1
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
2
|
Asano Y, Shimoda H, Okano D, Matsusaki M, Akashi M. Lymphatic Drainage-Promoting Effects by Engraftment of Artificial Lymphatic Vascular Tissue Based on Human Adipose Tissue-Derived Mesenchymal Stromal Cells in Mice. J Tissue Eng Regen Med 2023; 2023:7626767. [PMID: 40226423 PMCID: PMC11919049 DOI: 10.1155/2023/7626767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 04/15/2025]
Abstract
Regenerative medicine using lymphatic vascular engineering is a promising approach for treating lymphedema. However, its development lags behind that of artificial blood vascular tissue for ischemic diseases. In this study, we constructed artificial 3D lymphatic vascular tissue, termed ASCLT, by co-cultivation of ECM-nanofilm-coated human adipose tissue-derived mesenchymal stromal cells (hASCs) and human dermal lymphatic endothelial cells (HDLECs). The effect of hASCs in lymphatic vessel network formation was evaluated by comparison with the tissue based on fibroblasts, termed FbLT. Our results showed that the density of lymphatic vascular network in ASCLT was higher than that in FbLT, demonstrating a promoting effect of hASCs on lymphatic vascular formation. This result was also supported by higher levels of lymphangiogenesis-promoting factors, such as bFGF, HGF, and VEGF-A in ASCLT than in FbLT. To evaluate the therapeutic effects, FbLTs and ASCLTs were subcutaneously transplanted to mouse hindlimb lymphatic drainage interruption models by removal of popliteal and subiliac lymph nodes. Despite the restricted engraftment of lymphatic vessels, ASCLT promoted regeneration of irregular and diverse lymphatic drainage in the skin, as visualized by indocyanine green imaging. Moreover, transplantation of ASCLT to the popliteal lymph node resection area also resulted in lymphatic drainage regeneration. Histological analysis of the generated drainage visualized by FITC-dextran injection revealed that the drainage was localized in the subcutaneous area shallower than the dermal muscle. These findings demonstrate that ASCLT promotes lymphatic drainage in vivo and that hASCs can serve as an autologous source for treatment of secondary lymphedema by tissue engineering.
Collapse
Affiliation(s)
- Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
- Department of Anatomical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Daisuke Okano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Chiang IKN, Graus MS, Kirschnick N, Davidson T, Luu W, Harwood R, Jiang K, Li B, Wong YY, Moustaqil M, Lesieur E, Skoczylas R, Kouskoff V, Kazenwadel J, Arriola‐Martinez L, Sierecki E, Gambin Y, Alitalo K, Kiefer F, Harvey NL, Francois M. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023; 42:e109032. [PMID: 36715213 PMCID: PMC9975944 DOI: 10.15252/embj.2021109032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.
Collapse
Affiliation(s)
- Ivy K N Chiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Matthew S Graus
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Nils Kirschnick
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Tara Davidson
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Winnie Luu
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Richard Harwood
- Sydney Microscopy and MicroanalysisUniversity of SydneySydneyNSWAustralia
| | - Keyi Jiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Bitong Li
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Yew Yan Wong
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Emmanuelle Lesieur
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Renae Skoczylas
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Valerie Kouskoff
- Division of Developmental Biology & MedicineThe University of ManchesterManchesterUK
| | - Jan Kazenwadel
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Luis Arriola‐Martinez
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Friedmann Kiefer
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Natasha L Harvey
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| |
Collapse
|
4
|
Michalaki E, Nepiyushchikh Z, Rudd JM, Bernard FC, Mukherjee A, McKinney JM, Doan TN, Willett NJ, Dixon JB. Effect of Human Synovial Fluid From Osteoarthritis Patients and Healthy Individuals on Lymphatic Contractile Activity. J Biomech Eng 2022; 144:071012. [PMID: 35118490 PMCID: PMC8883121 DOI: 10.1115/1.4053749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/10/2021] [Indexed: 11/08/2022]
Abstract
The lymphatic system has been proposed to play a crucial role in preventing the development and progression of osteoarthritis (OA). As OA develops and progresses, inflammatory cytokines and degradation by-products of joint tissues build up in the synovial fluid (SF) providing a feedback system to exacerbate disease. The lymphatic system plays a critical role in resolving inflammation and maintaining overall joint homeostasis; however, there is some evidence that the lymphatics can become dysfunctional during OA. We hypothesized that the functional mechanics of lymphatic vessels (LVs) draining the joint could be directly compromised due to factors within SF derived from osteoarthritis patients (OASF). Here, we utilized OASF and SF derived from healthy (non-OA) individuals (healthy SF (HSF)) to investigate potential effects of SF entering the draining lymph on migration of lymphatic endothelial cells (LECs) in vitro, and lymphatic contractile activity of rat femoral LVs (RFLVs) ex vivo. Dilutions of both OASF and HSF containing serum resulted in a similar LEC migratory response to the physiologically endothelial basal medium-treated LECs (endothelial basal medium containing serum) in vitro. Ex vivo, OASF and HSF treatments were administered within the lumen of isolated LVs under controlled pressures. OASF treatment transiently enhanced the RFLVs tonic contractions while phasic contractions were significantly reduced after 1 h of treatment and complete ceased after overnight treatment. HSF treatment on the other hand displayed a gradual decrease in lymphatic contractile activity (both tonic and phasic contractions). The observed variations after SF treatments suggest that the pump function of lymphatic vessel draining the joint could be directly compromised in OA and thus might present a new therapeutic target.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332
| | - Zhanna Nepiyushchikh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332
| | - Josephine M. Rudd
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332
| | - Fabrice C. Bernard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| | - Anish Mukherjee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr NW, Atlanta, GA 30332
| | - Jay M. McKinney
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| | - Thanh N. Doan
- Department of Orthopaedics, Emory University, 59 Executive Park South, Atlanta, GA 30329
| | - Nick J. Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332; Department of Orthopaedics, Emory University, 59 Executive Park South, Atlanta, GA 30329
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| |
Collapse
|
5
|
Feng X, Du M, Zhang Y, Ding J, Wang Y, Liu P. The Role of Lymphangiogenesis in Coronary Atherosclerosis. Lymphat Res Biol 2021; 20:290-301. [PMID: 34714136 DOI: 10.1089/lrb.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lymphatic circulation, a one-way channel system independent of blood circulation, collects interstitial fluid in a blind-end way. Existing widely in various organs and tissues, lymphatic vessels play important roles in maintaining tissue fluid homeostasis, regulating immune function, and promoting lipid transport. Recent studies have shown clear evidence that lymphangiogenesis has a strong mutual effect on coronary atherosclerosis (AS). In this study, we focus on this topic, especially in the aspects of relevant ligand/receptor, inflammation, and adipose metabolism. For the moment, however, the role of lymphangiogenesis and remodeling in coronary AS still remains controversial. The studies of our group and accumulating published evidence show that the pathological remodeling of lymphatic vessels in coronary AS may have a negative effect, but normal functional lymphangiogenesis is probably beneficial to the regression of coronary AS. Thus, the conclusion of this review is that lymphatic vessel function rather than its quantity determines its influence in AS, which needs more evidence to support.
