1
|
Qin Y, Wang Q, Lin Q, Liu F, Pan X, Wei C, Chen J, Huang T, Fang M, Yang W, Pan L. Multi-omics analysis reveals associations between gut microbiota and host transcriptome in colon cancer patients. mSystems 2025; 10:e0080524. [PMID: 40013792 PMCID: PMC11915798 DOI: 10.1128/msystems.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Colon cancer (CC) is one of the most common cancers globally, which is associated with the gut microbiota intimately. In current research, exploring the complex interaction between microbiomes and CC is a hotspot. However, the information on microbiomes in most previous studies is based on fecal, which does not fully display the microbial environment of CC. Herein, we collected mucosal and tissue samples from both the tumor and normal regions of 19 CC patients and clarified the composition of mucosal microbiota by 16S rRNA and metagenomic sequencing. Additionally, RNA-Seq was also conducted to identify the different expression genes between tumor and normal tissue samples. We revealed significantly different microbial community structures and expression profiles to CC. Depending on correlation analysis, we demonstrated that 1,472 genes were significantly correlated with CC tumor microbiota. Our study reveals a significant enrichment of Campylobacter jejuni in the mucosa of CC, which correlates with bile secretion. Additionally, we observe a negative correlation between C. jejuni and immune cells CD4+ Tem and mast cells. Finally, we discovered that metabolic bacterial endosymbiont of Bathymodiolus sp., Bacillus wiedmannii, and Mycobacterium tuberculosis had a significant survival value for CC, which was ignored by previous research. Overall, our study expands the understanding of the complex interplay between microbiota and CC and provides new targets for the treatment of CC. IMPORTANCE This study contributes to our understanding of the interaction between microbiota and colon cancer (CC). By examining mucosal and tissue samples rather than solely relying on fecal samples, we have uncovered previously unknown aspects of CC-associated microbiota. Our findings reveal distinct microbial community structures and gene expression profiles correlated with CC progression. Notably, the enrichment of Campylobacter jejuni in CC mucosa, linked to bile secretion, underscores potential mechanisms in CC pathogenesis. Additionally, observed correlations between microbial taxa and immune cell populations offer new avenues for immunotherapy research in CC. Importantly, this study introduces CC-associated microbiota with survival implications for CC, expanding therapeutic targets beyond conventional strategies. By elucidating these correlations, our study not only contributes to uncovering the potential role of gut microbiota in colon cancer but also establishes a foundation for mechanistic studies of gut microbiota in colon cancer, emphasizing the broader impact of microbiota research on cancer biology.
Collapse
Affiliation(s)
- Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiang Wang
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fengfei Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junxian Chen
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Taijun Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Fang
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilong Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linghui Pan
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
2
|
Duppala SK, Poleboyina PK, Kour B, Bale G, Vyas A, Pawar SC, Suravajhala PN, Vuree S. A Pilot Study Based on the Correlation Between Whole Exome and Transcriptome Reveals Potent Variants in the Indian Population of Cervical Cancer. Indian J Microbiol 2024; 64:1222-1245. [PMID: 39282199 PMCID: PMC11399378 DOI: 10.1007/s12088-024-01295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/19/2024] [Indexed: 09/18/2024] Open
Abstract
Cervical malignancy (CC) is the 2nd most prevalent malignancy among females, leading to cancer mortality. Primary detection of CC tumors results in an improved prognosis. CC is a malignant gynecological tumor, with few treatment options. New diagnostic and therapeutic agents are required to expand patient survival and quality of life. If CC tumors can be found at an early stage, the prognosis is much brighter. New diagnostic and therapeutic agents are needed to increase patient survival and quality of life. In this work, we performed whole-exome sequencing utilizing V5 (Illumina platform) 10 samples, 5 control and 5 CC tumour tissue, and we compared the results with transcriptome studies. KMT2C variations were shown to be among the most vicious in this analysis. From an Indian viewpoint, we found a plethora of SNVs and mutations, including those with known, unknown, and possible effects on health. Based on our findings, we know that the KMT2C gene is on chr. Seven and in exon 8, all three recognized variants are missense, synonymous, coding synonymous, non-coding variants, and GnomAD MAF (- 0.05). The variation at position (7:152265091, T > A, SNV 62478356) in KMT2C is unique, potent, and pathogenic. The missense coding transcript CIQTNF maps to chromosome 7 and displays T > C SNV. In addition, we performed single strand conformational polymorphism analysis on 64 samples and further confirmed them using Sanger sequencing to understand and verify the mutations. KMT2C shows a log FC value of - 1.16. Understanding emerging harmful mutations from an Indian viewpoint is facilitated by our bioinformatics-based, extensive correlation studies of WES analysis. Potentially harmful and new mutations were found in our preliminary analysis; among these ten top mutated genes, KMT2C and CIQTNF were altered in ten cases of CC with an Indian phenotype.
Collapse
Affiliation(s)
- Santosh Kumari Duppala
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Jalandhar, India
| | - Pavan Kumar Poleboyina
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana 500007 India
| | - Bhumandeep Kour
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Jalandhar, India
| | - Govardhan Bale
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana 500007 India
| | - Ashish Vyas
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Jalandhar, India
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana 500007 India
| | - Prashanth N Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana, Kerala 690525 India
- Bioclues.org, Hyderabad, Telangana India
| | - Sugunakar Vuree
- GenepoweRx, K&H Personalized Medicine Clinic, Jubilee Hills, Hyderabad, Telangana 500033 India
- Bioclues.org, Hyderabad, Telangana India
| |
Collapse
|
3
|
Lv X, Lan G, Guo Q. Identification of Subtypes in Triple-negative Breast Cancer Based on Shared Genes Between Immunity and Cancer Stemness. J Immunother 2024; 47:107-116. [PMID: 38369822 DOI: 10.1097/cji.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
The correlation between triple-negative breast cancer (TNBC) and genes related to immunity and cancer stemness, particularly shared genes, remains unclear. This study aimed to investigate the correlation of immunity and cancer stemness with the molecular subtyping and survival rates in TNBC using bioinformatics approaches. Differential gene analysis was conducted to identify TNBC-associated differentially expressed genes (DEGs). Cancer stem cell (CSC)-related genes were obtained using weighted gene coexpression network analysis. Immune-related gene sets were retrieved from the literature. Venn analysis was performed to identify the shared DEGs between immunity and cancer stemness in TNBC. Cluster analysis and survival analysis based on the expression of these genes were conducted to identify TNBC subtypes with significant survival differences. A total of 5259 TNBC-associated DEGs, 2214 CSC-related genes, 1793 immune-related genes, and 44 shared DEGs between immunity and cancer stemness were obtained. Among them, 3 shared DEGs were closely associated with TNBC survival rates ( P <0.05). Cluster and survival analyses revealed that among 3 subtypes, cluster2 exhibited the best survival rate, and cluster3 showed the worst survival rate ( P <0.05). Dendritic cells were highly infiltrated in cluster2, while plasma cells and resting mast cells were highly infiltrated in cluster3 ( P <0.05). Genes shared by immunity and cancer stemness were capable of classifying TNBC samples. TNBC patients of different subtypes exhibited significant differences in immune profiles, genetic mutations, and drug sensitivity. These findings could provide new insights into the pathogenesis of TNBC, the immune microenvironment, and the selection of therapeutic targets for drug treatment.
Collapse
Affiliation(s)
- Xianmei Lv
- Department of Radiotherapy, Jinhua People's Hospital, Jinhua, China
| | - Gaochen Lan
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiusheng Guo
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
4
|
Adinew GM, Messeha S, Taka E, Ahmed SA, Soliman KFA. The Role of Apoptotic Genes and Protein-Protein Interactions in Triple-negative Breast Cancer. Cancer Genomics Proteomics 2023; 20:247-272. [PMID: 37093683 PMCID: PMC10148064 DOI: 10.21873/cgp.20379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND/AIM Compared to other breast cancer types, triple-negative breast cancer (TNBC) has historically had few treatment alternatives. Therefore, exploring and pinpointing potentially implicated genes could be used for treating and managing TNBC. By doing this, we will provide essential data to comprehend how the genes are involved in the apoptotic pathways of the cancer cells to identify potential therapeutic targets. Analysis of a single genetic alteration may not reveal the pathogenicity driving TNBC due to the high genomic complexity and heterogeneity of TNBC. Therefore, searching through a large variety of gene interactions enabled the identification of molecular therapeutic genes. MATERIALS AND METHODS This study used integrated bioinformatics methods such as UALCAN, TNM plotter, PANTHER, GO-KEEG and PPIs to assess the gene expression, protein-protein interaction (PPI), and transcription factor interaction of apoptosis-regulated genes. RESULTS Compared to normal breast tissue, gene expressions of BNIP3, TNFRSF10B, MCL1, and CASP4 were downregulated in UALCAN. At the same time, BIK, AKT1, BAD, FADD, DIABLO, and CASP9 was down-regulated in bc-GeneExMiner v4.5 mRNA expression (BCGM) databases. Based on GO term enrichment analysis, the cellular process (GO:0009987), which has about 21 apoptosis-regulated genes, is the top category in the biological processes (BP), followed by biological regulation (GO:0065007). We identified 29 differentially regulated pathways, including the p53 pathway, angiogenesis, apoptosis signaling pathway, and the Alzheimer's disease presenilin pathway. We examined the PPIs between the genes that regulate apoptosis; CASP3 and CASP9 interact with FADD, MCL1, TNF, TNFRSRF10A, and TNFRSF10; additionally, CASP3 significantly forms PPIs with CASP9, DFFA, and TP53, and CASP9 with DIABLO. In the top 10 transcription factors, the androgen receptor (AR) interacts with five apoptosis-regulated genes (p<0.0001; q<0.01), followed by retinoic acid receptor alpha (RARA) (p<0.0001; q<0.01) and ring finger protein (RNF2) (p<0.0001; q<0.01). Overall, the gene expression profile, PPIs, and the apoptosis-TF interaction findings suggest that the 27 apoptosis-regulated genes might be used as promising targets in treating and managing TNBC. Furthermore, from a total of 27 key genes, CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were significantly correlated with poor overall survival in TNBC (p-value <0.05); they could play important roles in the progression of TNBC and provide attractive therapeutic targets that may offer new candidate molecules for targeted therapy. CONCLUSION Our findings demonstrate that CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were substantially associated with the overall survival rate (OS) difference of TNBC patients out of a total of 27 specific genes used in this study, which may play crucial roles in the development of TNBC and offer promising therapeutic interventions.
