1
|
Allcroft TJ, Duong JT, Skardal PS, Kovarik ML. Microfluidic single-cell measurements of oxidative stress as a function of cell cycle position. Anal Bioanal Chem 2023; 415:6481-6490. [PMID: 37682313 DOI: 10.1007/s00216-023-04924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Single-cell measurements routinely demonstrate high levels of variation between cells, but fewer studies provide insight into the analytical and biological sources of this variation. This is particularly true of chemical cytometry, in which individual cells are lysed and their contents separated, compared to more established single-cell measurements of the genome and transcriptome. To characterize population-level variation and its sources, we analyzed oxidative stress levels in 1278 individual Dictyostelium discoideum cells as a function of exogenous stress level and cell cycle position. Cells were exposed to varying levels of oxidative stress via singlet oxygen generation using the photosensitizer Rose Bengal. Single-cell data reproduced the dose-response observed in ensemble measurements by CE-LIF, superimposed with high levels of heterogeneity. Through experiments and data analysis, we explored possible biological sources of this heterogeneity. No trend was observed between population variation and oxidative stress level, but cell cycle position was a major contributor to heterogeneity in oxidative stress. Cells synchronized to the same stage of cell division were less heterogeneous than unsynchronized cells (RSD of 37-51% vs 93%), and mitotic cells had higher levels of reactive oxygen species than interphase cells. While past research has proposed changes in cell size during the cell cycle as a source of biological noise, the measurements presented here use an internal standard to normalize for effects of cell volume, suggesting a more complex contribution of cell cycle to heterogeneity of oxidative stress.
Collapse
|
2
|
Kim WD, Huber RJ. An altered transcriptome underlies cln5-deficiency phenotypes in Dictyostelium discoideum. Front Genet 2022; 13:1045738. [DOI: 10.3389/fgene.2022.1045738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations in CLN5 cause a subtype of neuronal ceroid lipofuscinosis (NCL) called CLN5 disease. The NCLs, commonly referred to as Batten disease, are a family of neurodegenerative lysosomal storage diseases that affect all ages and ethnicities globally. Previous research showed that CLN5 participates in a variety of cellular processes. However, the precise function of CLN5 in the cell and the pathway(s) regulating its function are not well understood. In the model organism Dictyostelium discoideum, loss of the CLN5 homolog, cln5, impacts various cellular and developmental processes including cell proliferation, cytokinesis, aggregation, cell adhesion, and terminal differentiation. In this study, we used comparative transcriptomics to identify differentially expressed genes underlying cln5-deficiency phenotypes during growth and the early stages of multicellular development. During growth, genes associated with protein ubiquitination/deubiquitination, cell cycle progression, and proteasomal degradation were affected, while genes linked to protein and carbohydrate catabolism were affected during early development. We followed up this analysis by showing that loss of cln5 alters the intracellular and extracellular amounts of proliferation repressors during growth and increases the extracellular amount of conditioned medium factor, which regulates cAMP signalling during the early stages of development. Additionally, cln5- cells displayed increased intracellular and extracellular amounts of discoidin, which is involved in cell-substrate adhesion and migration. Previous work in mammalian models reported altered lysosomal enzyme activity due to mutation or loss of CLN5. Here, we detected altered intracellular activities of various carbohydrate enzymes and cathepsins during cln5- growth and starvation. Notably, cln5- cells displayed reduced β-hexosaminidase activity, which aligns with previous work showing that D. discoideum Cln5 and human CLN5 can cleave the substrate acted upon by β-hexosaminidase. Finally, consistent with the differential expression of genes associated with proteasomal degradation in cln5- cells, we also observed elevated amounts of a proteasome subunit and reduced proteasome 20S activity during cln5- growth and starvation. Overall, this study reveals the impact of cln5-deficiency on gene expression in D. discoideum, provides insight on the genes and proteins that play a role in regulating Cln5-dependent processes, and sheds light on the molecular mechanisms underlying CLN5 disease.
Collapse
|
3
|
Katoh-Kurasawa M, Hrovatin K, Hirose S, Webb A, Ho HI, Zupan B, Shaulsky G. Transcriptional milestones in Dictyostelium development. Genome Res 2021; 31:1498-1511. [PMID: 34183452 PMCID: PMC8327917 DOI: 10.1101/gr.275496.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023]
Abstract
Dictyostelium development begins with single-cell starvation and ends with multicellular fruiting bodies. Developmental morphogenesis is accompanied by sweeping transcriptional changes, encompassing nearly half of the 13,000 genes in the genome. We performed time-series RNA-sequencing analyses of the wild type and 20 mutants to explore the relationships between transcription and morphogenesis. These strains show developmental arrest at different stages, accelerated development, or atypical morphologies. Considering eight major morphological transitions, we identified 1371 milestone genes whose expression changes sharply between consecutive transitions. We also identified 1099 genes as members of 21 regulons, which are groups of genes that remain coordinately regulated despite the genetic, temporal, and developmental perturbations. The gene annotations in these groups validate known transitions and reveal new developmental events. For example, DNA replication genes are tightly coregulated with cell division genes, so they are expressed in mid-development although chromosomal DNA is not replicated. Our data set includes 486 transcriptional profiles that can help identify new relationships between transcription and development and improve gene annotations. We show its utility by showing that cycles of aggregation and disaggregation in allorecognition-defective mutants involve dedifferentiation. We also show sensitivity to genetic and developmental conditions in two commonly used actin genes, act6 and act15, and robustness of the coaA gene. Finally, we propose that gpdA is a better mRNA quantitation standard because it is less sensitive to external conditions than commonly used standards. The data set is available for democratized exploration through the web application dictyExpress and the data mining environment Orange.
