00203-014-1035-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/01/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023]
|
23
|
Rua CPJ, Trindade-Silva AE, Appolinario LR, Venas TM, Garcia GD, Carvalho LS, Lima A, Kruger R, Pereira RC, Berlinck RGS, Valle RAB, Thompson CC, Thompson F. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ 2014; 2:e419. [PMID: 25024903 PMCID: PMC4081303 DOI: 10.7717/peerj.419] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/18/2014] [Indexed: 01/13/2023] Open
Abstract
Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32), Bacillus (N = 26), Shewanella (N = 17), Pseudovibrio (N = 12), and Ruegeria (N = 8) were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.
Collapse
Affiliation(s)
- Cintia P J Rua
- Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Luciana R Appolinario
- Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Tainá M Venas
- Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Gizele D Garcia
- Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Lucas S Carvalho
- Departamento de Biologia Celular, Universidade de Brasília , Brasília, DF , Brazil
| | - Alinne Lima
- Departamento de Biologia Celular, Universidade de Brasília , Brasília, DF , Brazil
| | - Ricardo Kruger
- Departamento de Biologia Celular, Universidade de Brasília , Brasília, DF , Brazil
| | - Renato C Pereira
- Instituto de Biologia, Universidade Federal Fluminense , Niterói, RJ , Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo , São Carlos, SP , Brazil
| | - Rogério A B Valle
- SAGE-COPPE Centro de Gestão Tecnológica, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Fabiano Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil ; SAGE-COPPE Centro de Gestão Tecnológica, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
24
|
Silva GGZ, Cuevas DA, Dutilh BE, Edwards RA. FOCUS: an alignment-free model to identify organisms in metagenomes using non-negative least squares. PeerJ 2014; 2:e425. [PMID: 24949242 PMCID: PMC4060023 DOI: 10.7717/peerj.425] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022] Open
Abstract
One of the major goals in metagenomics is to identify the organisms present in a microbial community from unannotated shotgun sequencing reads. Taxonomic profiling has valuable applications in biological and medical research, including disease diagnostics. Most currently available approaches do not scale well with increasing data volumes, which is important because both the number and lengths of the reads provided by sequencing platforms keep increasing. Here we introduce FOCUS, an agile composition based approach using non-negative least squares (NNLS) to report the organisms present in metagenomic samples and profile their abundances. FOCUS was tested with simulated and real metagenomes, and the results show that our approach accurately predicts the organisms present in microbial communities. FOCUS was implemented in Python. The source code and web-sever are freely available at http://edwards.sdsu.edu/FOCUS.
Collapse
Affiliation(s)
| | - Daniel A Cuevas
- Computational Science Research Center, San Diego State University , San Diego, CA , USA
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, GA , Nijmegen , The Netherlands ; Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro , Brazil
| | - Robert A Edwards
- Computational Science Research Center, San Diego State University , San Diego, CA , USA ; Department of Computer Science, San Diego State University , San Diego, CA , USA ; Department of Biology, San Diego State University , San Diego, CA , USA ; Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro , Brazil ; Division of Mathematics and Computer Science, Argonne National Laboratory , Argonne, IL , USA
| |
Collapse
|
25
|
Zuppa A, Costantini S, Costantini M. Comparative sequence analysis of bacterial symbionts from the marine sponges Geodia cydonium and Ircinia muscarum. Bioinformation 2014; 10:196-200. [PMID: 24966520 PMCID: PMC4070049 DOI: 10.6026/97320630010196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 11/23/2022] Open
Abstract
Marine sponges (Porifera) live in a symbiotic relationship with microorganisms, primarily bacteria. Recently, several studies indicated that sponges are the most prolific source of biologically-active compounds produced by symbiotic microorganisms rather than by the sponges themselves. In the present study we characterized the bacterial symbionts from two Demospongiae, Ircinia muscarum and Geodia cydonium. We amplified 16S rRNA by PCR, using specific bacterial-primers. The phylogenetic analysis revealed the presence of nine bacterial clones from I. muscarum and ten from G. cydonium. In particular, I. muscarum resulted enriched in Bacillus species and G. cydonium in Proteobacterium species. Since these bacteria were able to produce secondary metabolites with potential biotechnological and biopharmaceutical applications, we hypothesized that I. muscarum and G. cydonium could be a considered as a "gold mine" of natural products.