Collapse
Affiliation(s)
- Getinet M Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shade A Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
5
|
Multi-Omics Approaches in Colorectal Cancer Screening and Diagnosis, Recent Updates and Future Perspectives. Cancers (Basel) 2022; 14:cancers14225545. [PMID: 36428637 PMCID: PMC9688479 DOI: 10.3390/cancers14225545] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is common Cancer as well as the third leading cause of mortality around the world; its exact molecular mechanism remains elusive. Although CRC risk is significantly correlated with genetic factors, the pathophysiology of CRC is also influenced by external and internal exposures and their interactions with genetic factors. The field of CRC research has recently benefited from significant advances through Omics technologies for screening biomarkers, including genes, transcripts, proteins, metabolites, microbiome, and lipidome unbiasedly. A promising application of omics technologies could enable new biomarkers to be found for the screening and diagnosis of CRC. Single-omics technologies cannot fully understand the molecular mechanisms of CRC. Therefore, this review article aims to summarize the multi-omics studies of Colorectal cancer, including genomics, transcriptomics, proteomics, microbiomics, metabolomics, and lipidomics that may shed new light on the discovery of novel biomarkers. It can contribute to identifying and validating new CRC biomarkers and better understanding colorectal carcinogenesis. Discovering biomarkers through multi-omics technologies could be difficult but valuable for disease genotyping and phenotyping. That can provide a better knowledge of CRC prognosis, diagnosis, and treatments.
Collapse
|
6
|
Mala U, Baral TK, Somasundaram K. Integrative analysis of cell adhesion molecules in glioblastoma identified prostaglandin F2 receptor inhibitor (PTGFRN) as an essential gene. BMC Cancer 2022; 22:642. [PMID: 35690717 PMCID: PMC9188228 DOI: 10.1186/s12885-022-09682-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults exhibiting infiltration into surrounding tissues, recurrence, and resistance to therapy. GBM infiltration is accomplished by many deregulated factors such as cell adhesion molecules (CAMs), which are membrane proteins that participate in cell-cell and cell-ECM interactions to regulate survival, proliferation, migration, and stemness. Methods A comprehensive bioinformatics analysis of CAMs (n = 518) in multiple available datasets revealed genetic and epigenetic alterations among CAMs in GBM. Univariate Cox regression analysis using TCGA dataset identified 127 CAMs to be significantly correlated with survival. The poor prognostic indicator PTGFRN was chosen to study its role in glioma. Silencing of PTGFRN in glioma cell lines was achieved by the stable expression of short hairpin RNA (shRNA) against the PTGFRN gene. PTGFRN was silenced and performed cell growth, migration, invasion, cell cycle, and apoptosis assays. Neurosphere and limiting dilution assays were also performed after silencing of PTGFRN in GSCs. Results Among the differentially regulated CAMs (n = 181, 34.9%), major proportion of them were found to be regulated by miRNAs (n = 95, 49.7%) followed by DNA methylation (n = 32, 16.7%), and gene copy number variation (n = 12, 6.2%). We found that PTGFRN to be upregulated in GBM tumor samples and cell lines with a significant poor prognostic correlation with patient survival. Silencing PTGFRN diminished cell growth, colony formation, anchorage-independent growth, migration, and invasion and led to cell cycle arrest and induction of apoptosis. At the mechanistic level, silencing of PTGFRN reduced pro-proliferative and promigratory signaling pathways such as ERK, AKT, and mTOR. PTGFRN upregulation was found to be due to the loss of its promoter methylation and downregulation of miR-137 in GBM. PTGFRN was also found to be higher in glioma stem-like cells (GSCs) than the matched differentiated glioma cells (DGCs) and is required for GSC growth and survival. Silencing of PTGFRN in GSCs reduced transcript levels of reprogramming factors (Olig2, Pou3f2, Sall2, and Sox2). Conclusion In this study, we provide a comprehensive overview of the differential regulation of CAMs and the probable causes for their deregulation in GBM. We also establish an oncogenic role of PTGFRN and its regulation by miR-137 in GBM, thus signifying it as a potential therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09682-2.
Collapse
Affiliation(s)
- Uchurappa Mala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Tapan Kumar Baral
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Roles of fusion genes in digestive system cancers: dawn for cancer precision therapy. Crit Rev Oncol Hematol 2022; 171:103622. [PMID: 35124200 DOI: 10.1016/j.critrevonc.2022.103622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
For advanced and advanced tumors of the digestive system, personalized, precise treatment could be a lifesaving medicine. With the development of next-generation sequencing technology, detection of fusion genes in solid tumors has become more extensive. Some fusion gene targeting therapies have been written into the guidelines for digestive tract tumors, such as for neurotrophic receptor tyrosine kinase, fibroblast growth factor receptor 2. There are also many fusion genes being investigated as potential future therapeutic targets. This review focuses on the current detection methods for fusion genes, fusion genes written into the digestive system tumor guidelines, and potential fusion gene therapy targets in different organs to discuss the possibility of clinical treatments for these targets in digestive system tumors.
Collapse
|
8
|
Shi W, He J, Huang Y, Zeng Z, Feng Z, Xu H, Nie Y. Integrin β5 enhances the malignancy of human colorectal cancer by increasing the TGF-β signaling. Anticancer Drugs 2021; 32:717-726. [PMID: 33587354 DOI: 10.1097/cad.0000000000001050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Increased integrin β5 (ITGB5) expression is associated with the progression and metastasis of several types of cancers. However, whether upregulated ITGB5 expression can act as a prognostic factor for colorectal cancer (CRC) remains controversial. In this study, we aimed to identify the role ITGB5 plays during the pathogenesis of human CRC and explore the underlying molecular mechanism. Here, we show that ITGB5 expression is upregulated in CRC and is significantly associated with exacerbated CRC malignancy and an unfavourable overall survival rate among CRC patients. ITGB5 silencing significantly inhibited the proliferation and invasion of human CRC cell lines (HCT116 and HT29) in vitro and suppressed the growth and metastasis of implanted CRC tumours in vivo. Mechanistically, upregulated ITGB5 expression enhanced transforming growth factor β/Smad signalling and facilitated the epithelial-mesenchymal transition in CRC cells. Together, such findings indicate that ITGB5 acts as an oncogenic factor to enhance the malignancy of CRC and suggest that ITGB5 may be a therapeutic target.
