1
|
Cui Y, Lee P, Reardon JJ, Wang A, Lynch S, Otero JJ, Sizemore G, Winter JO. Evaluating glioblastoma tumour sphere growth and migration in interaction with astrocytes using 3D collagen-hyaluronic acid hydrogels. J Mater Chem B 2023; 11:5442-5459. [PMID: 37159233 PMCID: PMC10330682 DOI: 10.1039/d3tb00066d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Glioblastoma (GB) is an astrocytic brain tumour with a low survival rate, partly because of its highly invasive nature. The GB tumour microenvironment (TME) includes its extracellular matrix (ECM), a variety of brain cell types, unique anatomical structures, and local mechanical cues. As such, researchers have attempted to create biomaterials and culture models that mimic features of TME complexity. Hydrogel materials have been particularly popular because they enable 3D cell culture and mimic TME mechanical properites and chemical composition. Here, we used a 3D collagen I-hyaluronic acid hydrogel material to explore interactions between GB cells and astrocytes, the normal cell type from which GB likely derives. We demonstrate three different spheroid culture configurations, including GB multi-spheres (i.e., GB and astrocyte cells in spheroid co-culture), GB-only mono-spheres cultured with astrocyte-conditioned media, and GB-only mono-spheres cultured with dispersed live or fixed astrocytes. Using U87 and LN229 GB cell lines and primary human astrocytes, we investigated material and experiment variability. We then used time-lapse fluorescence microscopy to measure invasive potential by characterizing the sphere size, migration capacity, and weight-averaged migration distance in these hydrogels. Finally, we developed methods to extract RNA for gene expression analysis from cells cultured in hydrogels. U87 and LN229 cells displayed different migration behaviors. U87 migration occurred primarily as single cells and was reduced with higher numbers of astrocytes in both multi-sphere and mono-sphere plus dispersed astrocyte cultures. In contrast, LN229 migration exhibited features of collective migration and was increased in monosphere plus dispersed astrocyte cultures. Gene expression studies indicated that the most differentially expressed genes in these co-cultures were CA9, HLA-DQA1, TMPRSS2, FPR1, OAS2, and KLRD1. Most differentially expressed genes were related to immune response, inflammation, and cytokine signalling, with greater influence on U87 than LN229. These data show that 3D in vitro hydrogel co-culture models can be used to reveal cell line specific differences in migration and to study differential GB-astrocyte crosstalk.
Collapse
Affiliation(s)
- Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Paul Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jesse J Reardon
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Anna Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Skylar Lynch
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Jose J Otero
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Gina Sizemore
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jessica O Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Min EK, Lee H, Sung EJ, Seo SW, Song M, Wang S, Kim SS, Bae MA, Kim TY, Lee S, Kim KT. Integrative multi-omics reveals analogous developmental neurotoxicity mechanisms between perfluorobutanesulfonic acid and perfluorooctanesulfonic acid in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131714. [PMID: 37263023 DOI: 10.1016/j.jhazmat.2023.131714] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The molecular mechanism of perfluorobutanesulfonic acid (PFBS), an alternative to legacy perfluorooctanesulfonic acid (PFOS), is not fully understood yet. Therefore, we conducted a developmental toxicity evaluation on zebrafish embryos exposed to PFBS and PFOS and assessed neurobehavioral changes at concentrations below each point of departure (POD) determined by embryonic mortality. Using transcriptomics, proteomics, and metabolomics, biomolecular perturbations in response to PFBS were profiled and then integrated for comparison with those for PFOS. Although PFBS (7525.47 μM POD) was approximately 700 times less toxic than PFOS (11.42 μM POD), altered neurobehavior patterns and affected kinds of endogenous neurochemicals were similar between PFBS and PFOS at the corresponding POD-based concentrations. Multi-omics analysis revealed that the PFBS neurotoxicity mechanism was associated with oxidative stress, lipid metabolism, and glycolysis/glucogenesis. The commonalities in developmental neurotoxicity-related mechanisms between PFBS and PFOS interconnected by knowledge-based integration of multi-omics included the calcium signaling pathway, lipid homeostasis, and primary bile acid biosynthesis. Despite being less toxic than PFOS, PFBS exhibited similar dysregulated molecular mechanisms, suggesting that chain length differences do not affect the intrinsic toxicity mechanism. Overall, carefully managing potential toxicity of PFBS can secure its status as an alternative to PFOS.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eun Ji Sung