Collapse
Affiliation(s)
- Xiaoteng Feng
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Du
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ding
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Cho Y, Na K, Jun Y, Won J, Yang JH, Chung S. Three-Dimensional In Vitro Lymphangiogenesis Model in Tumor Microenvironment. Front Bioeng Biotechnol 2021; 9:697657. [PMID: 34671596 PMCID: PMC8520924 DOI: 10.3389/fbioe.2021.697657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Lymphangiogenesis is a stage of new lymphatic vessel formation in development and pathology, such as inflammation and tumor metastasis. Physiologically relevant models of lymphatic vessels have been in demand because studies on lymphatic vessels are required for understanding the mechanism of tumor metastasis. In this study, a new three-dimensional lymphangiogenesis model in a tumor microenvironment is proposed, using a newly designed macrofluidic platform. It is verified that controllable biochemical and biomechanical cues, which contribute to lymphangiogenesis, can be applied in this platform. In particular, this model demonstrates that a reconstituted lymphatic vessel has an in vivo–like lymphatic vessel in both physical and biochemical aspects. Since biomechanical stress with a biochemical factor influences robust directional lymphatic sprouting, whether our model closely approximates in vivo, the initial lymphatics in terms of the morphological and genetic signatures is investigated. Furthermore, attempting an incorporation with a tumor spheroid, this study successfully develops a complex tumor microenvironment model for use in lymphangiogenesis and reveals the microenvironment factors that contribute to tumor metastasis. As a first attempt at a coculture model, this reconstituted model is a novel system with a fully three-dimensional structure and can be a powerful tool for pathological drug screening or disease model.
Collapse
Affiliation(s)
- Youngkyu Cho
- Department of IT Convergence, Korea University, Seoul, South Korea.,Samsung Research, Samsung Electronics Co. Ltd., Seoul, South Korea
| | - Kyuhwan Na
- School of Mechanical Engineering, Korea University, Seoul, South Korea
| | - Yesl Jun
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, La Jolla, CA, United States.,Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, South Korea
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea University, Seoul, South Korea.,Next&Bio Inc., Seoul, South Korea
| | - Seok Chung
- Department of IT Convergence, Korea University, Seoul, South Korea.,School of Mechanical Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
7
|
Song H, Zhu J, Li P, Han F, Fang L, Yu P. Metabolic flexibility maintains proliferation and migration of FGFR signaling-deficient lymphatic endothelial cells. J Biol Chem 2021; 297:101149. [PMID: 34473994 PMCID: PMC8498002 DOI: 10.1016/j.jbc.2021.101149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic flexibility is the capacity of cells to alter fuel metabolism in response to changes in metabolic demand or nutrient availability. It is critical for maintaining cellular bioenergetics and is involved in the pathogenesis of cardiovascular disease and metabolic disorders. However, the regulation and function of metabolic flexibility in lymphatic endothelial cells (LECs) remain unclear. We have previously shown that glycolysis is the predominant metabolic pathway to generate ATP in LECs and that fibroblast growth factor receptor (FGFR) signaling controls lymphatic vessel formation by promoting glycolysis. Here, we found that chemical inhibition of FGFR activity or knockdown of FGFR1 induces substantial upregulation of fatty acid β-oxidation (FAO) while reducing glycolysis and cellular ATP generation in LECs. Interestingly, such compensatory elevation was not observed in glucose oxidation and glutamine oxidation. Mechanistic studies show that FGFR blockade promotes the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of FAO; this is achieved by dampened extracellular signal–regulated protein kinase activation, which in turn upregulates the expression of the peroxisome proliferator–activated receptor alpha. Metabolic analysis further demonstrates that CPT1A depletion decreases total cellular ATP levels in FGFR1-deficient rather than wildtype LECs. This result suggests that FAO, which makes a negligible contribution to cellular energy under normal conditions, can partially compensate for energy deficiency caused by FGFR inhibition. Consequently, CPT1A silencing potentiates the effect of FGFR1 knockdown on impeding LEC proliferation and migration. Collectively, our study identified a key role of metabolic flexibility in modulating the effect of FGFR signaling on LEC growth.
Collapse
Affiliation(s)
- Hongyuan Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jie Zhu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Ping Li
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Fei Han
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Longhou Fang
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas, USA; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, Houston, Texas, USA; Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York City, New York, USA
| | - Pengchun Yu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
8
|
Alderfer L, Russo E, Archilla A, Coe B, Hanjaya-Putra D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J 2021; 35:e21498. [PMID: 33774872 DOI: 10.1096/fj.202002426rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes. The restoration of dysfunctional lymphatic vessels has been hypothesized as an innovative method to rescue healthy phenotypes in diseased states including neurological conditions, metabolic syndromes, and cardiovascular disease. Compared to the vascular system, little is known about the molecular regulation that controls lymphatic tube morphogenesis. Using synthetic hyaluronic acid (HA) hydrogels as a chemically and mechanically tunable system to preserve lymphatic endothelial cell (LECs) phenotypes, we demonstrate that low matrix elasticity primes lymphatic cord-like structure (CLS) formation directed by a high concentration of vascular endothelial growth factor-C (VEGF-C). Decreasing the substrate stiffness results in the upregulation of key lymphatic markers, including PROX-1, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and VEGFR-3. Consequently, higher levels of VEGFR-3 enable stimulation of LECs with VEGF-C which is required to both activate matrix metalloproteinases (MMPs) and facilitate LEC migration. Both of these steps are critical in establishing CLS formation in vitro. With decreases in substrate elasticity, we observe increased MMP expression and increased cellular elongation, as well as formation of intracellular vacuoles, which can further merge into coalescent vacuoles. RNAi studies demonstrate that MMP-14 is required to enable CLS formation and that LECs sense matrix stiffness through YAP/TAZ mechanosensors leading to the activation of their downstream target genes. Collectively, we show that by tuning both the matrix stiffness and VEGF-C concentration, the signaling pathways of CLS formation can be regulated in a synthetic matrix, resulting in lymphatic networks which will be useful for the study of lymphatic biology and future approaches in tissue regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Elizabeth Russo
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Adriana Archilla
- Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Brian Coe
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
9
|
Jia W, Hitchcock-Szilagyi H, He W, Goldman J, Zhao F. Engineering the Lymphatic Network: A Solution to Lymphedema. Adv Healthc Mater 2021; 10:e2001537. [PMID: 33502814 PMCID: PMC8483563 DOI: 10.1002/adhm.202001537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Secondary lymphedema is a life-long disorder characterized by chronic tissue swelling and inflammation that obstruct interstitial fluid circulation and immune cell trafficking. Regenerating lymphatic vasculatures using various strategies represents a promising treatment for lymphedema. Growth factor injection and gene delivery have been developed to stimulate lymphangiogenesis and augment interstitial fluid resorption. Using bioengineered materials as growth factor delivery vehicles allows for a more precisely targeted lymphangiogenic activation within the injured site. The implantation of prevascularized lymphatic tissue also promotes in situ lymphatic capillary network formation. The engineering of larger scale lymphatic tissues, including lymphatic collecting vessels and lymph nodes constructed by bioengineered scaffolds or decellularized animal tissues, offers alternatives to reconnecting damaged lymphatic vessels and restoring lymph circulation. These approaches provide lymphatic vascular grafting materials to reimpose lymphatic continuity across the site of injury, without creating secondary injuries at donor sites. The present work reviews molecular mechanisms mediating lymphatic system development, approaches to promoting lymphatic network regeneration, and strategies for engineering lymphatic tissues, including lymphatic capillaries, collecting vessels, and nodes. Challenges of advanced translational applications are also discussed.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77845
| | | | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77845
| |
Collapse
|
10
|
Betterman KL, Sutton DL, Secker GA, Kazenwadel J, Oszmiana A, Lim L, Miura N, Sorokin L, Hogan BM, Kahn ML, McNeill H, Harvey NL. Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J Clin Invest 2021; 130:3315-3328. [PMID: 32182215 DOI: 10.1172/jci99027] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
The atypical cadherin FAT4 has established roles in the regulation of planar cell polarity and Hippo pathway signaling that are cell context dependent. The recent identification of FAT4 mutations in Hennekam syndrome, features of which include lymphedema, lymphangiectasia, and mental retardation, uncovered an important role for FAT4 in the lymphatic vasculature. Hennekam syndrome is also caused by mutations in collagen and calcium binding EGF domains 1 (CCBE1) and ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3), encoding a matrix protein and protease, respectively, that regulate activity of the key prolymphangiogenic VEGF-C/VEGFR3 signaling axis by facilitating the proteolytic cleavage and activation of VEGF-C. The fact that FAT4, CCBE1, and ADAMTS3 mutations underlie Hennekam syndrome suggested that all 3 genes might function in a common pathway. We identified FAT4 as a target gene of GATA-binding protein 2 (GATA2), a key transcriptional regulator of lymphatic vascular development and, in particular, lymphatic vessel valve development. Here, we demonstrate that FAT4 functions in a lymphatic endothelial cell-autonomous manner to control cell polarity in response to flow and is required for lymphatic vessel morphogenesis throughout development. Our data reveal a crucial role for FAT4 in lymphangiogenesis and shed light on the mechanistic basis by which FAT4 mutations underlie a human lymphedema syndrome.