Collapse
Affiliation(s)
- Antonio Zuppa
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Susan Costantini
- Istituto Nazionale per lo Studio e la Cura dei Tumori ‘Fondazione Giovanni Pascale’, IRCCS, Napoli, Italia
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
26
|
Kennedy J, Flemer B, Jackson SA, Morrissey JP, O'Gara F, Dobson ADW. Evidence of a putative deep sea specific microbiome in marine sponges. PLoS One 2014; 9:e91092. [PMID: 24670421 PMCID: PMC3966782 DOI: 10.1371/journal.pone.0091092] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/06/2014] [Indexed: 02/01/2023] Open
Abstract
The microbiota of four individual deep water sponges, Lissodendoryx diversichela, Poecillastra compressa, Inflatella pellicula, and Stelletta normani, together with surrounding seawater were analysed by pyrosequencing of a region of the 16S rRNA gene common to Bacteria and Archaea. Due to sampling constraints at depths below 700 m duplicate samples were not collected. The microbial communities of L. diversichela, P. compressa and I. pellicula were typical of low microbial abundance (LMA) sponges while S. normani had a community more typical of high microbial abundance (HMA) sponges. Analysis of the deep sea sponge microbiota revealed that the three LMA-like sponges shared a set of abundant OTUs that were distinct from those associated with sponges from shallow waters. Comparison of the pyrosequencing data with that from shallow water sponges revealed that the microbial communities of all sponges analysed have similar archaeal populations but that the bacterial populations of the deep sea sponges were distinct. Further analysis of the common and abundant OTUs from the three LMA-like sponges placed them within the groups of ammonia oxidising Archaea (Thaumarchaeota) and sulphur oxidising γ-Proteobacteria (Chromatiales). Reads from these two groups made up over 70% of all 16S rRNA genes detected from the three LMA-like sponge samples, providing evidence of a putative common microbial assemblage associated with deep sea LMA sponges.
Collapse
Affiliation(s)
- Jonathan Kennedy
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| | - Burkhardt Flemer
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Stephen A. Jackson
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| | - John P. Morrissey
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Ferghal O'Gara
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
- School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Alan D. W. Dobson
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
27
|
Li ZY, Wang YZ, He LM, Zheng HJ. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics. Sci Rep 2014; 4:3895. [PMID: 24463735 PMCID: PMC5379212 DOI: 10.1038/srep03895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/08/2014] [Indexed: 01/29/2023] Open
Abstract
The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yue-Zhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P. R. China
| | - Li-Ming He
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P. R. China
| |
Collapse
|
28
|
Trabal Fernández N, Mazón-Suástegui JM, Vázquez-Juárez R, Ascencio-Valle F, Romero J. Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS Microbiol Ecol 2014; 88:69-83. [PMID: 24325323 DOI: 10.1111/1574-6941.12270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 01/16/2023] Open
Abstract
The resident microbiota of three oyster species (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) was characterised using a high-throughput sequencing approach (pyrosequencing) that was based on the V3-V5 regions of the 16S rRNA gene. We analysed the changes in the bacterial community beginning with the postlarvae produced in a hatchery, which were later planted at two grow-out cultivation sites until they reached the adult stage. DNA samples from the oysters were amplified, and 31 008 sequences belonging to 13 phyla (including Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) and 243 genera were generated. Considering all life stages, Proteobacteria was the most abundant phylum, but it showed variations at the genus level between the postlarvae and the adult oysters. Bacteroidetes was the second most common phylum, but it was found in higher abundance in the postlarvae than in adults. The relative abundance showed that the microbiota that was associated with the postlarvae and adults differed substantially, and higher diversity and richness were evident in the postlarvae in comparison with adults of the same species. The site of rearing influenced the bacterial community composition of C. corteziensis and C. sikamea adults. The bacterial groups that were found in these oysters were complex and metabolically versatile, making it difficult to understand the host-bacteria symbiotic relationships; therefore, the physiological and ecological significances of the resident microbiota remain uncertain.
Collapse
|
29
|
Ióca LP, Allard PM, Berlinck RGS. Thinking big about small beings – the (yet) underdeveloped microbial natural products chemistry in Brazil. Nat Prod Rep 2014; 31:646-75. [DOI: 10.1039/c3np70112c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Schofield MM, Sherman DH. Meta-omic characterization of prokaryotic gene clusters for natural product biosynthesis. Curr Opin Biotechnol 2013; 24:1151-8. [PMID: 23731715 PMCID: PMC3797859 DOI: 10.1016/j.copbio.2013.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/14/2013] [Accepted: 05/07/2013] [Indexed: 01/04/2023]
Abstract
Microorganisms produce a remarkable selection of bioactive small molecules. The study and exploitation of these secondary metabolites have traditionally been restricted to the cultivable minority of bacteria. Rapid advances in meta-omics challenge this paradigm. Breakthroughs in metagenomic library methodologies, direct sequencing, single cell genomics, and natural product-specific bioinformatic tools now facilitate the retrieval of previously inaccessible biosynthetic gene clusters. Similarly, metaproteomic developments enable the direct study of biosynthetic enzymes from complex microbial communities. Additional methods within and beyond meta-omics are also in development. This review discusses recent reports in these arenas and how they can be utilized to characterize natural product biosynthetic gene clusters and pathways.