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Woo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myungha Song
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seungjun Wang
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
3
|
Zhang T, Yuan L, Sheng M, Chen Y, Wang J, Lan Q. Identifying α-KG-dependent prognostic signature for lower-grade glioma based on transcriptome profiles. Front Oncol 2022; 12:840394. [PMID: 35965532 PMCID: PMC9363673 DOI: 10.3389/fonc.2022.840394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The inhibition of alpha-ketoglutarate (α-KG)-dependent dioxygenases is thought to contribute to isocitrate dehydrogenase (IDH) mutation-derived malignancy. Herein, we aim to thoroughly investigate the expression pattern and prognostic significance of genes encoding α-KG-dependent enzymes for lower-grade glioma (LGG) patients. In this retrospective study, a total of 775 LGG patients were enrolled. The generalized linear model, least absolute shrinkage and selection operator Cox regression, and nomogram were applied to identify the enzyme-based signature. With the use of gene set enrichment analysis and Gene Ontology, the probable molecular abnormalities underlying high-risk patients were investigated. By comprehensively analyzing mRNA data, we observed that 41 genes were differentially expressed between IDHMUT and IDHWT LGG patients. A risk signature comprising 10 genes, which could divide samples into high- and low-risk groups of distinct prognoses, was developed and independently validated. This enzyme-based signature was indicative of a more malignant phenotype. The nomogram model incorporating the risk signature, molecular biomarkers, and clinicopathological parameters proved the incremental utility of the α-KG-dependent signature by achieving a more accurate prediction impact. Our study demonstrates that the α-KG-dependent enzyme-encoding genes were differentially expressed in relation to the IDH phenotype and may serve as a promising indicator for clinical outcomes of LGG patients.
Collapse
|
4
|
Mogenet A, Barlesi F, Besse B, Michiels S, Karimi M, Tran-Dien A, Girard N, Mazieres J, Audigier-Valette C, Locatelli-Sanchez M, Kamal M, Gestraud P, Hamza A, Jacquet A, Jimenez M, Yara S, Greillier L, Bertucci F, Planchard D, Soria JC, Bieche I, Tomasini P. Molecular profiling of non-small-cell lung cancer patients with or without brain metastases included in the randomized SAFIR02-LUNG trial and association with intracranial outcome. Lung Cancer 2022; 169:31-39. [DOI: 10.1016/j.lungcan.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
5
|
Gastelum G, Veena M, Lyons K, Lamb C, Jacobs N, Yamada A, Baibussinov A, Sarafyan M, Shamis R, Kraut J, Frost P. Can Targeting Hypoxia-Mediated Acidification of the Bone Marrow Microenvironment Kill Myeloma Tumor Cells? Front Oncol 2021; 11:703878. [PMID: 34350119 PMCID: PMC8327776 DOI: 10.3389/fonc.2021.703878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is an incurable cancer arising from malignant plasma cells that engraft in the bone marrow (BM). The physiology of these cancer cells within the BM microenvironment (TME) plays a critical role in MM development. These processes may be similar to what has been observed in the TME of other (non-hematological) solid tumors. It has been long reported that within the BM, vascular endothelial growth factor (VEGF), increased angiogenesis and microvessel density, and activation of hypoxia-induced transcription factors (HIF) are correlated with MM progression but despite a great deal of effort and some modest preclinical success the overall clinical efficacy of using anti-angiogenic and hypoxia-targeting strategies, has been limited. This review will explore the hypothesis that the TME of MM engrafted in the BM is distinctly different from non-hematological-derived solid tumors calling into question how effective these strategies may be against MM. We further identify other hypoxia-mediated effectors, such as hypoxia-mediated acidification of the TME, oxygen-dependent metabolic changes, and the generation of reactive oxygen species (ROS), that may prove to be more effective targets against MM.