Collapse
Affiliation(s)
- Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Drew L Sutton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Genevieve A Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Lillian Lim
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Peng L, Dong Y, Fan H, Cao M, Wu Q, Wang Y, Zhou C, Li S, Zhao C, Wang Y. Traditional Chinese Medicine Regulating Lymphangiogenesis: A Literature Review. Front Pharmacol 2020; 11:1259. [PMID: 33013360 PMCID: PMC7495091 DOI: 10.3389/fphar.2020.01259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023] Open
Abstract
Lymphatic vessels, as an important part of the lymphatic system, form a fine vascular system in humans and play an important role in regulating fluid homeostasis, assisting immune surveillance and transporting dietary lipids. Dysfunction of lymphatic vessels can cause many diseases, including cancer, cardiovascular diseases, lymphedema, inflammation, rheumatoid arthritis. Research on lymphangiogenesis has become increasingly important over the last few decades. Nevertheless, the explicit role of regulating lymphangiogenesis in preventing and treating diseases remains unclear owing to the lack of a deeper understanding of the cellular and molecular pathways of the specific and tissue-specific changes in lymphangiopathy. TCM, consisting of compound extracted from TCM, Injections of single TCM and formula, is an important complementary strategy for treating disease in China. Lots of valuable traditional Chinese medicines are used as substitutes or supplements in western countries. As one of the main natural resources, these TCM are widely used in new drug research and development in Asia. Moreover, as a historical and cultural heritage, TCM has been widely applied to clinical research on lymphangiogenesis leveraging new technologies recently. Available studies show that TCM has an explicit effect on the regulation of lymphatic regeneration. This review aims to clarify the function and mechanisms, especially the inhibitory effect of TCM in facilitating and inhibiting lymphatic regeneration.
Collapse
Affiliation(s)
- Longping Peng
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Fan
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuchun Li
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Vascular Disease Department, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youhua Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Wang S, Yamakawa M, Santosa SM, Chawla N, Guo K, Montana M, Hallak JA, Han KY, Ema M, Rosenblatt MI, Chang JH, Azar DT. Quantification of Angiogenesis and Lymphangiogenesis in the Dual ex vivo Aortic and Thoracic Duct Assay. Protein Pept Lett 2020; 27:30-40. [PMID: 31553284 PMCID: PMC6978644 DOI: 10.2174/0929866526666190925145842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
Abstract: Background Lymphatic vessel formation (lymphangiogenesis) plays important roles in cancer metastasis, organ rejection, and lymphedema, but the underlying molecular events remain unclear. Furthermore, despite significant overlap in the molecular families involved in angiogenesis and lymphangiogenesis, little is known about the crosstalk between these processes. The ex vivo aortic ring assay and lymphatic ring assay have enabled detailed studies of vessel sprouting, but harvesting and imaging clear thoracic duct samples remain challenging. Here we present a modified ex vivo dual aortic ring and thoracic duct assay using tissues from dual fluorescence reporter Prox1-GFP/Flt1-DsRed (PGFD) mice, which permit simultaneous visualization of blood and lymphatic endothelial cells. Objective To characterize the concurrent sprouting of intrinsically fluorescent blood and lymphatic vessels from harvested aorta and thoracic duct samples. Methods Dual aorta and thoracic duct specimens were harvested from PGFD mice, grown in six types of endothelial cell growth media (one control, five that each lack a specific growth factor), and visualized by confocal fluorescence microscopy. Linear mixed models were used to compare the extent of vessel growth and sprouting over a 28-day period. Results Angiogenesis occurred prior to lymphangiogenesis in our assay. The control medium generally induced superior growth of both vessel types compared with the different modified media formulations. The greatest decrease in lymphangiogenesis was observed in vascular endothelial growth factor-C (VEGF-C)-devoid medium, suggesting the importance of VEGF-C in lymphangiogenesis. Conclusion The modified ex vivo dual aortic ring and thoracic duct assay represents a powerful tool for studying angiogenesis and lymphangiogenesis in concert.
Collapse
Affiliation(s)
- Shuangyong Wang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Joelle A Hallak
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shia University of Medical Science, Otsu, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Yoo H, Lee YJ, Park C, Son D, Choi DY, Park JH, Choi HJ, La HW, Choi YJ, Moon EH, Saur D, Chung HM, Song H, Do JT, Jang H, Lee DR, Park C, Lee OH, Cho SG, Hong SH, Kong G, Kim JH, Choi Y, Hong K. Epigenetic priming by Dot1l in lymphatic endothelial progenitors ensures normal lymphatic development and function. Cell Death Dis 2020; 11:14. [PMID: 31908356 PMCID: PMC6944698 DOI: 10.1038/s41419-019-2201-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022]
Abstract
Proper functioning of the lymphatic system is required for normal immune responses, fluid balance, and lipid reabsorption. Multiple regulatory mechanisms are employed to ensure the correct formation and function of lymphatic vessels; however, the epigenetic modulators and mechanisms involved in this process are poorly understood. Here, we assess the regulatory role of mouse Dot1l, a histone H3 lysine (K) 79 (H3K79) methyltransferase, in lymphatic formation. Genetic ablation of Dot1l in Tie2(+) endothelial cells (ECs), but not in Lyve1(+) or Prox1(+) lymphatic endothelial cells (LECs) or Vav1(+) definitive hematopoietic stem cells, leads to catastrophic lymphatic anomalies, including skin edema, blood–lymphatic mixing, and underdeveloped lymphatic valves and vessels in multiple organs. Remarkably, targeted Dot1l loss in Tie2(+) ECs leads to fully penetrant lymphatic aplasia, whereas Dot1l overexpression in the same cells results in partially hyperplastic lymphatics in the mesentery. Genetic studies reveal that Dot1l functions in c-Kit(+) hemogenic ECs during mesenteric lymphatic formation. Mechanistically, inactivation of Dot1l causes a reduction of both H3K79me2 levels and the expression of genes important for LEC development and function. Thus, our study establishes that Dot1l-mediated epigenetic priming and transcriptional regulation in LEC progenitors safeguard the proper lymphatic development and functioning of lymphatic vessels.