Collapse
Affiliation(s)
- Wei Shi
- Department of Gastroenterology, Guangzhou Digestive Disease Center
- Department of Geriatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie He
- Department of Gastroenterology, Guangzhou Digestive Disease Center
| | - Yuee Huang
- Department of Gastroenterology, Guangzhou Digestive Disease Center
| | - Zheng Zeng
- Department of Geriatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiqiang Feng
- Department of Geriatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center
| |
Collapse
|
9
|
Fucoxanthin and Colorectal Cancer Prevention. Cancers (Basel) 2021; 13:cancers13102379. [PMID: 34069132 PMCID: PMC8156579 DOI: 10.3390/cancers13102379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is suggested to be preventable by certain food intakes. Fucoxanthin (Fx) is an anticancer agent contained abundantly in edible brown algae. However, epidemiological studies, in vivo and in vitro experiments for CRC, using Fx and Fx-rich foods, have not been fully outlined. To date, it has been reported that Fx, its metabolite of fucoxanthinol (FxOH) and Fx-rich algal extracts exerted anticancer potentials in human CRC cell lines, their cancer stem-cells-like spheroids and CRC animal models through a number of molecular mechanisms. Moreover, many in vivo experiments and interventional human trials have demonstrated that Fx, Fx-rich algal extracts and brown alga itself may improve CRC and/or certain risks, such as obesity, diabetes, metabolic syndrome, inflammation, oxidation, tumor microenvironment and/or gut microbiota. This review is the first report that summarizes the improving effects by Fx, FxOH and its rich brown algae for CRC and the risk factors. Abstract Colorectal cancer (CRC), which ranks among the top 10 most prevalent cancers, can obtain a good outcome with appropriate surgery and/or chemotherapy. However, the global numbers of both new cancer cases and death from CRC are expected to increase up to 2030. Diet-induced lifestyle modification is suggested to be effective in reducing the risk of human CRC; therefore, interventional studies using diets or diet-derived compounds have been conducted to explore the prevention of CRC. Fucoxanthin (Fx), a dietary carotenoid, is predominantly contained in edible brown algae, such as Undaria pinnatifida (wakame) and Himanthalia elongata (Sea spaghetti), which are consumed particularly frequently in Asian countries but also in some Western countries. Fx is responsible for a majority of the anticancer effects exerted by the lipophilic bioactive compounds in those algae. Interventional human trials have shown that Fx and brown algae mitigate certain risk factors for CRC; however, the direct mechanisms underlying the anti-CRC properties of Fx remain elusive. Fx and its deacetylated type “fucoxanthinol” (FxOH) have been reported to exert potential anticancer effects in preclinical cancer models through the suppression of many cancer-related signal pathways and the tumor microenvironment or alteration of the gut microbiota. We herein review the most recent studies on Fx as a potential candidate drug for CRC prevention.
Collapse
|
10
|
Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog 2021; 60:279-293. [PMID: 33629774 DOI: 10.1002/mc.23291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Alternative splicing (AS) is a process that produces various mRNA splicing isoforms via different splicing patterns of mRNA precursors (pre-mRNAs). AS is the primary mechanism for increasing the types and quantities of proteins to improve biodiversity and influence multiple biological processes, including chromatin modification, signal transduction, and protein expression. It has been reported that AS is involved in the tumorigenesis and development of colorectal carcinoma (CRC). In this review, we delineate the concept, types, regulatory processes, and technical advances of AS and focus on the role of AS in CRC initiation, progression, treatment, and prognosis. This summary of the current knowledge about AS will contribute to our understanding of CRC initiation and development. This study will help in the discovery of novel biomarkers and therapeutic targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Jianyi Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xuelian Ning
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Sadeghi M, Barzegar A. Precision medicine insight into primary prostate tumor through transcriptomic data and an integrated systems biology approach. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Bin-Alee F, Arayataweegool A, Buranapraditkun S, Mahattanasakul P, Tangjaturonrasme N, Hirankarn N, Mutirangura A, Kitkumthorn N. Transcriptomic analysis of peripheral blood mononuclear cells in head and neck squamous cell carcinoma patients. Oral Dis 2020; 27:1394-1402. [PMID: 32892371 DOI: 10.1111/odi.13639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the gene expression profile of peripheral blood mononuclear cells (PBMCs) from head and neck squamous cell carcinoma (HNSCC), including oral cancer (OC) and oropharyngeal cancer (OPC) patients, and compare them with healthy controls (HC). MATERIALS AND METHODS Transcriptomic analysis of PBMCs was performed by RNA-sequencing. The upregulated candidate genes were selected for validation by quantitative real-time polymerase chain reaction (qPCR). In addition, related plasma protein levels were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Three significantly upregulated genes, including high mobility group nucleosomal binding domain 2 (HMGN2), folate receptor gamma (FOLR3), and amphiregulin (AREG), were selected. In the first cohort, the results showed that only HMGN2 expression was significantly increased in OC patients. In the larger sample size, the overall results demonstrated that HMGN2 expression had a tendency to increase in both OC and OPC patients compared with HC. Interestingly, the plasma HMGN2 (HMG-17) protein level exhibited the same trend as that observed at the transcriptional level. CONCLUSION HMGN2 expression and plasma HMG-17 (HMGN2 protein) were increased in both cancer patients compared with HC. This gene may be important for further functional studies in the PBMCs of HNSCC patients.
Collapse
Affiliation(s)
- Fardeela Bin-Alee
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, Thailand.,Program of Medical Science, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Areeya Arayataweegool
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Department of Medicine, Division of Allergy and Clinical Immunology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center- Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patnarin Mahattanasakul
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Otolaryngology, Head and Neck Surgery, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Napadon Tangjaturonrasme
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.,Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Zabana Y, Lorén V, Domènech E, Aterido A, Garcia-Jaraquemada A, Julià A, Vicario M, Pedrosa E, Ferreiro M, Troya J, Lozano JJ, Sarrias MR, Cabré E, Mañosa M, Manyé J. Transcriptomic identification of TMIGD1 and its relationship with the ileal epithelial cell differentiation in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G109-G120. [PMID: 32508154 DOI: 10.1152/ajpgi.00027.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crohn's disease (CD) is a complex and multifactorial illness. There are still considerable gaps in our knowledge regarding its pathophysiology. A transcriptomic approach could shed some light on little-known biological alterations of the disease. We therefore aimed to explore the ileal transcriptome to gain knowledge about CD. We performed whole transcriptome gene expression analysis on ileocecal resections from CD patients and inflammatory bowel disease-free controls, as well as on a CD-independent cohort to replicate selected results. Normalized data were hierarchically clustered, and gene ontology and the molecular network were studied. Cell cultures and molecular methods were used for further evaluations. Genome-wide expression data analysis identified a robust transmembrane immunoglobulin domain-containing 1 (TMIGD1) gene underexpression in CD tissue, which was even more marked in inflamed ileum, and which was replicated in the validation cohort. Immunofluorescence showed TMIGD1 to be located in the apical microvilli of well-differentiated enterocytes but not in intestinal crypt. This apical TMIGD1 was lower in the noninflamed tissue and almost disappeared in the inflamed mucosa of surgical resections. In vitro studies showed hypoxic-dependent TMIGD1 decreased its expression in enterocyte-like cells. The gene enrichment analysis linked TMIGD1 with cell recovery and tissue remodeling in CD settings, involving guanylate cyclase activities. Transcriptomics may be useful for finding new targets that facilitate studies of the CD pathology. This is how TMIGD1 was identified in CD patients, which was related to multiciliate ileal epithelial cell differentiation.NEW & NOTEWORTHY This is a single-center translational research study that aimed to look for key targets involved in Crohn's disease and define molecular pathways through different functional analysis strategies. With this approach, we have identified and described a novel target, the almost unknown TMIGD1 gene, which may be key in the recovery of injured mucosa involving intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Yamile Zabana
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Violeta Lorén
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Eugeni Domènech
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Adrià Aterido
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Catalonia, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Arce Garcia-Jaraquemada
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Catalonia, Spain
| | - Maria Vicario
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Laboratory of Translational Mucosal Immunology & Department of Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Research University Hospital, Badalona, Catalonia, Spain
| | - Elisabet Pedrosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Miriam Ferreiro
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - José Troya
- Colorectal Surgery Unit, General and Digestive Surgery Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Juan J Lozano
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Maria R Sarrias
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Innate Immunity Group, IGTP (AGAUR 2017-SGR-490 group), Badalona, Catalonia, Spain
| | - Eduard Cabré
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Miriam Mañosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Josep Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| |
Collapse
|
14
|
Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 2020; 12:12. [PMID: 31992345 PMCID: PMC6988342 DOI: 10.1186/s13073-020-0710-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians. It is caused by mutations in the CFTR gene, leading to poor hydration of mucus and impairment of the respiratory, digestive, and reproductive organ functions. Advancements in medical care have led to markedly increased longevity of patients with cystic fibrosis, but new complications have emerged, such as early onset of colorectal cancer. Although the pathogenesis of colorectal cancer in cystic fibrosis remains unclear, altered host-microbe interactions might play a critical role. To investigate this, we characterized changes in the microbiome and host gene expression in the colonic mucosa of cystic fibrosis patients relative to healthy controls, and identified host gene-microbiome interactions in the colon of cystic fibrosis patients. METHODS We performed RNA-seq on colonic mucosa samples from cystic fibrosis patients and healthy controls to determine differentially expressed host genes. We also performed 16S rRNA sequencing to characterize the colonic mucosal microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, we modeled associations between relative abundances of specific bacterial taxa in the gut mucosa and host gene expression. RESULTS We find that 1543 genes, including CFTR, show differential expression in the colon of cystic fibrosis patients compared to healthy controls. These genes are enriched with functions related to gastrointestinal and colorectal cancer, such as metastasis of colorectal cancer, tumor suppression, p53, and mTOR signaling pathways. In addition, patients with cystic fibrosis show decreased gut microbial diversity, decreased abundance of butyrate producing bacteria, such as Ruminococcaceae and Butyricimonas, and increased abundance of other taxa, such as Actinobacteria and Clostridium. An integrative analysis identified colorectal cancer-related genes, including LCN2 and DUOX2, for which gene expression is correlated with the abundance of colorectal cancer-associated bacteria, such as Ruminococcaceae and Veillonella. CONCLUSIONS In addition to characterizing host gene expression and mucosal microbiome in cystic fibrosis patients, our study explored the potential role of host-microbe interactions in the etiology of colorectal cancer in cystic fibrosis. Our results provide biomarkers that may potentially serve as targets for stratifying risk of colorectal cancer in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gargi Dayama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - David E Niccum
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Xu L, Luo H, Wang R, Wu WW, Phue JN, Shen RF, Juhl H, Wu L, Alterovitz WL, Simonyan V, Pelosof L, Rosenberg AS. Novel reference genes in colorectal cancer identify a distinct subset of high stage tumors and their associated histologically normal colonic tissues. BMC MEDICAL GENETICS 2019; 20:138. [PMID: 31409279 PMCID: PMC6693228 DOI: 10.1186/s12881-019-0867-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Background Reference genes are often interchangeably called housekeeping genes due to 1) the essential cellular functions their proteins provide and 2) their constitutive expression across a range of normal and pathophysiological conditions. However, given the proliferative drive of malignant cells, many reference genes such as beta-actin (ACTB) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) which play critical roles in cell membrane organization and glycolysis, may be dysregulated in tumors versus their corresponding normal controls Methods Because Next Generation Sequencing (NGS) technology has several advantages over hybridization-based technologies, such as independent detection and quantitation of transcription levels, greater sensitivity, and increased dynamic range, we evaluated colorectal cancers (CRC) and their histologically normal tissue counterparts by NGS to evaluate the expression of 21 “classical” reference genes used as normalization standards for PCR based methods. Seventy-nine paired tissue samples of CRC and their patient matched healthy colonic tissues were subjected to NGS analysis of their mRNAs. Results We affirmed that 17 out of 21 classical reference genes had upregulated expression in tumors compared to normal colonic epithelial tissue and dramatically so in some cases. Indeed, tumors were distinguished from normal controls in both unsupervised hierarchical clustering analyses (HCA) and principal component analyses (PCA). We then identified 42 novel potential reference genes with minimal coefficients of variation (CV) across 79 CRC tumor pairs. Though largely consistently expressed across tumors and normal control tissues, a subset of high stage tumors (HSTs) as well as some normal tissue samples (HSNs) located adjacent to these HSTs demonstrated dysregulated expression, thus identifying a subset of tumors with a potentially distinct and aggressive biological profile. Conclusion While classical CRC reference genes were found to be differentially expressed between tumors and normal controls, novel reference genes, identified via NGS, were more consistently expressed across malignant and normal colonic tissues. Nonetheless, a subset of HST had profound dysregulation of such genes as did many of the histologically normal tissues adjacent to such HSTs, indicating that the HSTs so distinguished may have unique biological properties and that their histologically normal tissues likely harbor a small population of microscopically undetected but metabolically active tumors. Electronic supplementary material The online version of this article (10.1186/s12881-019-0867-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lai Xu
- OBP/DBRR-III, CDER, FDA, Silver Spring, MD, 20993, USA. .,Office of Hematology and Oncology Products CDER, FDA, Silver Spring, MD, 20993, USA. .,, Silver Spring, USA.
| | - Helen Luo
- OBP/DBRR-III, CDER, FDA, Silver Spring, MD, 20993, USA
| | - Rong Wang
- OBP/DBRR-III, CDER, FDA, Silver Spring, MD, 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources CBER, FDA, Silver Spring, MD, 20993, USA
| | - Je-Nie Phue
- Facility for Biotechnology Resources CBER, FDA, Silver Spring, MD, 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources CBER, FDA, Silver Spring, MD, 20993, USA
| | | | - Leihong Wu
- OCS/NCTR/DBB, FDA, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | | | | | - Lorraine Pelosof
- Office of Hematology and Oncology Products CDER, FDA, Silver Spring, MD, 20993, USA
| | | |
Collapse
|
16
|
Heyer EE, Deveson IW, Wooi D, Selinger CI, Lyons RJ, Hayes VM, O'Toole SA, Ballinger ML, Gill D, Thomas DM, Mercer TR, Blackburn J. Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun 2019; 10:1388. [PMID: 30918253 PMCID: PMC6437215 DOI: 10.1038/s41467-019-09374-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
Fusion genes are a major cause of cancer. Their rapid and accurate diagnosis can inform clinical action, but current molecular diagnostic assays are restricted in resolution and throughput. Here, we show that targeted RNA sequencing (RNAseq) can overcome these limitations. First, we establish that fusion gene detection with targeted RNAseq is both sensitive and quantitative by optimising laboratory and bioinformatic variables using spike-in standards and cell lines. Next, we analyse a clinical patient cohort and improve the overall fusion gene diagnostic rate from 63% with conventional approaches to 76% with targeted RNAseq while demonstrating high concordance for patient samples with previous diagnoses. Finally, we show that targeted RNAseq offers additional advantages by simultaneously measuring gene expression levels and profiling the immune-receptor repertoire. We anticipate that targeted RNAseq will improve clinical fusion gene detection, and its increasing use will provide a deeper understanding of fusion gene biology. Rapid and accurate detection of fusion genes is important in cancer diagnostics. Here, the authors demonstrate that targeted RNA sequencing provides fast, sensitive and quantitative gene fusion detection and overcomes the limitations of approaches currently in clinical use.
Collapse
Affiliation(s)
- Erin E Heyer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Danson Wooi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Christina I Selinger
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Faculty of Health Sciences, University of Limpopo, Turfloop Campus, Mankweng, 0727, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, 0002, South Africa.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia
| | - Sandra A O'Toole
- St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia.,The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,Australian Clinical Labs, Sydney, 2010, NSW, Australia
| | - Mandy L Ballinger
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Devinder Gill
- Department of Haematology, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia. .,Altius Institute for Biomedical Sciences, Seattle, 98121, WA, USA.
| | - James Blackburn
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.
| |
Collapse
|
17
|
Slaymi C, Vignal E, Crès G, Roux P, Blangy A, Raynaud P, Fort P. The atypical RhoU/Wrch1 Rho GTPase controls cell proliferation and apoptosis in the gut epithelium. Biol Cell 2019; 111:121-141. [PMID: 30834544 DOI: 10.1111/boc.201800062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The mammalian gut epithelium displays among the highest rates of self-renewal, with a turnover time of less than 5 days. Renewal involves concerted proliferation at the bottom of the crypt, migration and differentiation along the crypt-villus axis and anoïkis/shedding in the luminal epithelium. Renewal is controlled by interplay between signalling pathways, among which canonical and non-canonical Wnt signals play prominent roles. Overall 92% of colon tumours show increased canonical Wnt signalling resulting from mutations, established as major driver steps towards carcinogenesis. RESULTS Here, we examined the physiological role of RhoU/Wrch1 in gut homeostasis. RhoU is an atypical Rho GTPase related to Cdc42/Rac1 and identified as a transcriptional target of non-canonical Wnt signalling. We found that RHOU expression is reduced in human colorectal tumour samples. We show that RhoU is mainly expressed in the differentiated compartment of the gut epithelium. Rhou specific invalidation in the mouse gut elicits cell hyperplasia and is associated in the colon with a highly disorganized luminal epithelium. Hyperplasia affects all cell types in the small intestine and colon and has a higher impact on goblet cells. Hyperplasia is associated with a reduction of apoptosis and an increased proliferation. RhoU knockdown in human DLD-1 colon cancer cells also elicits a higher growth index and reduces cell apoptosis. Last, loss of RhoU function in the mouse gut epithelium or in DLD-1 cells increases RhoA activity and the level of phosphorylated Myosin Light Chain-2, which may functionally link RhoU activity to apoptosis. CONCLUSION RhoU is mostly expressed in the differentiated compartment of the gut. It plays a role in homeostasis as its specific invalidation elicits hyperplasia of all cell types. This mainly results from a reduction of apoptosis, through actomyosin-dependent mechanisms. SIGNIFICANCE RhoU negatively controls cell growth in the intestinal epithelium. Since its expression is sensitive to non-canonical Wnt signals and is reduced in colorectal tumours, downregulating RhoU may thus have an instrumental role in tumour progression.