Collapse
Affiliation(s)
- Gilberto Gastelum
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Mysore Veena
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Kylee Lyons
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher Lamb
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicole Jacobs
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexandra Yamada
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alisher Baibussinov
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Martin Sarafyan
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rebeka Shamis
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Jeffry Kraut
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Patrick Frost
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
6
|
Davenport ML, Echols JB, Silva AD, Anderson JC, Owens P, Yates C, Wei Q, Harada S, Hurst DR, Edmonds MD. miR-31 Displays Subtype Specificity in Lung Cancer. Cancer Res 2021; 81:1942-1953. [PMID: 33558335 PMCID: PMC8137562 DOI: 10.1158/0008-5472.can-20-2769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
miRNA rarely possess pan-oncogenic or tumor-suppressive properties. Most miRNAs function under tissue-specific contexts, acting as either tumor suppressors in one tissue, promoting oncogenesis in another, or having no apparent role in the regulation of processes associated with the hallmarks of cancer. What has been less clear is the role of miRNAs within cell types of the same tissue and the ability within each cell type to contribute to oncogenesis. In this study, we characterize the role of one such tissue-specific miRNA, miR-31, recently identified as the most oncogenic miRNA in lung adenocarcinoma, across the histologic spectrum of human lung cancer. Compared with normal lung tissue, miR-31 was overexpressed in patient lung adenocarcinoma, squamous cell carcinoma, and large-cell neuroendocrine carcinoma, but not small-cell carcinoma or carcinoids. miR-31 promoted tumor growth in mice of xenografted human adenocarcinoma and squamous cell carcinoma cell lines, but not in large- or small-cell carcinoma lines. While miR-31 did not promote primary tumor growth of large- and small-cell carcinoma, it did promote spontaneous metastasis. Mechanistically, miR-31 altered distinct cellular signaling programs within each histologic subtype, resulting in distinct phenotypic differences. This is the first report distinguishing diverse functional roles for this miRNA across the spectrum of lung cancers and suggests that miR-31 has broad clinical value in human lung malignancy. SIGNIFICANCE: These findings demonstrate the oncogenic properties of miR-31 in specific subtypes of lung cancer and highlight it as a potential therapeutic target in these subtypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/1942/F1.large.jpg.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Animals
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/secondary
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation
- Databases, Genetic
- Female
- Humans
- Liver Neoplasms/secondary
- Lung/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- MicroRNAs/metabolism
- Neoplasm Metastasis/genetics
- Neoplasm Transplantation
- Organ Specificity
- Signal Transduction/genetics
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
- Small Cell Lung Carcinoma/secondary
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
| | - John B Echols
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Austin D Silva
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service, Department of Veterans Affairs, Denver, Colorado
| | - Clayton Yates
- Department of Biology, Tuskegee University, Tuskegee, Alabama
| | - Qing Wei
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shuko Harada
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas R Hurst
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mick D Edmonds
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
7
|
Garg N, Kumar P, Gadhave K, Giri R. The dark proteome of cancer: Intrinsic disorderedness and functionality of HIF-1α along with its interacting proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:371-403. [PMID: 31521236 DOI: 10.1016/bs.pmbts.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dark side of protein is the region (s) where molecular conformation is unknown. Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are the dark matter of biology due to inability to visualize them using standard structure elucidation technique such as X-ray crystallography due to lack in diffraction signal. IDPs are the functionally important class of proteins with entire protein or its parts lack ordered three-dimensional structure. Computational studies have predicted that nearly one-third of the human proteome is disordered, which gives the enormous flexibility and functional diversity to proteins. The conserved residues and elements in disordered proteins are critical for function and might be parts of peptide motifs or protein-protein interaction interfaces. For example, regions of proteins that are involved in disorder-based molecular recognition are known as molecular recognition features (MoRFs). Generally, MoRFs could undergo disorder to order transition or vice versa at interaction with specific partners. Hypoxia inducible factor 1α (HIF-1α) is a master transcriptional regulator involved in response to hypoxia, which is associated with many pathological conditions. Importantly, HIF-1α regulates various steps of cancer progression such as cell survival, tumor cell invasion, and metastasis. In this chapter, we have extensively analyzed the molecular recognition features and their relationship with disordered regions and associated structural islands of HIF-1α. We had also analyzed the disorderness and MoRFs of HIF-1α primary interaction partners that are enriched in IDPRs and MoRFs giving their role in protein-protein interaction and cancer regulation.