Collapse
Affiliation(s)
- Hyunjin Yoo
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Phenotyping Center (KMPC), Gachon University, Incheon, Yeonsu-gu, 21999, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Dabin Son
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Dong Yoon Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Ji-Hyun Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hee-Jin Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hyun Woo La
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Eun-Hye Moon
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Phenotyping Center (KMPC), Gachon University, Incheon, Yeonsu-gu, 21999, Republic of Korea
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Baden-Württemberg, Heidelberg, 69120, Germany.,Department of Medicine II and Institute of Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Bavaria, München, 81675, Germany
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hoon Jang
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Seongdong-gu, 04763, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea.
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea.
| |
Collapse
|
14
|
Cha B, Geng X, Mahamud MR, Zhang JY, Chen L, Kim W, Jho EH, Kim Y, Choi D, Dixon JB, Chen H, Hong YK, Olson L, Kim TH, Merrill BJ, Davis MJ, Srinivasan RS. Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling. Cell Rep 2019; 25:571-584.e5. [PMID: 30332639 PMCID: PMC6264919 DOI: 10.1016/j.celrep.2018.09.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022] Open
Abstract
Wnt/β-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/β-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/β-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/β-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with β-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/β-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jenny Y Zhang
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Young-Kwon Hong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lorin Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Cadamuro M, Brivio S, Mertens J, Vismara M, Moncsek A, Milani C, Fingas C, Cristina Malerba M, Nardo G, Dall'Olmo L, Milani E, Mariotti V, Stecca T, Massani M, Spirli C, Fiorotto R, Indraccolo S, Strazzabosco M, Fabris L. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma. J Hepatol 2019; 70:700-709. [PMID: 30553841 PMCID: PMC10878126 DOI: 10.1016/j.jhep.2018.12.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS In cholangiocarcinoma, early metastatic spread via lymphatic vessels often precludes curative therapies. Cholangiocarcinoma invasiveness is fostered by an extensive stromal reaction, enriched in cancer-associated fibroblasts (CAFs) and lymphatic endothelial cells (LECs). Cholangiocarcinoma cells recruit and activate CAFs by secreting PDGF-D. Herein, we investigated the role of PDGF-D and liver myofibroblasts in promoting lymphangiogenesis in cholangiocarcinoma. METHODS Human cholangiocarcinoma specimens were immunostained for podoplanin (LEC marker), α-SMA (CAF marker), VEGF-A, VEGF-C, and their cognate receptors (VEGFR2, VEGFR3). VEGF-A and VEGF-C secretion was evaluated in human fibroblasts obtained from primary sclerosing cholangitis explants. Using human LECs incubated with conditioned medium from PDGF-D-stimulated fibroblasts we assessed migration, 3D vascular assembly, transendothelial electric resistance and transendothelial migration of cholangiocarcinoma cells (EGI-1). We then studied the effects of selective CAF depletion induced by the BH3 mimetic navitoclax on LEC density and lymph node metastases in vivo. RESULTS In cholangiocarcinoma specimens, CAFs and LECs were closely adjacent. CAFs expressed VEGF-A and VEGF-C, while LECs expressed VEGFR2 and VEGFR3. Upon PDGF-D stimulation, fibroblasts secreted increased levels of VEGF-C and VEGF-A. Fibroblasts, stimulated by PDGF-D induced LEC recruitment and 3D assembly, increased LEC monolayer permeability, and promoted transendothelial EGI-1 migration. These effects were all suppressed by the PDGFRβ inhibitor, imatinib. In the rat model of cholangiocarcinoma, navitoclax-induced CAF depletion, markedly reduced lymphatic vascularization and reduced lymph node metastases. CONCLUSION PDGF-D stimulates VEGF-C and VEGF-A production by fibroblasts, resulting in expansion of the lymphatic vasculature and tumor cell intravasation. This critical process in the early metastasis of cholangiocarcinoma may be blocked by inducing CAF apoptosis or by inhibiting the PDGF-D-induced axis. LAY SUMMARY Cholangiocarcinoma is a highly malignant cancer affecting the biliary tree, which is characterized by a rich stromal reaction involving a dense population of cancer-associated fibroblasts that promote early metastatic spread. Herein, we show that cholangiocarcinoma-derived PDGF-D stimulates fibroblasts to secrete vascular growth factors. Thus, targeting fibroblasts or PDGF-D-induced signals may represent an effective tool to block tumor-associated lymphangiogenesis and reduce the invasiveness of cholangiocarcinoma.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padua, Padova, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Simone Brivio
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Joachim Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Marta Vismara
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Chiara Milani
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Christian Fingas
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | | | - Giorgia Nardo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Luigi Dall'Olmo
- Department of Emergency and Urgency (DEU), Ulss 3 Serenissina, Mestre, Italy
| | - Eleonora Milani
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - Tommaso Stecca
- IV Department Of Surgery, Regional Center for HPB Surgery, Ca' Foncello Regional Hospital, Treviso, Italy
| | - Marco Massani
- IV Department Of Surgery, Regional Center for HPB Surgery, Ca' Foncello Regional Hospital, Treviso, Italy
| | - Carlo Spirli
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Romina Fiorotto
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Mario Strazzabosco
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Padova, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Ferrão JSP, Bonfim Neto AP, da Fonseca VU, Sousa LMMDC, Papa PDC. Vascular endothelial growth factor C treatment for mouse hind limb lymphatic revascularization. Vet Med Sci 2019; 5:249-259. [PMID: 30746892 PMCID: PMC6498523 DOI: 10.1002/vms3.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spontaneous lymphatic revascularization is a challenge and the establishment of new therapeutic strategies may improve life quality for patients suffering from lymphatic disorders. This study was designed to verify if VEGFC treatment improves lymphatic vascularization in a time‐dependent manner in mouse hindlimb (HL) after resection of the inguinal lymph node. Lymphatic vascular density (Vv) and length (Lv) were evaluated by stereology after immunohistochemistry. The control Group (CG) was not manipulated but received saline instead of VEGFC treatment. The surgery Group (SG) had the left inguinal lymph node resected but did not received VEGFC treatment. VEGFC Treated Group (TG) had the node resected and received VEGFC treatment. VEGFC and VEGFR3 local expression were assessed by qPCR. There was an effect of time over Vv and Lv in the SG and significant difference between CG and SG in the regions studied (proximal, medium and distal regions) of the left HL (LHL). The Lv showed significant difference between CG and SG only in the medium region. The Vv and the Lv for TG were higher than the other groups. VEGFC and VEGFR3 gene expression presented time effect in all regions of the LHL for SG and TG. Both VEGFC and VEGFR3 gene expression presented significant difference between CG and SG, between SG and TG and between CG and TG. This study showed significant decrease in lymphatic vascularization in the left hindlimb of mice after surgical removal of the inguinal lymph node and adjacent lymphatic vessels. Exogenous VEGFC could recover lymphatic vascularization through stimulating neolymphangiogenesis.