Collapse
Affiliation(s)
- Chaker Slaymi
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Emmanuel Vignal
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Gaëlle Crès
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Pierre Roux
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Anne Blangy
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Peggy Raynaud
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Philippe Fort
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| |
Collapse
|
18
|
Huliák I, Bodai L, Czepán M, Kovács D, Szabó A, Tiszlavicz L, Lázár G, Rakonczay Z, Hegyi P, Boros IM, Kiricsi M. Genetic, epigenetic and transcriptional comparison of esophagus tumor‑associated and adjacent normal myofibroblasts. Oncol Rep 2019; 41:839-852. [PMID: 30535493 PMCID: PMC6313073 DOI: 10.3892/or.2018.6909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts (MFs) are present in healthy tissues and are also key components of the tumor microenvironment. In the present study a comparative analysis of MFs obtained from various gastrointestinal tumor tissues and from tumor‑adjacent normal tissues of cancer patients was performed, with the aim to evaluate differences in MF morphology, gene expression profile and function. The goal was to correlate the observed morphological and functional variations with the underlying genetic and epigenetic backgrounds. The mutation frequency of MFs was assessed by next generation sequencing. The transcript levels of cancer‑specific genes were determined by TaqMan array and quantitative polymerase chain reaction. Epigenetic modifications were analyzed by immunocytochemistry and western blotting. The migratory capacity of MFs was assessed by scratch assay, whereas matrix metalloproteinase expression and activity were obtained by quantitative polymerase chain reaction and zymography. The results of the present study demonstrate that MFs were present in an increased number and with altered morphology in tumor samples compared with the healthy tissue. Although the detected number of mutations in tumor‑associated and normal tissue‑derived MFs did not differ markedly, shifts in the level of specific acetylated and methylated histone proteins, namely decreased levels of trimethylated H3K9 and acetylated H4K16 were demonstrated in tumor‑associated MFs. Transcript levels of several tumor‑specific genes involved in metastasis, regulation of cellular growth, apoptosis, as well as in hypoxia‑angiogenesis were altered in tumor‑derived MF cultures. Increased mRNA levels were obtained and activity of matrix metalloproteases in tumor‑derived MFs and these cells also exhibited a higher migratory capacity compared with the normal MFs. In summary, the results of the present study indicate that tumor‑associated MFs display an altered phenotype compared with healthy tissue derived counterparts. The results imply that epigenetic rather than genetic alterations are associated with the development of the distinct expressional and functional features, which define this MF phenotype in the tumor microenvironment.
Collapse
Affiliation(s)
- Ildikó Huliák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| | - Mátyás Czepán
- First Department of Medicine, University of Szeged, Szeged H-6720, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| | - Anikó Szabó
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Szeged H-6720, Hungary
| | - György Lázár
- Department of Surgery, University of Szeged, Szeged H-6720, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged H-6720, Hungary
- Department of Pathophysiology, University of Szeged, Szeged H-6720, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE Lendület Translational Gastroenterology Research Group, Szeged H-6720, Hungary
| | - Imre Miklós Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
19
|
Izadi F. Differential Connectivity in Colorectal Cancer Gene Expression Network. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 29843204 PMCID: PMC6305824 DOI: 10.29252/.23.1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the challenging types of cancers; thus, exploring effective biomarkers related to colorectal could lead to significant progresses toward the treatment of this disease. METHODS In the present study, CRC gene expression datasets have been reanalyzed. Mutual differentially expressed genes across 294 normal mucosa and adjacent tumoral samples were then utilized in order to build two independent transcriptional regulatory networks. By analyzing the networks topologically, genes with differential global connectivity related to cancer state were determined for which the potential transcriptional regulators including transcription factors were identified. RESULTS The majority of differentially connected genes (DCGs) were up-regulated in colorectal transcriptome experiments. Moreover, a number of these genes have been experimentally validated as cancer or CRC-associated genes. The DCGs, including GART, TGFB1, ITGA2, SLC16A5, SOX9, and MMP7, were investigated across 12 cancer types. Functional enrichment analysis followed by detailed data mining exhibited that these candidate genes could be related to CRC by mediating in metastatic cascade in addition to shared pathways with 12 cancer types by triggering the inflammatory events. DISCUSSION Our study uncovered correlated alterations in gene expression related to CRC susceptibility and progression that the potent candidate biomarkers could provide a link to disease.
Collapse
Affiliation(s)
- Fereshteh Izadi
- Sari Agricultural Sciences and Natural Resources University (SANRU), Farah Abad Road, Mazandaran 4818168984, Iran,Corresponding Author: Fereshteh Izadi Sari Agricultural Sciences and Natural Resources University (SANRU), Farah Abad Road, Mazandaran 4818168984, Iran; Mobile: (+98-918) 6291302; E-mail:
| |
Collapse
|
20
|
Matataki: an ultrafast mRNA quantification method for large-scale reanalysis of RNA-Seq data. BMC Bioinformatics 2018; 19:266. [PMID: 30012088 PMCID: PMC6048772 DOI: 10.1186/s12859-018-2279-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 07/09/2018] [Indexed: 02/03/2023] Open
Abstract
Background Data generated by RNA sequencing (RNA-Seq) is now accumulating in vast amounts in public repositories, especially for human and mouse genomes. Reanalyzing these data has emerged as a promising approach to identify gene modules or pathways. Although meta-analyses of gene expression data are frequently performed using microarray data, meta-analyses using RNA-Seq data are still rare. This lag is partly due to the limitations in reanalyzing RNA-Seq data, which requires extensive computational resources. Moreover, it is nearly impossible to calculate the gene expression levels of all samples in a public repository using currently available methods. Here, we propose a novel method, Matataki, for rapidly estimating gene expression levels from RNA-Seq data. Results The proposed method uses k-mers that are unique to each gene for the mapping of fragments to genes. Since aligning fragments to reference sequences requires high computational costs, our method could reduce the calculation cost by focusing on k-mers that are unique to each gene and by skipping uninformative regions. Indeed, Matataki outperformed conventional methods with regards to speed while demonstrating sufficient accuracy. Conclusions The development of Matataki can overcome current limitations in reanalyzing RNA-Seq data toward improving the potential for discovering genes and pathways associated with disease at reduced computational cost. Thus, the main bottleneck of RNA-Seq analyses has shifted to achieving the decompression of sequenced data. The implementation of Matataki is available at https://github.com/informationsea/Matataki. Electronic supplementary material The online version of this article (10.1186/s12859-018-2279-y) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Impact of miRNA-mRNA Profiling and Their Correlation on Medulloblastoma Tumorigenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:490-503. [PMID: 30195786 PMCID: PMC6070673 DOI: 10.1016/j.omtn.2018.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
Medulloblastoma (MB) is a clinically challenging, childhood brain tumor with a diverse genetic makeup and differential miRNA profile. Aiming to identify deregulated miRNAs in MB, the miRNA expression profile of human MB samples was compared to that of normal cerebellar tissues. As a result, 8 upregulated and 64 downregulated miRNAs were identified in MB samples. Although various algorithms have been developed to predict the interaction between miRNA-mRNA pairs, the complexity and fidelity of miRNA-mRNA remain a concern. Therefore, to identify the signatures of miRNA-mRNA interactions essential for MB pathogenesis, miRNA profiling, RNA sequencing, and ingenuity pathway analysis (IPA) were performed in the same primary human MB samples. Further, when miR-217 was inhibited, a significant upregulation of predicted target genes SIRT1, ROBO1, FOXO3, and SMAD7 in HDMB03 cells was observed, confirming the validity of our approach. Functional analysis revealed that the inhibition of miR-217 in HDMB03 cells suppresses colony formation, migration, invasion, promoted apoptosis, and arrested cell population in S phase, indicating that manipulation of miR-217 may have a therapeutic potential for MB patients. Therefore, our study provides an essential platform for future investigations of specific miRNAs responsible for MB pathogenesis.
Collapse
|
22
|
Weber L, Schulz WA, Philippou S, Eckardt J, Ubrig B, Hoffmann MJ, Tannapfel A, Kalbe B, Gisselmann G, Hatt H. Characterization of the Olfactory Receptor OR10H1 in Human Urinary Bladder Cancer. Front Physiol 2018; 9:456. [PMID: 29867524 PMCID: PMC5964926 DOI: 10.3389/fphys.2018.00456] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Olfactory receptors (ORs) are a large group of G-protein coupled receptors predominantly found in the olfactory epithelium. Many ORs are, however, ectopically expressed in other tissues and involved in several diseases including cancer. In this study, we describe that one OR, OR10H1, is predominantly expressed in the human urinary bladder with a notably higher expression at mRNA and protein level in bladder cancer tissues. Interestingly, also significantly higher amounts of OR10H1 transcripts were detectable in the urine of bladder cancer patients than in the urine of control persons. We identified the sandalwood-related compound Sandranol as a specific agonist of OR10H1. This deorphanization allowed the functional characterization of OR10H1 in BFTC905 bladder cancer cells. The effect of receptor activation was morphologically apparent in cell rounding, accompanied by changes in the cytoskeleton detected by β-actin, T-cadherin and β-Catenin staining. In addition, Sandranol treatment significantly diminished cell viability, cell proliferation and migration and induced a limited degree of apoptosis. Cell cycle analysis revealed an increased G1 fraction. In a concentration-dependent manner, Sandranol application elevated cAMP levels, which was reduced by inhibition of adenylyl cyclase, and elicited intracellular Ca2+ concentration increase. Furthermore, activation of OR10H1 enhanced secretion of ATP and serotonin. Our results suggest OR10H1 as a potential biomarker and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Lea Weber
- Department of Cellular Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Translational Wound Research, Witten/Herdecke University, Witten, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stathis Philippou
- Department of Pathology and Cytology, Augusta Kliniken Bochum Hattingen, Bochum, Germany
| | - Josephine Eckardt
- Department of Cellular Physiology, Ruhr University Bochum, Bochum, Germany.,Institute for Physiology, Ruhr University Bochum, Bochum, Germany
| | - Burkhard Ubrig
- Clinic for Urology, Augusta Kliniken Bochum Hattingen, Bochum, Germany
| | - Michéle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Tannapfel
- Institute for Pathology, Ruhr University Bochum, Bochum, Germany
| | - Benjamin Kalbe
- Department of Cellular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cellular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Hanns Hatt
- Department of Cellular Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Nam JY, Oh BY, Hong HK, Bae JS, Kim TW, Ha SY, Park D, Lee WY, Kim HC, Yun SH, Park YA, Joung JG, Park WY, Cho YB. Molecular Characterization of Colorectal Signet-Ring Cell Carcinoma Using Whole-Exome and RNA Sequencing. Transl Oncol 2018; 11:836-844. [PMID: 29747153 PMCID: PMC6051939 DOI: 10.1016/j.tranon.2018.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND: Signet-ring cell carcinoma (SRCC) is a very rare subtype of colorectal adenocarcinoma (COAD) with a poor clinical prognosis. Although understanding key mechanisms of tumor progression in SRCCs is critical for precise treatment, a comprehensive view of genomic alterations is lacking. MATERIALS AND METHODS: We performed whole-exome sequencing of tumors and matched normal blood as well as RNA sequencing of tumors and matched normal colonic tissues from five patients with SRCC. RESULTS: We identified major somatic alterations and characterized transcriptional changes at the gene and pathway level. Based on high-throughput sequencing, the pattern of mutations and copy number variations was overall similar to that of COAD. Transcriptome analysis revealed that major transcription factors, such as SRF, HNF4A, ZEB1, and RUNX1, with potential regulatory roles in key pathways, including focal adhesion, the PI3K-Akt signaling pathway, and the MAPK signaling pathway, may play a role in the tumorigenesis of SRCC. Furthermore, significantly upregulated genes in SRCCs were enriched for epithelial-mesenchymal transition genes, and accumulation of mucin in intracytoplasm was associated with the overexpression of MUC2. CONCLUSION: The results indicate that the molecular basis of colorectal SRCC exhibits key differences from that of consensus COAD. Our findings clarify important genetic features of particular abnormalities in SRCCs.