Collapse
Affiliation(s)
- Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
| |
Collapse
|
8
|
Egners A, Rezaei M, Kuzmanov A, Poitz DM, Streichert D, Müller-Reichert T, Wielockx B, Breier G. PHD3 Acts as Tumor Suppressor in Mouse Osteosarcoma and Influences Tumor Vascularization via PDGF-C Signaling. Cancers (Basel) 2018; 10:cancers10120496. [PMID: 30563292 PMCID: PMC6316346 DOI: 10.3390/cancers10120496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer cell proliferation and insufficient blood supply can lead to the development of hypoxic areas in the tumor tissue. The adaptation to the hypoxic environment is mediated by a transcriptional complex called hypoxia-inducible factor (HIF). HIF protein levels are tightly controlled by oxygen-dependent prolyl hydroxylase domain proteins (PHDs). However, the precise roles of these enzymes in tumor progression and their downstream signaling pathways are not fully characterized. Here, we study PHD3 function in murine experimental osteosarcoma. Unexpectedly, PHD3 silencing in LM8 cells affects neither HIF-1α protein levels, nor the expression of various HIF-1 target genes. Subcutaneous injection of PHD3-silenced tumor cells accelerated tumor progression and was accompanied by dramatic phenotypic changes in the tumor vasculature. Blood vessels in advanced PHD3-silenced tumors were enlarged whereas their density was greatly reduced. Examination of the molecular pathways underlying these alterations revealed that platelet-derived growth factor (PDGF)-C signaling is activated in the vasculature of PHD3-deficient tumors. Silencing of PDGF-C depleted tumor growth, increased vessel density and reduced vessel size. Our data show that PHD3 controls tumor growth and vessel architecture in LM8 osteosarcoma by regulating the PDGF-C pathway, and support the hypothesis that different members of the PHD family exert unique functions in tumors.
Collapse
Affiliation(s)
- Antje Egners
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, 52074 Aachen, Germany.
- Department of Pathology, TU Dresden, 01307 Dresden, Germany.
| | - Maryam Rezaei
- Department of Biochemistry, University of Münster, 48149 Münster, Germany.
| | - Aleksandar Kuzmanov
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland.
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Doreen Streichert
- Core Facility Cellular Imaging, Experimental Center, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Thomas Müller-Reichert
- Core Facility Cellular Imaging, Experimental Center, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, 01307 Dresden, Germany.
| | - Georg Breier
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
9
|
Rodriguez J, Herrero A, Li S, Rauch N, Quintanilla A, Wynne K, Krstic A, Acosta JC, Taylor C, Schlisio S, von Kriegsheim A. PHD3 Regulates p53 Protein Stability by Hydroxylating Proline 359. Cell Rep 2018; 24:1316-1329. [PMID: 30067985 PMCID: PMC6088137 DOI: 10.1016/j.celrep.2018.06.108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Cellular p53 protein levels are regulated by a ubiquitination/de-ubiquitination cycle that can target the protein for proteasomal destruction. The ubiquitination reaction is catalyzed by a multitude of ligases, whereas the removal of ubiquitin chains is mediated by two deubiquitinating enzymes (DUBs), USP7 (HAUSP) and USP10. Here, we show that PHD3 hydroxylates p53 at proline 359, a residue that is in the p53-DUB binding domain. Hydroxylation of p53 upon proline 359 regulates its interaction with USP7 and USP10, and its inhibition decreases the association of p53 with USP7/USP10, increases p53 ubiquitination, and rapidly reduces p53 protein levels independently of mRNA expression. Our results show that p53 is a PHD3 substrate and that hydroxylation by PHD3 regulates p53 protein stability through modulation of ubiquitination.