Collapse
Affiliation(s)
- Juliana S P Ferrão
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Antenor P Bonfim Neto
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vanessa U da Fonseca
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Paula de C Papa
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Yu P, Wu G, Lee HW, Simons M. Endothelial Metabolic Control of Lymphangiogenesis. Bioessays 2018; 40:e1700245. [PMID: 29750374 DOI: 10.1002/bies.201700245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Lymphangiogenesis is an important developmental process that is critical to regulation of fluid homeostasis, immune surveillance and response as well as pathogenesis of a number of diseases, among them cancer, inflammation, and heart failure. Specification, formation, and maturation of lymphatic blood vessels involves an interplay between a series of events orchestrated by various transcription factors that determine expression of key genes involved in lymphangiogenesis. These are traditionally thought to be under control of several key growth factors including vascular growth factor-C (VEGF-C) and fibroblast growth factors (FGFs). Recent insights into VEGF and FGF signaling point to their role in control of endothelial metabolic processes such as glycolysis and fatty acid oxidation that, in turn, play a major role in regulation of lymphangiogenesis. These advances have significantly increased our understanding of lymphatic biology and opened new therapeutic vistas. Here we review our current understanding of metabolic controls in the lymphatic vasculature.
Collapse
Affiliation(s)
- Pengchun Yu
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Guosheng Wu
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA.,Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Heon-Woo Lee
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Michael Simons
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
18
|
Wen YR, Yang JH, Wang X, Yao ZB. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease. Neural Regen Res 2018; 13:709-716. [PMID: 29722325 PMCID: PMC5950683 DOI: 10.4103/1673-5374.230299] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain.First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C) protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3), significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ya-Ru Wen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun-Hua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Bin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Knezevic L, Schaupper M, Mühleder S, Schimek K, Hasenberg T, Marx U, Priglinger E, Redl H, Holnthoner W. Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Front Bioeng Biotechnol 2017; 5:25. [PMID: 28459049 PMCID: PMC5394507 DOI: 10.3389/fbioe.2017.00025] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/28/2017] [Indexed: 01/20/2023] Open
Abstract
Vascular network engineering is essential for nutrient delivery to tissue-engineered constructs and, consequently, their survival. In addition, the functionality of tissues also depends on tissue drainage and immune cell accessibility, which are the main functions of the lymphatic system. Engineering both the blood and lymphatic microvasculature would advance the survival and functionality of tissue-engineered constructs. The aim of this study was to isolate pure populations of lymphatic endothelial cells (LEC) and blood vascular endothelial cells (BEC) from human dermal microvascular endothelial cells and to study their network formation in our previously described coculture model with adipose-derived stromal cells (ASC) in fibrin scaffolds. We could follow the network development over a period of 4 weeks by fluorescently labeling the cells. We show that LEC and BEC form separate networks, which are morphologically distinguishable and sustainable over several weeks. In addition, lymphatic network development was dependent on vascular endothelial growth factor (VEGF)-C, resulting in denser networks with increasing VEGF-C concentration. Finally, we confirm the necessity of cell–cell contact between endothelial cells and ASC for the formation of both blood and lymphatic microvascular networks. This model represents a valuable platform for in vitro drug testing and for the future in vivo studies on lymphatic and blood microvascularization.
Collapse
Affiliation(s)
- Lea Knezevic
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mira Schaupper
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Katharina Schimek
- Technische Universität Berlin, Medical Biotechnology, Berlin, Germany.,TissUse GmbH, Berlin, Germany
| | | | | | - Eleni Priglinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
20
|
Torri F, Dell'Era P, Garrafa E. ELM: A New, Simple, and Economic Assay to Measure Motility of Lymphatic Endothelial Cells. Lymphat Res Biol 2017; 15:39-44. [PMID: 28135127 PMCID: PMC5369396 DOI: 10.1089/lrb.2016.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Relatively few attempts have been made to set up an assay that allows the measurement of lymphatic endothelial cells (LECs) motility. Nowadays, the most widely used methods involve adaptation of the Boyden chamber method or the wound scratch assay, both of them showing some limitations due to long and expensive setup and high variability. METHODS AND RESULTS We propose a new, economic, and easy to setup LEC Motility (ELM) assay that will contribute to the study of lymphangiogenesis. The experimental setup consists of extending the coating of the flask with extracellular matrix (ECM) proteins also at the area opposite to the cap, where the LECs will be initially seeded at various densities. The day after, the flasks will be inclined at an angle of about 20° to cover the entire coated surface. Twenty-four hours later, flasks will be moved to the standard position, and the motility of the cells will be easily observed. Using the ELM assay, we were able to compare the motility rate of LECs isolated from different origins, or seeded on different substrates. CONCLUSION We propose the use of a new method to evaluate the motility of LECs: the ELM assay. This cost-effective analysis has several advantages: It can be easily set up in any cell biology laboratory, can be carried out rapidly, and allows the monitoring of cellular motility for a long period.
Collapse
Affiliation(s)
- Fabio Torri
- 1 Department of Surgery, ASST-Spedali Civili Brescia , Brescia, Italy
| | - Patrizia Dell'Era
- 2 Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Emirena Garrafa
- 1 Department of Surgery, ASST-Spedali Civili Brescia , Brescia, Italy .,3 Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| |
Collapse
|
21
|
Yu T, Yang Y, Liu Y, Zhang Y, Xu H, Li M, Ponnusamy M, Wang K, Wang JX, Li PF. A FGFR1 inhibitor patent review: progress since 2010. Expert Opin Ther Pat 2016; 27:439-454. [PMID: 27976968 DOI: 10.1080/13543776.2017.1272574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION FGFR1 is a well known molecular target for anticancer therapy. Many studies have proved that the regulation of FGFR1 activity is a promising therapeutic approach to treat a series of cancers. Therefore, the development of potent inhibitors has consequently become a key focus in the present drug discovery, and it is encouraging that several highly selective FGFR1 inhibitors have been identified from various sources in recent years. Areas covered: This article reviews patents and patent applications related to selective FGFR1 inhibitors published from 2010 to 2016. This summary highlights about 15 patents from different pharmaceutical companies and academic research groups. We used Baidu and NCBI search engines to find relevant patents as a search term. Expert opinion: In the past few years, considerable progress has been made in the identification and development of selective FGFR1 inhibitors in use. At present, at least 10 inhibitors of FGFR1 are in clinical trials, and several agents have shown encouraging results under experimental conditions. Given the fact that FGFR1 plays a crucial role in the regulation of cancer and other diseases, we hope that it will gain further attraction from pharmaceutical companies and encourage development of more novel, safe and efficient FGFR1 inhibitors in the future.