Collapse
Affiliation(s)
- Michael M. Schofield
- Life Sciences Institute and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - David H. Sherman
- Life Sciences Institute and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Departments of Medicinal Chemistry, and Chemistry, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109
| |
Collapse
|
31
|
Mokili JL, Dutilh BE, Lim YW, Schneider BS, Taylor T, Haynes MR, Metzgar D, Myers CA, Blair PJ, Nosrat B, Wolfe ND, Rohwer F. Identification of a novel human papillomavirus by metagenomic analysis of samples from patients with febrile respiratory illness. PLoS One 2013; 8:e58404. [PMID: 23554892 PMCID: PMC3600855 DOI: 10.1371/journal.pone.0058404] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/04/2013] [Indexed: 11/27/2022] Open
Abstract
As part of a virus discovery investigation using a metagenomic approach, a highly divergent novel Human papillomavirus type was identified in pooled convenience nasal/oropharyngeal swab samples collected from patients with febrile respiratory illness. Phylogenetic analysis of the whole genome and the L1 gene reveals that the new HPV identified in this study clusters with previously described gamma papillomaviruses, sharing only 61.1% (whole genome) and 63.1% (L1) sequence identity with its closest relative in the Papillomavirus episteme (PAVE) database. This new virus was named HPV_SD2 pending official classification. The complete genome of HPV-SD2 is 7,299 bp long (36.3% G/C) and contains 7 open reading frames (L2, L1, E6, E7, E1, E2 and E4) and a non-coding long control region (LCR) between L1 and E6. The metagenomic procedures, coupled with the bioinformatic methods described herein are well suited to detect small circular genomes such as those of human papillomaviruses.
Collapse
Affiliation(s)
- John L Mokili
- Department of Biology, San Diego State University, San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Trindade-Silva AE, Rua CPJ, Andrade BGN, Vicente ACP, Silva GGZ, Berlinck RGS, Thompson FL. Polyketide synthase gene diversity within the microbiome of the sponge Arenosclera brasiliensis, endemic to the Southern Atlantic Ocean. Appl Environ Microbiol 2013; 79:1598-605. [PMID: 23275501 PMCID: PMC3591950 DOI: 10.1128/aem.03354-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022] Open
Abstract
Microbes associated with marine sponges are considered important producers of bioactive, structurally unique polyketides. The synthesis of such secondary metabolites involves type I polyketide synthases (PKSs), which are enzymes that reach a maximum complexity degree in bacteria. The Haplosclerida sponge Arenosclera brasiliensis hosts a complex microbiota and is the source of arenosclerins, alkaloids with cytotoxic and antibacterial activity. In the present investigation, we performed high-throughput sequencing of the ketosynthase (KS) amplicon to investigate the diversity of PKS genes present in the metagenome of A. brasiliensis. Almost 4,000 ketosynthase reads were recovered, with about 90% annotated automatically as bacterial. A total of 235 bacterial KS contigs was rigorously assembled from this sequence pool and submitted to phylogenetic analysis. A great diversity of six type I PKS groups has been consistently detected in our phylogenetic reconstructions, including a novel and A. brasiliensis-exclusive group. Our study is the first to reveal the diversity of type I PKS genes in A. brasiliensis as well as the potential of its microbiome to serve as a source of new polyketides.
Collapse
Affiliation(s)
- Amaro E. Trindade-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia P. J. Rua
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Genivaldo G. Z. Silva
- Department of Computer Science, San Diego State University, San Diego, California, USA
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Fabiano L. Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Dutilh BE, Schmieder R, Nulton J, Felts B, Salamon P, Edwards RA, Mokili JL. Reference-independent comparative metagenomics using cross-assembly: crAss. ACTA ACUST UNITED AC 2012; 28:3225-31. [PMID: 23074261 PMCID: PMC3519457 DOI: 10.1093/bioinformatics/bts613] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MOTIVATION Metagenomes are often characterized by high levels of unknown sequences. Reads derived from known microorganisms can easily be identified and analyzed using fast homology search algorithms and a suitable reference database, but the unknown sequences are often ignored in further analyses, biasing conclusions. Nevertheless, it is possible to use more data in a comparative metagenomic analysis by creating a cross-assembly of all reads, i.e. a single assembly of reads from different samples. Comparative metagenomics studies the interrelationships between metagenomes from different samples. Using an assembly algorithm is a fast and intuitive way to link (partially) homologous reads without requiring a database of reference sequences. RESULTS Here, we introduce crAss, a novel bioinformatic tool that enables fast simple analysis of cross-assembly files, yielding distances between all metagenomic sample pairs and an insightful image displaying the similarities.
Collapse
Affiliation(s)
- Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|