Collapse
Affiliation(s)
- Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Karin Hrovatin
- Faculty of Computer and Information Science, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Shigenori Hirose
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amanda Webb
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hsing-I Ho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Blaž Zupan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Faculty of Computer and Information Science, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Gruenheit N, Parkinson K, Brimson CA, Kuwana S, Johnson EJ, Nagayama K, Llewellyn J, Salvidge WM, Stewart B, Keller T, van Zon W, Cotter SL, Thompson CRL. Cell Cycle Heterogeneity Can Generate Robust Cell Type Proportioning. Dev Cell 2018; 47:494-508.e4. [PMID: 30473004 PMCID: PMC6251973 DOI: 10.1016/j.devcel.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
Cell-cell heterogeneity can facilitate lineage choice during embryonic development because it primes cells to respond to differentiation cues. However, remarkably little is known about the origin of heterogeneity or whether intrinsic and extrinsic variation can be controlled to generate reproducible cell type proportioning seen in vivo. Here, we use experimentation and modeling in D. discoideum to demonstrate that population-level cell cycle heterogeneity can be optimized to generate robust cell fate proportioning. First, cell cycle position is quantitatively linked to responsiveness to differentiation-inducing signals. Second, intrinsic variation in cell cycle length ensures cells are randomly distributed throughout the cell cycle at the onset of multicellular development. Finally, extrinsic perturbation of optimal cell cycle heterogeneity is buffered by compensatory changes in global signal responsiveness. These studies thus illustrate key regulatory principles underlying cell-cell heterogeneity optimization and the generation of robust and reproducible fate choice in development. Dictyostelium cells break symmetry in a stochastic salt and pepper fashion Cell cycle position affects responsiveness to differentiation inducing signals Cell cycle length variation ensures cells are distributed in different cycle phases Perturbation of cell cycle dynamics is buffered by changes in signal responsiveness
Collapse
Affiliation(s)
- Nicole Gruenheit
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Katie Parkinson
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Christopher A Brimson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Satoshi Kuwana
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Edward J Johnson
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Koki Nagayama
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jack Llewellyn
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; School of Mathematics, Faculty of Science and Engineering, The University of Manchester, Alan Turing Building, Manchester M13 9PL, UK
| | - William M Salvidge
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Balint Stewart
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Thomas Keller
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Wouter van Zon
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon L Cotter
- School of Mathematics, Faculty of Science and Engineering, The University of Manchester, Alan Turing Building, Manchester M13 9PL, UK
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
5
|
O'Day DH, Budniak A. Nucleocytoplasmic protein translocation during mitosis in the social amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2014; 90:126-41. [PMID: 24618050 DOI: 10.1111/brv.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/03/2023]
Abstract
Mitosis is a fundamental and essential life process. It underlies the duplication and survival of all cells and, as a result, all eukaryotic organisms. Since uncontrolled mitosis is a dreaded component of many cancers, a full understanding of the process is critical. Evolution has led to the existence of three types of mitosis: closed, open, and semi-open. The significance of these different mitotic species, how they can lead to a full understanding of the critical events that underlie the asexual duplication of all cells, and how they may generate new insights into controlling unregulated cell division remains to be determined. The eukaryotic microbe Dictyostelium discoideum has proved to be a valuable biomedical model organism. While it appears to utilize closed mitosis, a review of the literature suggests that it possesses a form of mitosis that lies in the middle between truly open and fully closed mitosis-it utilizes a form of semi-open mitosis. Here, the nucleocytoplasmic translocation patterns of the proteins that have been studied during mitosis in the social amoebozoan D. discoideum are detailed followed by a discussion of how some of them provide support for the hypothesis of semi-open mitosis.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, Ontario, L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
6
|
Platt JL, Rogers BJ, Rogers KC, Harwood AJ, Kimmel AR. Different CHD chromatin remodelers are required for expression of distinct gene sets and specific stages during development of Dictyostelium discoideum. Development 2014; 140:4926-36. [PMID: 24301467 PMCID: PMC3848188 DOI: 10.1242/dev.099879] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Control of chromatin structure is crucial for multicellular development and regulation of cell differentiation. The CHD (chromodomain-helicase-DNA binding) protein family is one of the major ATP-dependent, chromatin remodeling factors that regulate nucleosome positioning and access of transcription factors and RNA polymerase to the eukaryotic genome. There are three mammalian CHD subfamilies and their impaired functions are associated with several human diseases. Here, we identify three CHD orthologs (ChdA, ChdB and ChdC) in Dictyostelium discoideum. These CHDs are expressed throughout development, but with unique patterns. Null mutants lacking each CHD have distinct phenotypes that reflect their expression patterns and suggest functional specificity. Accordingly, using genome-wide (RNA-seq) transcriptome profiling for each null strain, we show that the different CHDs regulate distinct gene sets during both growth and development. ChdC is an apparent ortholog of the mammalian Class III CHD group that is associated with the human CHARGE syndrome, and GO analyses of aberrant gene expression in chdC nulls suggest defects in both cell-autonomous and non-autonomous signaling, which have been confirmed through analyses of chdC nulls developed in pure populations or with low levels of wild-type cells. This study provides novel insight into the broad function of CHDs in the regulation development and disease, through chromatin-mediated changes in directed gene expression.