Collapse
Affiliation(s)
- Tao Yu
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Yanyan Yang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Yan Liu
- b Food and Drug Administration of Linyi City , Hedong District Branch , Linyi , People's Republic of China
| | - Yinfeng Zhang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Hong Xu
- c Department of Orthodontics , Affiliated Hospital of Qingdao University , People's Republic of China
| | - Mengpeng Li
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Murugavel Ponnusamy
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Kun Wang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Jian-Xun Wang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Pei-Feng Li
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
22
|
Jing Q, Wang Y, Liu H, Deng X, Jiang L, Liu R, Song H, Li J. FGFs: crucial factors that regulate tumour initiation and progression. Cell Prolif 2016; 49:438-47. [PMID: 27383016 DOI: 10.1111/cpr.12275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are crucial signalling molecules involved in normal cell growth, differentiation and proliferation. Over the past few decades, a large body of research has illustrated effects of individual FGFs on tumour initiation and progression. Tumour development is commonly accompanied with generation of new blood and lymph vessels, which support enhanced cell proliferation. Moreover, acquisition of tumour cells of the epithelial-mesenchymal transition (EMT) phenotype, enhances tumour cell migration and invasion potentials, crucial steps in tumour metastasis. This review summarizes recent findings concerning roles of FGFs in angiogenesis, lymphangiogenesis and EMT.
Collapse
Affiliation(s)
- Qian Jing
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Wang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Hao Liu
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Xiaowei Deng
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Lin Jiang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haixing Song
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingyi Li
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
23
|
Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts. Mol Cell Biochem 2016; 413:127-35. [PMID: 26724950 DOI: 10.1007/s11010-015-2646-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Vascular endothelial growth factor (VEGF)-D is a crucial mediator of angiogenesis. Following myocardial infarction (MI), cardiac VEGF-D and VEGF receptor (VEGFR)-3 are significantly upregulated. In addition to endothelial cells, myofibroblasts at the site of MI highly express VEGFR-3, implicating the involvement of VEGF-D in cardiac fibrogenesis that promotes repair and remodeling. The aim of the current study was to further explore the critical role of VEGF-D in fibrogenic response in myofibroblasts. Myofibroblast proliferation, migration, collagen synthesis, and degradation were investigated in cultured cardiac myofibroblasts subjected to VEGF-D with/without VEGFR antagonist or ERK inhibitor. Vehicle-treated cells served as controls. Myofibroblast proliferation and migration were detected by BrdU assay and Boyden Chamber method, respectively. Expression of type I collagen, metalloproteinase (MMP)-2/-9, tissue inhibitor of MMP (TIMP)-1/-2, and ERK phosphorylation were evaluated by Western blot analyses. Our results revealed that compared to controls, (1) VEGF-D significantly increased myofibroblast proliferation and migration; (2) VEGF-D significantly upregulated type I collagen synthesis in a dose- and time-dependent manner; (3) VEGFR antagonist abolished VEGF-D-induced myofibroblast proliferation and type I collagen release; (4) VEGF-D stimulated MMP-2/-9 and TIMP-1/-2 synthesis; (5) VEGF-D activated ERK phosphorylation; and (6) ERK inhibitor abolished VEGF-D-induced myofibroblast proliferation and type I collagen synthesis. Our in vitro studies have demonstrated that VEGF-D serves as a crucial profibrogenic mediator by stimulating myofibroblast growth, migration and collagen synthesis. Further studies are underway to determine the role of VEGF-D in fibrous tissue formation during cardiac repair following MI.
Collapse
|
24
|
Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun 2015; 6:7274. [PMID: 26027726 DOI: 10.1038/ncomms8274] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
The lymphatic system maintains tissue fluid balance, and dysfunction of lymphatic vessels and valves causes human lymphedema syndromes. Yet, our knowledge of the molecular mechanisms underlying lymphatic vessel development is still limited. Here, we show that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of lymphatic vessel development. Endothelial-specific Cdk5 knockdown causes congenital lymphatic dysfunction and lymphedema due to defective lymphatic vessel patterning and valve formation. We identify the transcription factor Foxc2 as a key substrate of Cdk5 in the lymphatic vasculature, mechanistically linking Cdk5 to lymphatic development and valve morphogenesis. Collectively, our findings show that Cdk5-Foxc2 interaction represents a critical regulator of lymphatic vessel development and the transcriptional network underlying lymphatic vascular remodeling.
Collapse
|
25
|
Sweat RS, Sloas DC, Murfee WL. VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 2015; 21:532-40. [PMID: 24654984 DOI: 10.1111/micc.12132] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/13/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Lymphatic and blood microvascular systems are critical for tissue function. Insights into the coordination of both systems can be gained by investigating the relationships between lymphangiogenesis and angiogenesis. Recently, our laboratory established the rat mesentery culture model as a novel tool to investigate multicellular interactions during angiogenesis in an intact microvascular network scenario. The objective of this study was to determine whether the rat mesentery culture model can be used to study lymphangiogenesis. METHODS Mesenteric tissue windows were harvested from adult male Wistar rats and cultured for three or five days in either serum-free MEM or MEM supplemented with VEGF-C. Tissues were immunolabeled for PECAM and LYVE-1 to identify blood and lymphatic endothelial cells, respectively. Tissues selected randomly from those containing vascular networks were quantified for angiogenesis and lymphangiogenesis. RESULTS VEGF-C treatment resulted in an increase in the density of blood vessel sprouting compared to controls by day 3. By day 5, lymphatic sprouting was increased compared to controls. CONCLUSIONS These results are consistent with in vivo findings that lymphangiogenesis lags angiogenesis after chronic stimulation and establish a tool for investigating the interrelationships between lymphangiogenesis and angiogenesis in a multisystem microvascular environment.