Collapse
Affiliation(s)
- Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Shuijie Li
- Ludwig Institute for Cancer Research Ltd., SE-17177 Stockholm, Sweden; Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Andrea Quintanilla
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Kieran Wynne
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Cormac Taylor
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Susanne Schlisio
- Ludwig Institute for Cancer Research Ltd., SE-17177 Stockholm, Sweden; Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
10
|
Chen J, Gálvez-Peralta M, Zhang X, Deng J, Liu Z, Nebert DW. In utero gene expression in the Slc39a8(neo/neo) knockdown mouse. Sci Rep 2018; 8:10703. [PMID: 30013175 PMCID: PMC6048144 DOI: 10.1038/s41598-018-29109-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Slc39a8 encodes ZIP8, a divalent cation/bicarbonate symporter expressed in pluripotent mouse embryonic stem cells, and therefore ubiquitous in adult tissues; ZIP8 influxes Zn2+, Mn2+ and Fe2+. Slc39a8(neo/neo) knockdown mice exhibit 10-15% of wild-type ZIP8 mRNA and protein levels, and show pleiotropic phenotype of stunted growth, neonatal lethality, multi-organ dysmorphogenesis, and dysregulated hematopoiesis manifested as severe anemia. Herein we performed RNA-seq analysis of gestational day (GD)13.5 yolk sac and placenta, and GD16.5 liver, kidney, lung, heart and cerebellum, comparing Slc39a8(neo/neo) with Slc39a8(+/+) wild-type. Meta-data analysis of differentially-expressed genes revealed 29 unique genes from all tissues - having enriched GO categories associated with hematopoiesis and hypoxia and KEGG categories of complement, response to infection, and coagulation cascade - consistent with dysregulated hematopoietic stem cell fate. Based on transcription factor (TF) profiles in the JASPAR database, and searching for TF-binding sites enriched by Pscan, we identified numerous genes encoding zinc-finger and other TFs associated with hematopoietic stem cell functions. We conclude that, in this mouse model, deficient ZIP8-mediated divalent cation transport affects zinc-finger (e.g. GATA proteins) and other TFs interacting with GATA proteins (e.g. TAL1), predominantly in yolk sac. These data strongly support the phenotype of dysmorphogenesis and anemia seen in Slc39a8(neo/neo) mice in utero.
Collapse
Affiliation(s)
- Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Marina Gálvez-Peralta
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.,Department of Pharmaceutical Sciences, West Virginia University Medical Center, Morgantown, WV, 26506, USA
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Jingyuan Deng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.,Amazon.com, Inc., Seattle, WA, 98101, USA
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Daniel W Nebert
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.
| |
Collapse
|
11
|
Yang C, Zheng J, Xue Y, Yu H, Liu X, Ma J, Liu L, Wang P, Li Z, Cai H, Liu Y. The Effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 Axis Regulating Glioblastoma Angiogenesis. Front Mol Neurosci 2018; 10:437. [PMID: 29375300 PMCID: PMC5767169 DOI: 10.3389/fnmol.2017.00437] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary tumor. Angiogenesis plays a critical role in the progression of GBM. Previous studies have indicated that long non-coding RNAs (lncRNAs) are abnormally expressed in various cancers and participate in the regulation of the malignant behaviors of tumors. The present study demonstrated that lncRNA antisense 1 to Micro-chromosome maintenance protein 3-associated protein (MCM3AP-AS1) was upregulated whereas miR-211 was downregulated in glioma-associated endothelial cells (GECs). Knockdown of MCM3AP-AS1 suppressed the cell viability, migration, and tube formation of GECs and played a role in inhibiting angiogenesis of GBM in vitro. Furthermore, knockdown of MCM3AP-AS1 increased the expression of miR-211. Luciferase reporter assay implicated that miR-211 targeted KLF5 3'-UTR and consequently inhibited KLF5 expression. Besides, in this study we found that MCM3AP-AS1 knockdown decreased KLF5 and AGGF1 expression by upregulating miR-211. In addition, KLF5 was associated with the promoter region of AGGF1. Knockdown of KLF5 decreased AGGF1 expression by transcriptional repression, and also inhibited the activation of PI3K/AKT and ERK1/2 signaling pathways. Overall, this study reveals that MCM3AP-AS1/miR-211/KLF5/AGGF1 axis plays a prominent role in the regulation of GBM angiogenesis and also serves as new therapeutic target for the anti-angiogenic therapy of glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Hai Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Center for Clinical Medicine in Nervous System Disease, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
12
|