Collapse
Affiliation(s)
- Jae-Yong Nam
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Bo Young Oh
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Tae Won Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Woo Yong Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong Hyeon Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Ah Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| | - Yong Beom Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Liu W, Li L, Ye H, Tao H, He H. Role of COL6A3 in colorectal cancer. Oncol Rep 2018; 39:2527-2536. [PMID: 29620224 PMCID: PMC5983922 DOI: 10.3892/or.2018.6331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Public transcriptome databases provide a valuable resource for genome-wide co-expression network analysis and investigation of the molecular mechanisms that underlie pathogenesis. To discover genes that may affect patient survival, a large-scale analysis of human colorectal cancer (CRC) datasets that were retrieved from the NCBI Gene Expression Omnibus was performed. A gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA). A total of 18 co-expressed gene modules were identified, of which two genes corresponded to cell migration and the cell cycle, two genes were involved in immune responses, two genes corresponded to mitochondrial function, and one gene corresponded to RNA splicing. A total of eight hub genes in the cell migration/extracellular matrix module were associated with poor prognosis in CRC, and the P-value for collagen type VI α3 chain (COL6A3) was the lowest. In silico analysis of cell type-specific gene expression and COL6A3 knockout experiments indicated the clinical relevance of COL6A3 in the development of CRC. In summary, the present analysis provides a basis for understanding the molecular characterization of CRC at the transcription level. COL6A3 may be a promising biomarker or target for the prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Wei Liu
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Li Li
- Department of Medical Informatics, Institute of Health Service and Medical Information, Academy of Military Medical Sciences, Beijing 100850, P.R. China
| | - Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Huan Tao
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Huaqin He
- Department of Bioinformatics, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
25
|
Fimereli D, Fumagalli D, Brown D, Gacquer D, Rothé F, Salgado R, Larsimont D, Sotiriou C, Detours V. Genomic hotspots but few recurrent fusion genes in breast cancer. Genes Chromosomes Cancer 2018; 57:331-338. [PMID: 29436103 DOI: 10.1002/gcc.22533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 02/04/2023] Open
Abstract
The advent of next generation sequencing technologies has boosted the interest in exploring the role of fusion genes in the development and progression of solid tumors. In breast cancer, most of the detected gene fusions seem to be "passenger" events while the presence of recurrent and driver fusions is still under study. We performed RNA sequencing in 55 well-characterized breast cancer samples and 10 adjacent normal breast tissues, complemented by an analysis of SNP array data. We explored the presence of fusion genes and defined their association with breast cancer subtypes, clinical-pathologic characteristics and copy number aberrations. Overall, 370 fusions were detected across the majority of the samples. HER2+ samples had significantly more fusions than triple negative and luminal subtypes. The number of fusions was correlated with histological grade, Ki67 and tumor size. Clusters of fusion genes were observed across the genome and a significant correlation of fusions with copy number aberrations and more specifically amplifications was also revealed. Despite the large number of fusion events, only a few were recurrent, while recurrent individual genes forming fusions with different partners were also detected including the estrogen receptor 1 gene in the previously detected ESR1-CCDC170 fusion. Overall we detected novel gene fusion events while we confirmed previously reported fusions. Genomic hotspots of fusion genes, differences between subtypes and small number of recurrent fusions are the most relevant characteristics of these events in breast cancer. Further investigation is necessary to comprehend the biological significance of these fusions.
Collapse
Affiliation(s)
- Danai Fimereli
- IRIBHM, Université Libre de Bruxelles (ULB), 808 route de Lennik, Brussels, 1070, Belgium
| | - Debora Fumagalli
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - David Brown
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - David Gacquer
- IRIBHM, Université Libre de Bruxelles (ULB), 808 route de Lennik, Brussels, 1070, Belgium
| | - Françoise Rothé
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Roberto Salgado
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Christos Sotiriou
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Vincent Detours
- IRIBHM, Université Libre de Bruxelles (ULB), 808 route de Lennik, Brussels, 1070, Belgium.,WELBIO, 808 route de Lennik, Brussels, 1070, Belgium
| |
Collapse
|
26
|
Peyravian N, Larki P, Gharib E, Nazemalhosseini-Mojarad E, Anaraki F, Young C, McClellan J, Ashrafian Bonab M, Asadzadeh-Aghdaei H, Zali MR. The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients. Biomedicines 2018; 6:E27. [PMID: 29498671 PMCID: PMC5874684 DOI: 10.3390/biomedicines6010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
A key factor in determining the likely outcome for a patient with colorectal cancer is whether or not the tumour has metastasised to the lymph nodes-information which is also important in assessing any possibilities of lymph node resection so as to improve survival. In this review we perform a wide-range assessment of literature relating to recent developments in gene expression profiling (GEP) of the primary tumour, to determine their utility in assessing node status. A set of characteristic genes seems to be involved in the prediction of lymph node metastasis (LNM) in colorectal patients. Hence, GEP is applicable in personalised/individualised/tailored therapies and provides insights into developing novel therapeutic targets. Not only is GEP useful in prediction of LNM, but it also allows classification based on differences such as sample size, target gene expression, and examination method.
Collapse
Affiliation(s)
- Noshad Peyravian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Pegah Larki
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Fakhrosadate Anaraki
- Colorectal Division of Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113b, Iran.
| | - Chris Young
- School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | - James McClellan
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK.
| | | | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| |
Collapse
|
27
|
A Proteomics Analysis Reveals 9 Up-Regulated Proteins Associated with Altered Cell Signaling in Colon Cancer Patients. Protein J 2017; 36:513-522. [PMID: 29128960 DOI: 10.1007/s10930-017-9746-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Colorectal cancer is the second most common cancer in women and third most common cancer in men. Cell signaling alterations in colon cancer, especially in aggressive metastatic tumors, require further investigations. The present study aims to compare the expression pattern of proteins associated with cell signaling in paired tumor and non-tumor samples of patients with colon cancer, as well as to define the cluster of proteins to differentiate patients with non-metastatic (Dukes' grade B) and metastatic (Dukes' grade C&D) colon cancer. Frozen tumor and non-tumor samples were collected after tumor resection from 19 patients with colon cancer. The Panorama™ Antibody Microarray-Cell Signaling kits were used for the analyses. The expression ratios of paired tumor/non-tumor samples were calculated for the each protein. We employed R packages 'samr', 'gplots', 'supclust' (pelora, wilma algorithms), 'glmnet' for the differential expression analysis, supervised clustering and penalized logistic regression. Significance analysis of microarrays revealed 9 significantly up-regulated proteins, including protein kinase C gamma, c-Myc, MDM2, pan cytokeratin, and 1 significantly down-regulated protein (GAP1) in tumoral mucosa. Pan-cytokeratin and APP were up-regulated in tumor versus non-tumor tissue, and were selected in the predictive cluster to discriminate colon cancer type. Higher levels of S-100b and phospho-Tau-pSer199/202 were confirmed as the predictors of non-metastatic colon cancer by all employed regression/clustering methods. Deregulated proteins in colon cancer are involved in oncogenic signal transduction, cell cycle control, and regulation of cytoskeleton/transport. Further studies are needed to validate potential protein markers of colon cancer development and metastatic progression.