Collapse
Affiliation(s)
- Richard S Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
26
|
Yamauchi A, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Igarashi K, Toriyama Y, Tanaka M, Liu T, Xian X, Imai A, Zhai L, Owa S, Arai T, Shindo T. Functional differentiation of RAMP2 and RAMP3 in their regulation of the vascular system. J Mol Cell Cardiol 2014; 77:73-85. [DOI: 10.1016/j.yjmcc.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023]
|
27
|
Park JH, Shin YJ, Riew TR, Lee MY. The indolinone MAZ51 induces cell rounding and G2/M cell cycle arrest in glioma cells without the inhibition of VEGFR-3 phosphorylation: involvement of the RhoA and Akt/GSK3β signaling pathways. PLoS One 2014; 9:e109055. [PMID: 25268128 PMCID: PMC4182637 DOI: 10.1371/journal.pone.0109055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/02/2014] [Indexed: 12/20/2022] Open
Abstract
MAZ51 is an indolinone-based molecule originally synthesized as a selective inhibitor of vascular endothelial growth factor receptor (VEGFR)-3 tyrosine kinase. This study shows that exposure of two glioma cell lines, rat C6 and human U251MG, to MAZ51 caused dramatic shape changes, including the retraction of cellular protrusions and cell rounding. These changes were caused by the clustering and aggregation of actin filaments and microtubules. MAZ51 also induced G2/M phase cell cycle arrest. This led to an inhibition of cellular proliferation, without triggering significant cell death. These alterations induced by MAZ51 occurred with similar dose- and time-dependent patterns. Treatment of glioma cells with MAZ51 resulted in increased levels of phosphorylated GSK3β through the activation of Akt, as well as increased levels of active RhoA. Interestingly, MAZ51 did not affect the morphology and cell cycle patterns of rat primary cortical astrocytes, suggesting it selectively targeted transformed cells. Immunoprecipitation–western blot analyses indicated that MAZ51 did not decrease, but rather increased, tyrosine phosphorylation of VEGFR-3. To confirm this unanticipated result, several additional experiments were conducted. Enhancing VEGFR-3 phosphorylation by treatment of glioma cells with VEGF-C affected neither cytoskeleton arrangements nor cell cycle patterns. In addition, the knockdown of VEGFR-3 in glioma cells did not cause morphological or cytoskeletal alterations. Furthermore, treatment of VEGFR-3-silenced cells with MAZ51 caused the same alterations of cell shape and cytoskeletal arrangements as that observed in control cells. These data indicate that MAZ51 causes cytoskeletal alterations and G2/M cell cycle arrest in glioma cells. These effects are mediated through phosphorylation of Akt/GSK3β and activation of RhoA. The anti-proliferative activity of MAZ51 does not require the inhibition of VEGFR-3 phosphorylation, suggesting that it is a potential candidate for further clinical investigation for treatment of gliomas, although the precise mechanism(s) underlying its effects remain to be determined.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
28
|
Hu X, Zhang P, Xu Z, Chen H, Xie X. GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone. J Cell Biochem 2014; 114:2729-37. [PMID: 23794283 DOI: 10.1002/jcb.24621] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/18/2013] [Indexed: 12/13/2022]
Abstract
Bone regeneration is a coordinated process involving the connection between blood vessels and bone cells. Glycoprotein non-metastatic melanoma protein B (GPNMB) is known to be vital in bone formation. However, the effect of GPNMB on bone regeneration and the underlying molecular mechanism are still undefined. Fibroblast growth factor receptor (FGFR)-mediating signaling is pivotal in bone formation and angiogenesis. Therefore, we assessed GPNMB function as a communicating molecule between osteoblasts and angiogenesis, and the possible correlation with FGFR-1 signaling. Recombinant GPNMB dose-dependently increased the differentiation of human bone marrow stromal cells (hBMSCs) into osteoblasts, as well as the mRNA levels of osteoblasts marker alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, these increases depended on the activation of FGFR-1 signaling, as pretreatment with FGFR-1 siRNA or its inhibitor SU5402 dramatically dampened GPNMB-induced osteogenesis. Additionally, GPNMB triggered dose-dependently the proliferation and migration of human umbilical vein endothelial cells (hUVECs), FGFR-1 phosphorylation, as well as capillary tube and vessels formation in vitro and in vivo. Blocking FGFR-1 signaling dampened GPNMB-induced angiogenic activity. Following construction of a rodent cranial defect model, scaffolds delivering GPNMB resulted in an evident increase in blood vessels and new bone formation; however, combined delivery of GPNMB and SU5402 abated these increase in defect sites. Taken together, these results suggest that GPNMB stimulates bone regeneration by inducing osteogenesis and angiogenesis via regulating FGFR-1 signaling. Consequently, our findings will clarify a new explanation about how GPNMB induces bone repair, and provide a potential target for bone regeneration therapeutics and bone engineering.
Collapse
Affiliation(s)
- Xuefeng Hu
- Department of Orthopedics, Chinese PLA 171 Hospital, Jiangxi, 332000, China
| | | | | | | | | |
Collapse
|
29
|
Outeda P, Huso DL, Fisher SA, Halushka MK, Kim H, Qian F, Germino GG, Watnick T. Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep 2014; 7:634-44. [PMID: 24767998 PMCID: PMC4040350 DOI: 10.1016/j.celrep.2014.03.064] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/20/2014] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is a common form of inherited kidney disease that is caused by mutations in two genes, PKD1 (polycystin-1) and PKD2 (polycystin-2). Mice with germline deletion of either gene die in midgestation with a vascular phenotype that includes profound edema. Although an endothelial cell defect has been suspected, the basis of this phenotype remains poorly understood. Here, we demonstrate that edema in Pkd1- and Pkd2-null mice is likely to be caused by defects in lymphatic development. Pkd1 and Pkd2 mutant embryos exhibit reduced lymphatic vessel density and vascular branching along with aberrant migration of early lymphatic endothelial cell precursors. We used cell-based assays to confirm that PKD1- and PKD2-depleted endothelial cells have an intrinsic defect in directional migration that is associated with a failure to establish front-rear polarity. Our studies reveal a role for polycystin signaling in lymphatic development.
Collapse
Affiliation(s)
- Patricia Outeda
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David L Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven A Fisher
- Division of Cardiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyunho Kim
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Feng Qian
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gregory G Germino
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Ge D, Kong X, Liu W, Zhao J, Su L, Zhang S, Zhang Y, Zhao B, Miao J. Phosphorylation and nuclear translocation of integrin β4 induced by a chemical small molecule contribute to apoptosis in vascular endothelial cells. Apoptosis 2014; 18:1120-31. [PMID: 23677256 DOI: 10.1007/s10495-013-0860-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Integrin β4 and its Y-1494 phosphorylation play an important role in cell signaling. We found a small molecule, ethyl1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-chlorophenyl)-1H-pyrazole-5-carboxylate (ECPC), that could elevate the levels of KIT ligand (KITLG), interleukin 8 (IL-8), prostaglandin-endoperoxide synthase 2 (PTGS2) and activating transcription factor 3 (ATF3) and promote apoptosis in vascular endothelial cells (VECs) through integrin β4. We investigated the underlying mechanism of integrin β4 participating in this process. ECPC treatment increased the phosphorylation of Y-1494 in the integrin β4 cytoplasmic domain via a well-known receptor tyrosine kinase, fibroblast growth factor receptor 1 (FGFR1), and integrin β4 translocated from the cytoplasm to nucleus. With suppression of Y-1494 phosphorylation by FGF-2 or siRNA of FGFR1, ECPC failed to promote integrin β4 nuclear translocation and could not increase the expression of KITLG, IL-8, PTGS2 or ATF3. Y-1494 phosphorylation and nuclear translocation of integrin β4 may be important during ECPC-induced apoptosis in VECs.
Collapse
Affiliation(s)
- Di Ge
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Weitman E, Cuzzone D, Mehrara BJ. Tissue engineering and regeneration of lymphatic structures. Future Oncol 2014; 9:1365-74. [PMID: 23980683 DOI: 10.2217/fon.13.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering is the process by which biological structures are recreated using a combination of molecular signals, cellular components and scaffolds. Although the perceived potential of this approach to reconstruct damaged or missing tissues is seemingly limitless, application of these ideas in vivo has been more difficult than expected. However, despite these obstacles, important advancements have been reported for a number of organ systems, including recent reports on the lymphatic system. These advancements are important since the lymphatic system plays a central role in immune responses, regulation of inflammation, lipid absorption and interstitial fluid homeostasis. Insights obtained over the past two decades have advanced our understanding of the molecular and cellular mechanisms that govern lymphatic development and function. Utilizing this knowledge has led to important advancements in lymphatic tissue engineering, which is the topic of this review.