Collapse
Affiliation(s)
- James L Platt
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
7
|
A retinoblastoma orthologue is required for the sensing of a chalone in Dictyostelium discoideum. EUKARYOTIC CELL 2014; 13:376-82. [PMID: 24390142 DOI: 10.1128/ec.00306-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retinoblastoma-like proteins regulate cell differentiation and inhibit cell proliferation. The Dictyostelium discoideum retinoblastoma orthologue RblA affects the differentiation of cells during multicellular development, but it is unclear whether RblA has a significant effect on Dictyostelium cell proliferation, which is inhibited by the secreted proteins AprA and CfaD. We found that rblA⁻ cells in shaking culture proliferate to a higher density, die faster after reaching stationary density, and, after starvation, have a lower spore viability than wild-type cells, possibly because in shaking culture, rblA⁻ cells have both increased cytokinesis and lower extracellular accumulation of CfaD. However, rblA⁻ cells have abnormally slow proliferation on bacterial lawns. Recombinant AprA inhibits the proliferation of wild-type cells but not that of rblA⁻ cells, whereas CfaD inhibits the proliferation of both wild-type cells and rblA⁻ cells. Similar to aprA⁻ cells, rblA⁻ cells have a normal mass and protein accumulation rate on a per-nucleus basis, indicating that RblA affects cell proliferation but not cell growth. AprA also functions as a chemorepellent, and RblA is required for proper AprA chemorepellent activity despite the fact that RblA does not affect cell speed. Together, our data indicate that an autocrine proliferation-inhibiting factor acts through RblA to regulate cell density in Dictyostelium, suggesting that such factors may signal through retinoblastoma-like proteins to control the sizes of structures such as developing organs or tumors.
Collapse
|
8
|
Müller S, Windhof IM, Maximov V, Jurkowski T, Jeltsch A, Förstner KU, Sharma CM, Gräf R, Nellen W. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA). Nucleic Acids Res 2013; 41:8615-27. [PMID: 23877245 PMCID: PMC3794594 DOI: 10.1093/nar/gkt634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in tRNAAsp(GUC)in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified tRNAGlu(CUC/UUC) and tRNAGly(GCC) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.
Collapse
Affiliation(s)
- Sara Müller
- Department of Genetics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany, Institute of Biochemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Würzburg and Universität Potsdam, Institut für Biochemie und Biologie, Abt. Zellbiologie, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam - Golm
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Couto CAM, Hsu DW, Teo R, Rakhimova A, Lempidaki S, Pears CJ, Lakin ND. Nonhomologous end-joining promotes resistance to DNA damage in the absence of an ADP-ribosyltransferase that signals DNA single strand breaks. J Cell Sci 2013; 126:3452-61. [DOI: 10.1242/jcs.128769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ADP-ribosylation of proteins at DNA lesions by ADP-ribosyltransferases (ARTs) is an early response to DNA damage. The best defined role of ADP-ribosylation in the DNA damage response is in repair of single strand breaks (SSBs). Recently, we initiated a study of how ADP-ribosylation regulates DNA repair in Dictyostelium and found that whilst two ARTs (Adprt1b and Adprt2) are required for tolerance of cells to SSBs, a third ART (Adprt1a) promotes nonhomologous end-joining (NHEJ). Here we report that disruption of adprt2 results in accumulation of DNA damage throughout the cell cycle following exposure to agents that induce base damage and DNA SSBs. Although ADP-ribosylation is evident in adprt2− cells exposed to MMS, disruption of adprt1a and adprt2 in combination abrogates this response and further sensitises cells to this agent, indicating that in the absence of Adprt2, Adprt1a signals MMS-induced DNA lesions to promote resistance of cells to DNA damage. As a consequence of defective signalling of SSBs by Adprt2, Adprt1a is required to assemble NHEJ factors in chromatin and disruption of the NHEJ pathway in combination with adprt2 increases sensitivity of cells to MMS. Taken together, these data indicate overlapping functions between different ARTs in signalling DNA damage and illustrate a critical requirement for NHEJ in maintaining cell viability in the absence of an effective SSB response.
Collapse
|