Collapse
|
28
|
Del Vecchio F, Mastroiaco V, Di Marco A, Compagnoni C, Capece D, Zazzeroni F, Capalbo C, Alesse E, Tessitore A. Next-generation sequencing: recent applications to the analysis of colorectal cancer. J Transl Med 2017; 15:246. [PMID: 29221448 PMCID: PMC5723063 DOI: 10.1186/s12967-017-1353-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the establishment of the Sanger sequencing method, scientists around the world focused their efforts to progress in the field to produce the utmost technology. The introduction of next-generation sequencing (NGS) represents a revolutionary step and promises to lead to massive improvements in our understanding on the role of nucleic acids functions. Cancer research began to use this innovative and highly performing method, and interesting results started to appear in colorectal cancer (CRC) analysis. Several studies produced high-quality data in terms of mutation discovery, especially about actionable or less frequently mutated genes, epigenetics, transcriptomics. Analysis of results is unveiling relevant perspectives aiding to evaluate the response to therapies. Novel evidences have been presented also in other directions such as gut microbiota or CRC circulating tumor cells. However, despite its unquestioned potential, NGS poses some issues calling for additional studies. This review intends to offer a view of the state of the art of NGS applications to CRC through examination of the most important technologies and discussion of recent published results.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Division of Cancer Sciences, University of Southampton, Southampton, Hampshire, SO16 6YD UK
| | - Valentina Mastroiaco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Antinisca Di Marco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Daria Capece
- Department of Medicine, Centre for Cell Signaling and Inflammation, Imperial College London, London, W12 0NN UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, La Sapienza University, Rome, 00161 Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| |
Collapse
|
29
|
Lin W, Feng M, Li X, Zhong P, Guo A, Chen G, Xu Q, Ye Y. Transcriptome profiling of cancer and normal tissues from cervical squamous cancer patients by deep sequencing. Mol Med Rep 2017; 16:2075-2088. [PMID: 28656315 PMCID: PMC5562054 DOI: 10.3892/mmr.2017.6855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
Cervical cancer is the fourth leading cause of cancer mortality in women worldwide. High‑risk human papillomavirus infection is a major cause of cervical cancer. A previous study revealed the role of different oncogenes and tumor suppressors in cervical cancer initiation and progression. However, the complicated genetic network regulating cervical cancer remains largely unknown. The present study reported transcriptome sequencing analysis of three cervical squamous cell cancer tissues and paired normal cervical tissues. Transcriptomic analysis revealed that 2,519 genes were differently expressed between cervical cancer tissues and their corresponding normal tissues. Among these, 236 differentially expressed genes (DEGs) were statistically significant, including many DEGs that were novel in cervical cancer, including gastrulation brain homeobox 2,5‑hydroxytryptamine receptor 1D and endothelin 3. These 236 significant DEGs were highly enriched in 28 functional gene ontology categories. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggested involvement of these DEGs in multiple pathways. The present study provides a transcriptome landscape of cervical cancer in Chinese patients and an improved understanding of the genetic regulatory network in cervical cancer tumorigenesis.
Collapse
Affiliation(s)
- Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Mei Feng
- Department of Gynecologic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Xiuhua Li
- Department of Gynecologic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Peilin Zhong
- Department of Gynecologic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Aihua Guo
- Department of Gynecologic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Guilin Chen
- Department of Gynecologic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qin Xu
- Department of Gynecologic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
30
|
Liu X, Chang X, Liu R, Yu X, Chen L, Aihara K. Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLoS Comput Biol 2017; 13:e1005633. [PMID: 28678795 PMCID: PMC5517040 DOI: 10.1371/journal.pcbi.1005633] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/19/2017] [Accepted: 06/19/2017] [Indexed: 02/04/2023] Open
Abstract
Dynamic network biomarkers (DNB) can identify the critical state or tipping point of a disease, thereby predicting rather than diagnosing the disease. However, it is difficult to apply the DNB theory to clinical practice because evaluating DNB at the critical state required the data of multiple samples on each individual, which are generally not available, and thus limit the applicability of DNB. In this study, we developed a novel method, i.e., single-sample DNB (sDNB), to detect early-warning signals or critical states of diseases in individual patients with only a single sample for each patient, thus opening a new way to predict diseases in a personalized way. In contrast to the information of differential expressions used in traditional biomarkers to “diagnose disease”, sDNB is based on the information of differential associations, thereby having the ability to “predict disease” or “diagnose near-future disease”. Applying this method to datasets for influenza virus infection and cancer metastasis led to accurate identification of the critical states or correct prediction of the immediate diseases based on individual samples. We successfully identified the critical states or tipping points just before the appearance of disease symptoms for influenza virus infection and the onset of distant metastasis for individual patients with cancer, thereby demonstrating the effectiveness and efficiency of our method for quantifying critical states at the single-sample level. The concept of dynamic network biomarkers (DNB) was proposed for detecting the critical state or tipping point of a complex disease (a pre-disease state immediately preceding the disease state), and has been applied to study the mechanism of cell fate decision and immune checkpoint blockade. But DNB cannot be used to identify the critical state or tipping point for a single patient because evaluating DNB for critical state required the data of multiple samples. The proposed method can identify the critical state of a complex disease for a single patient by implementing the concept of DNB. This method not only can be applied to detect the critical state or tipping point of a single sample, but also can be used to study the mechanism of complex disease at a single sample level. The ability of accurately and efficiently identifying the critical state for a single sample can benefit the development of personalized medicine.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
- College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui Province, China
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, China
| | - Xiao Chang
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
- College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui Province, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Xiangtian Yu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail: (LC); (KA)
| | - Kazuyuki Aihara
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
- * E-mail: (LC); (KA)
| |
Collapse
|
31
|
Stewart JP, Richman S, Maughan T, Lawler M, Dunne PD, Salto-Tellez M. Standardising RNA profiling based biomarker application in cancer-The need for robust control of technical variables. Biochim Biophys Acta Rev Cancer 2017; 1868:258-272. [PMID: 28549623 DOI: 10.1016/j.bbcan.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
Abstract
Histopathology-based staging of colorectal cancer (CRC) has utility in assessing the prognosis of patient subtypes, but as yet cannot accurately predict individual patient's treatment response. Transcriptomics approaches, using array based or next generation sequencing (NGS) platforms, of formalin fixed paraffin embedded tissue can be harnessed to develop multi-gene biomarkers for predicting both prognosis and treatment response, leading to stratification of treatment. While transcriptomics can shape future biomarker development, currently <1% of published biomarkers become clinically validated tests, often due to poor study design or lack of independent validation. In this review of a large number of CRC transcriptional studies, we identify recurrent sources of technical variability that encompass collection, preservation and storage of malignant tissue, nucleic acid extraction, methods to quantitate RNA transcripts and data analysis pipelines. We propose a series of defined steps for removal of these confounding issues, to ultimately aid in the development of more robust clinical biomarkers.
Collapse
Affiliation(s)
- James P Stewart
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK; Northern Ireland Molecular Pathology Laboratory, Queen's University Belfast, UK
| | - Susan Richman
- Department of Pathology and Tumour Biology, St James University Hospital, Leeds, UK
| | - Tim Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK; Northern Ireland Molecular Pathology Laboratory, Queen's University Belfast, UK.
| |
Collapse
|
32
|
Guo H, Zhang B, Nairn AV, Nagy T, Moremen KW, Buckhaults P, Pierce M. O-Linked N-Acetylglucosamine ( O-GlcNAc) Expression Levels Epigenetically Regulate Colon Cancer Tumorigenesis by Affecting the Cancer Stem Cell Compartment via Modulating Expression of Transcriptional Factor MYBL1. J Biol Chem 2017; 292:4123-4137. [PMID: 28096468 DOI: 10.1074/jbc.m116.763201] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/15/2017] [Indexed: 12/19/2022] Open
Abstract
To study the regulation of colorectal adenocarcinoma progression by O-GlcNAc, we have focused on the O-GlcNAc-mediated epigenetic regulation of human colon cancer stem cells (CCSC). Xenograft tumors from colon tumor cells with O-linked N-acetylglucosamine transferase (OGT) knockdown grew significantly slower than those formed from control cells, indicating a reduced proliferation of tumor cells due to inhibition of OGT expression. Significant reduction of the CCSC population was observed in the tumor cells after OGT knockdown, whereas tumor cells treated with the O-GlcNAcase inhibitor showed an increased CCSC population, indicating that O-GlcNAc levels regulated the CCSC compartment. When grown in suspension, tumor cells with OGT knockdown showed a reduced ability to form tumorspheres, indicating a reduced self-renewal of CCSC due to reduced levels of O-GlcNAc. ChIP-sequencing experiments using an anti-O-GlcNAc antibody revealed significant chromatin enrichment of O-GlcNAc-modified proteins at the promoter of the transcription factor MYBL1, which was also characterized by the presence of H3K27me3. RNA-sequencing analysis showed an increased expression of MYBL1 in tumor cells with OGT knockdown. Forced overexpression of MYBL1 led to a reduced population of CCSC and tumor growth in vivo, similar to the effects of OGT silencing. Moreover, two CpG islands near the transcription start site of MYBL1 were identified, and O-GlcNAc levels regulated their methylation status. These results strongly argue that O-GlcNAc epigenetically regulates MYBL1, functioning similarly to H3K27me3. The aberrant CCSC compartment observed after modulating O-GlcNAc levels is therefore likely to result, at least in part, from the epigenetic regulation of MYBL1 expression by O-GlcNAc, thereby significantly affecting tumor progression.