Collapse
Affiliation(s)
- Evan Weitman
- The Department of Surgery, Plastic Surgery Section, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
32
|
Abstract
Lymphangiogenesis, the growth of lymphatic vessels, is essential in embryonic development. In adults, it is involved in many pathological processes such as lymphedema, inflammatory diseases, and tumor metastasis. Advances during the past decade have dramatically increased the knowledge of the mechanisms of lymphangiogenesis, including the roles of transcription factors, lymphangiogenic growth factors and their receptors, and intercellular and intracellular signaling cascades. Strategies based on these mechanisms are being tested in the treatment of various human diseases such as cancer, lymphedema, and tissue allograft rejection. This Review summarizes the recent progress on lymphangiogenic mechanisms and their applications in disease treatment.
Collapse
|
33
|
Bowles J, Secker G, Nguyen C, Kazenwadel J, Truong V, Frampton E, Curtis C, Skoczylas R, Davidson TL, Miura N, Hong YK, Koopman P, Harvey NL, François M. Control of retinoid levels by CYP26B1 is important for lymphatic vascular development in the mouse embryo. Dev Biol 2014; 386:25-33. [DOI: 10.1016/j.ydbio.2013.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
34
|
Weijts BGMW, van Impel A, Schulte-Merker S, de Bruin A. Atypical E2fs control lymphangiogenesis through transcriptional regulation of Ccbe1 and Flt4. PLoS One 2013; 8:e73693. [PMID: 24069224 PMCID: PMC3771987 DOI: 10.1371/journal.pone.0073693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/30/2013] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessels are derived from venous endothelial cells and their formation is governed by the Vascular endothelial growth factor C (VegfC)/Vegf receptor 3 (Vegfr3; Flt4) signaling pathway. Recent studies show that Collagen and Calcium Binding EGF domains 1 protein (Ccbe1) enhances VegfC-dependent lymphangiogenesis. Both Ccbe1 and Flt4 have been shown to be indispensable for lymphangiogenesis. However, how these essential players are transcriptionally regulated remains poorly understood. In the case of angiogenesis, atypical E2fs (E2f7 and E2f8) however have been recently shown to function as transcriptional activators for VegfA. Using a genome-wide approach we here identified both CCBE1 and FLT4 as direct targets of atypical E2Fs. E2F7/8 directly bind and stimulate the CCBE1 promoter, while recruitment of E2F7/8 inhibits the FLT4 promoter. Importantly, inactivation of e2f7/8 in zebrafish impaired venous sprouting and lymphangiogenesis with reduced ccbe1 expression and increased flt4 expression. Remarkably, over-expression of e2f7/8 rescued Ccbe1- and Flt4-dependent lymphangiogenesis phenotypes. Together these results identified E2f7/8 as novel in vivo transcriptional regulators of Ccbe1 and Flt4, both essential genes for venous sprouting and lymphangiogenesis.
Collapse
Affiliation(s)
- Bart G. M. W. Weijts
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
- EZO Department, University of Wageningen, Wageningen, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
35
|
Ichise T, Yoshida N, Ichise H. FGF2-induced Ras/Erk MAPK signalling maintains lymphatic endothelial cell identity by up-regulating endothelial cell-specific gene expression and suppressing TGFβ signalling via Smad2. J Cell Sci 2013; 127:845-57. [DOI: 10.1242/jcs.137836] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The lymphatic endothelial cell (LEC) fate decision program during development has been revealed. However, the mechanism underlying the maintenance of differentiated LEC identity remains largely unknown. Here, we show that fibroblast growth factor 2 (FGF2) plays a fundamental role in maintaining a differentiated LEC trait. In addition to demonstrating the appearance of alpha-smooth muscle actin (αSMA) expressing LECs in mouse lymphedematous skin in vivo, we found that mouse-immortalized LECs lose their characteristics and undergo endothelial-to-mesenchymal transition (EndMT) when cultured in FGF2-depleted medium. FGF2 depletion acted synergistically with transforming growth factor (TGF) β to induce EndMT. We also found that H-Ras-overexpressing LECs were resistant to EndMT. Ras activation not only upregulated FGF2-induced Erk MAPK activation, but also suppressed TGFβ-induced activation of Smad2 by modulating Smad2 phosphorylation via Erk MAPKs. These results suggest that FGF2 may regulate LEC-specific gene expression and suppress TGFβ signalling in LECs via Smad2 in a Ras/Erk MAP kinase-dependent manner. Taken together, our findings provide a new insight into the FGF2/Ras/Erk MAPK-dependent mechanism that maintains and modulates the LEC trait.
Collapse
|
36
|
Betterman KL, Paquet-Fifield S, Asselin-Labat ML, Visvader JE, Butler LM, Stacker SA, Achen MG, Harvey NL. Remodeling of the lymphatic vasculature during mouse mammary gland morphogenesis is mediated via epithelial-derived lymphangiogenic stimuli. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2225-38. [PMID: 23063660 DOI: 10.1016/j.ajpath.2012.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/01/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
Despite the key roles of lymphatic vessels in homeostasis and disease, the cellular sources of signals that direct lymphatic vascular growth and patterning remain unknown. Using high-resolution imaging in two and three dimensions, we demonstrated that postnatal mouse mammary gland lymphatic vessels share an intimate spatial association with epithelial ducts and large blood vessels. We further demonstrated that the lymphatic vasculature is remodeled together with the mammary epithelial tree and blood vasculature during postnatal mouse mammary gland morphogenesis. Neither estrogen receptor α nor progesterone receptor were detected in lymphatic endothelial cells in the mouse mammary gland, suggesting that mammary gland lymphangiogenesis is not likely regulated directly by these steroid hormones. Epithelial cells, especially myoepithelial cells, were determined to be a rich source of prolymphangiogenic stimuli including VEGF-C and VEGF-D with temporally regulated expression levels during mammary gland morphogenesis. Blockade of VEGFR-3 signaling using a small-molecule inhibitor inhibited the proliferation of primary lymphatic endothelial cells promoted by mammary gland conditioned medium, suggesting that lymphangiogenesis in the mammary gland is likely driven by myoepithelial-derived VEGF-C and/or VEGF-D. These findings provide new insight into the architecture of the lymphatic vasculature in the mouse mammary gland and, by uncovering the proximity of lymphatic vessels to the epithelial tree, suggest a potential mechanism by which metastatic tumor cells access the lymphatic vasculature.
Collapse
Affiliation(s)
- Kelly L Betterman
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Blei F. Update September 2012. Lymphat Res Biol 2012. [DOI: 10.1089/lrb.2012.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francine Blei
- Hassenfeld Children's Center for Cancer and Blood Disorders of NYU Medical Center, New York, New York
| |
Collapse
|