Restoration of the prolyl-hydroxylase domain protein-3 oxygen-sensing mechanism is responsible for regulation of HIF2α expression and induction of sensitivity of myeloma cells to hypoxia-mediated apoptosis. PLoS One 2017; 12:e0188438. [PMID: 29206844 PMCID: PMC5716583 DOI: 10.1371/journal.pone.0188438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is an incurable disease of malignant plasma B-cells that infiltrate the bone marrow (BM), resulting in bone destruction, anemia, renal impairment and infections. Physiologically, the BM microenvironment is hypoxic and this promotes MM progression and contributes to resistance to chemotherapy. Since aberrant hypoxic responses may result in the selection of more aggressive tumor phenotypes, we hypothesized that targeting the hypoxia-inducible factor (HIF) pathways will be an effective anti-MM therapeutic strategy. We demonstrated that MM cells are resistant to hypoxia-mediated apoptosis in vivo and in vitro, and that constitutive expression of HIF2α contributed to this resistance. Since epigenetic silencing of the prolyl-hydroxylase-domain-3 (PHD3) enzyme responsible for the O2-dependent regulation of HIF2α is frequently observed in MM tumors, we asked if PHD3 plays a role in regulating sensitivity to hypoxia. We found that restoring PHD3 expression using a lentivirus vector or overcoming PHD3 epigenetic silencing using a demethyltransferase inhibitor, 5-Aza-2'-deoxycytidine (5-Aza-dC), rescued O2-dependent regulation of HIF2α and restored sensitivity of MM cells to hypoxia-mediated apoptosis. This provides a rationale for targeting the PHD3-mediated regulation of the adaptive cellular hypoxic response in MM and suggests that targeting the O2-sensing pathway, alone or in combination with other anti-myeloma chemotherapeutics, may have clinical efficacy.
Collapse
|
13
|
Kit O, Vodolazhsky D, Rostorguev E, Porksheyan D, Panina S. The role of micro-RNA in the regulation of signal pathways in gliomas. ACTA ACUST UNITED AC 2017; 63:481-498. [DOI: 10.18097/pbmc20176306481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gliomas are invasive brain tumors with high rates of recurrence and mortality. Glioblastoma multiforme (GBM) is the most deadly form of glioma with nearly 100% rate of recurrence and unfavorable prognosis in patients. Micro-RNAs (miR) are the class of wide-spread short non-coding RNAs that inhibit translation via binding to the mRNA of target genes. The aim of the present review is to analyze recent studies and experimental results concerning aberrant expression profiles of miR, which target components of the signaling pathways Hedgehog, Notch, Wnt, EGFR, TGFb, HIF1a in glioma/glioblastoma. Particularly, the interactions of miR with targets of 2-hydroxyglutarate (the product of mutant isocytrate dehydrogenase, R132H IDH1, which is specific for the glioma pathogenesis) have been considered in the present review. Detecting specific miRNAs in tissue and serum may serve as a diagnostic and prognostic tool for glioma, as well as for predicting treatment response of an individual patient, and potentially serving as a mechanism for creating personalized treatment strategies
Collapse
Affiliation(s)
- O.I. Kit
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | | | - E.E. Rostorguev
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - D.H. Porksheyan
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - S.B. Panina
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| |
Collapse
|
14
|
Lehmann KV, Kahles A, Kandoth C, Lee W, Schultz N, Stegle O, Rätsch G. Integrative genome-wide analysis of the determinants of RNA splicing in kidney renal clear cell carcinoma. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2015; 20:44-55. [PMID: 25592567 PMCID: PMC4333684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a genome-wide analysis of splicing patterns of 282 kidney renal clear cell carcinoma patients in which we integrate data from whole-exome sequencing of tumor and normal samples, RNA-seq and copy number variation. We proposed a scoring mechanism to compare splicing patterns in tumor samples to normal samples in order to rank and detect tumor-specific isoforms that have a potential for new biomarkers. We identified a subset of genes that show introns only observable in tumor but not in normal samples, ENCODE and GEUVADIS samples. In order to improve our understanding of the underlying genetic mechanisms of splicing variation we performed a large-scale association analysis to find links between somatic or germline variants with alternative splicing events. We identified 915 cis- and trans-splicing quantitative trait loci (sQTL) associated with changes in splicing patterns. Some of these sQTL have previously been associated with being susceptibility loci for cancer and other diseases. Our analysis also allowed us to identify the function of several COSMIC variants showing significant association with changes in alternative splicing. This demonstrates the potential significance of variants affecting alternative splicing events and yields insights into the mechanisms related to an array of disease phenotypes.
Collapse
Affiliation(s)
- Kjong-Van Lehmann
- Computational Biology Center, Memorial Kettering Cancer Center, New York, NY 10044, U.S.A
| | | | | | | | | | | | | |
Collapse
|
15
|
Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, Foss F, Dopeso H, Essmann CL, Maxwell PH, Reifenberger G, Carmeliet P, Acker-Palmer A, Acker T. Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 2014; 5:5582. [PMID: 25420773 PMCID: PMC4263145 DOI: 10.1038/ncomms6582] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Solid tumours are exposed to microenvironmental factors such as hypoxia that normally inhibit cell growth. However, tumour cells are capable of counteracting these signals through mechanisms that are largely unknown. Here we show that the prolyl hydroxylase PHD3 restrains tumour growth in response to microenvironmental cues through the control of EGFR. PHD3 silencing in human gliomas or genetic deletion in a murine high-grade astrocytoma model markedly promotes tumour growth and the ability of tumours to continue growing under unfavourable conditions. The growth-suppressive function of PHD3 is independent of the established PHD3 targets HIF and NF-κB and its hydroxylase activity. Instead, loss of PHD3 results in hyperphosphorylation of epidermal growth factor receptor (EGFR). Importantly, epigenetic/genetic silencing of PHD3 preferentially occurs in gliomas without EGFR amplification. Our findings reveal that PHD3 inactivation provides an alternative route of EGFR activation through which tumour cells sustain proliferative signalling even under conditions of limited oxygen availability. Little is known on how solid tumours overcome growth inhibitory signals within its hypoxic microenvironment. Here Henze et al. show that oxygen sensor PHD3 is frequently lost in gliomas, and that this loss hyperactivates EGFR signaling to sustain tumour cell proliferation and survival in hypoxia.
Collapse
Affiliation(s)
- Anne-Theres Henze
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Boyan K Garvalov
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Sascha Seidel
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Angel M Cuesta
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Mathias Ritter
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Alina Filatova
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Franziska Foss
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Higinio Dopeso
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Clara L Essmann
- Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Carmeliet
- Vesalius Research Center (VRC), Angiogenesis and Neurovascular Link Laboratory, University of Leuven, Leuven B-3000, Belgium
| | - Amparo Acker-Palmer
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
16
|
PHD3 regulates EGFR internalization and signalling in tumours. Nat Commun 2014; 5:5577. [PMID: 25420589 DOI: 10.1038/ncomms6577] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Tumours exploit their hypoxic microenvironment to induce a more aggressive phenotype, while curtailing the growth-inhibitory effects of hypoxia through mechanisms that are poorly understood. The prolyl hydroxylase PHD3 is regulated by hypoxia and plays an important role in tumour progression. Here we identify PHD3 as a central regulator of epidermal growth factor receptor (EGFR) activity through the control of EGFR internalization to restrain tumour growth. PHD3 controls EGFR activity by acting as a scaffolding protein that associates with the endocytic adaptor Eps15 and promotes the internalization of EGFR. In consequence, loss of PHD3 in tumour cells suppresses EGFR internalization and hyperactivates EGFR signalling to enhance cell proliferation and survival. Our findings reveal that PHD3 inactivation provides a novel route of EGFR activation to sustain proliferative signalling in the hypoxic microenvironment.
Collapse
|