Collapse
Affiliation(s)
- Huabei Guo
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| | - Bing Zhang
- the Boston Children's Hospital, Harvard University, Boston, Massachusetts 02115, and
| | - Alison V Nairn
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Kelley W Moremen
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| | - Phillip Buckhaults
- the South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Michael Pierce
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and
| |
Collapse
|
33
|
Izadi F, Zamanian-Azodi M, Mansouri V, Khodadoostan M, Naderi N. Exploring conserved mRNA-miRNA interactions in colon and lung cancers. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:184-193. [PMID: 29118934 PMCID: PMC5660268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
AIM The main goal of this analysis was prioritization of co-expressed genes and miRNAs that are thought to have important influences in the pathogenesis of colon and lung cancers. BACKGROUND MicroRNAs (miRNAs) as small and endogenous noncoding RNAs which regulate gene expression by repressing mRNA translation or decreasing stability of mRNAs; they have proven pivotal roles in different types of cancers. Accumulating evidence indicates the role of miRNAs in a wide range of biological processes from oncogenesis and tumor suppressors to contribution to tumor progression. Colon and lung cancers are frequently encountered challenging types of cancers; therefore, exploring trade-off among underlying biological units such as miRNA with mRNAs will probably lead to identification of promising biomarkers involved in these malignancies. METHODS Colon cancer and lung cancer expression data were downloaded from Firehose and TCGA databases and varied genes extracted by DCGL software were subjected to build two gene regulatory networks by parmigene R package. Afterwards, a network-driven integrative analysis was performed to explore prognosticates genes, miRNAs and underlying pathways. RESULTS A total of 192 differentially expressed miRNAs and their target genes within gene regulatory networks were derived by ARACNE algorithm. BTF3, TP53, MYC, CALR, NEM2, miR-29b-3p and miR-145 were identified as bottleneck nodes and enriched via biological gene ontology (GO) terms and pathways chiefly in biosynthesis and signaling pathways by further screening. CONCLUSION Our study uncovered correlated alterations in gene expression that may relate with colon and lung cancers and highlighted the potent common biomarker candidates for the two diseases.
Collapse
Affiliation(s)
- Fereshteh Izadi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian-Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Khodadoostan
- Department of Gastroenterology and Hepatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nosratollah Naderi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Diana M, Robinet E, Liu YY, Legnèr A, Kong SH, Schiraldi L, Marchegiani F, Halvax P, Swanstrom L, Dallemagne B, Marescaux J. Confocal Imaging and Tissue-Specific Fluorescent Probes for Real-Time In Vivo Immunohistochemistry. Proof of the Concept in a Gastric Lymph Node Metastasis Model. Ann Surg Oncol 2016; 23:567-573. [PMID: 26511264 DOI: 10.1245/s10434-015-4928-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 04/13/2025]
Abstract
BACKGROUND Tumor-specific fluorescent antibodies, which can be recognized at a cellular or tissue level using optical imaging such as confocal laser endomicroscopy (CLE), could provide a means for rapid and accurate tumor diagnosis and staging. The aim of this study was to evaluate the ability of CLE to detect the presence of tagged cells within lymph nodes in an original simulated metastatic model. MATERIALS AND METHODS A solution of indocyanine green containing a suspension of porcine hepatocytes, marked with carboxy-fluorescein-succinimidyl-ester (CFSE), was injected endoscopically in the gastric submucosa of 10 pigs. Fluorescence lymphography using a near-infrared laparoscope was used to identify sentinel and secondary drainage nodes. Additionally, a nonfluorescent gastric and a mesenteric node were identified. Every 5-10 min, those nodes were scanned using probe-based or needle-based CLE (pCLE or nCLE). Immunohistochemistry (IHC) using anti-cytokeratin 18 antibodies was subsequently performed to confirm the presence of hepatocytes in the lymph nodes. RESULTS A total of 36 lymph nodes were analyzed with both CLE probes. Hepatocyte penetration in lymph nodes, as assessed by repeated CLE scanning, took 10-40 min after submucosal injection. Concordance between CLE and IHC was 84 and 72 % for pCLE and nCLE, respectively. False negatives were partly due to incomplete CFSE labeling of hepatocytes, which could not be recognized by CLE, but were detected with IHC. CONCLUSIONS Real-time CLE analysis effectively recognized the presence in perigastric nodes of marked hepatic cells that had been injected endoscopically in the stomach. Validation studies on tumor-bearing animals using tumor-specific antibodies should be performed.
Collapse
Affiliation(s)
- Michele Diana
- Research Institute Against Cancer of the Digestive System, IRCAD, Strasbourg, France.
- Institute of Image-Guided Surgery, IHU-Strasbourg, Strasbourg, France.
| | - Eric Robinet
- Institute of Image-Guided Surgery, IHU-Strasbourg, Strasbourg, France
| | - Yu-Yin Liu
- Research Institute Against Cancer of the Digestive System, IRCAD, Strasbourg, France
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Andras Legnèr
- Institute of Image-Guided Surgery, IHU-Strasbourg, Strasbourg, France
| | - Seong-Ho Kong
- Institute of Image-Guided Surgery, IHU-Strasbourg, Strasbourg, France
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Luigi Schiraldi
- Research Institute Against Cancer of the Digestive System, IRCAD, Strasbourg, France
| | - Francesco Marchegiani
- Research Institute Against Cancer of the Digestive System, IRCAD, Strasbourg, France
| | - Peter Halvax
- Institute of Image-Guided Surgery, IHU-Strasbourg, Strasbourg, France
| | - Lee Swanstrom
- Institute of Image-Guided Surgery, IHU-Strasbourg, Strasbourg, France
| | - Bernard Dallemagne
- Research Institute Against Cancer of the Digestive System, IRCAD, Strasbourg, France
| | - Jacques Marescaux
- Research Institute Against Cancer of the Digestive System, IRCAD, Strasbourg, France
- Institute of Image-Guided Surgery, IHU-Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
Sato T, Cesaroni M, Chung W, Panjarian S, Tran A, Madzo J, Okamoto Y, Zhang H, Chen X, Jelinek J, Issa JPJ. Transcriptional Selectivity of Epigenetic Therapy in Cancer. Cancer Res 2016; 77:470-481. [PMID: 27879268 DOI: 10.1158/0008-5472.can-16-0834] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/26/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
A central challenge in the development of epigenetic cancer therapy is the ability to direct selectivity in modulating gene expression for disease-selective efficacy. To address this issue, we characterized by RNA-seq, DNA methylation, and ChIP-seq analyses the epigenetic response of a set of colon, breast, and leukemia cancer cell lines to small-molecule inhibitors against DNA methyltransferases (DAC), histone deacetylases (Depsi), histone demethylases (KDM1A inhibitor S2101), and histone methylases (EHMT2 inhibitor UNC0638 and EZH2 inhibitor GSK343). We also characterized the effects of DAC as combined with the other compounds. Averaged over the cancer cell models used, we found that DAC affected 8.6% of the transcriptome and that 95.4% of the genes affected were upregulated. DAC preferentially regulated genes that were silenced in cancer and that were methylated at their promoters. In contrast, Depsi affected the expression of 30.4% of the transcriptome but showed little selectivity for gene upregulation or silenced genes. S2101, UNC0638, and GSK343 affected only 2% of the transcriptome, with UNC0638 and GSK343 preferentially targeting genes marked with H3K9me2 or H3K27me3, respectively. When combined with histone methylase inhibitors, the extent of gene upregulation by DAC was extended while still maintaining selectivity for DNA-methylated genes and silenced genes. However, the genes upregulated by combination treatment exhibited limited overlap, indicating the possibility of targeting distinct sets of genes based on different epigenetic therapy combinations. Overall, our results demonstrated that DNA methyltransferase inhibitors preferentially target cancer-relevant genes and can be combined with inhibitors targeting histone methylation for synergistic effects while still maintaining selectivity. Cancer Res; 77(2); 470-81. ©2016 AACR.
Collapse
Affiliation(s)
- Takahiro Sato
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania.
| | - Matteo Cesaroni
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Woonbok Chung
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Shoghag Panjarian
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Anthony Tran
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Jozef Madzo
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Yasuyuki Okamoto
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Hanghang Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Xiaowei Chen
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Analysis of the interplay between methylation and expression reveals its potential role in cancer aetiology. Funct Integr Genomics 2016; 17:53-68. [PMID: 27819121 DOI: 10.1007/s10142-016-0533-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/07/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
With ongoing developments in technology, changes in DNA methylation levels have become prevalent to study cancer biology. Previous studies report that DNA methylation affects gene expression in a direct manner, most probably by blocking gene regulatory regions. In this study, we have studied the interplay between methylation and expression to improve our knowledge of cancer aetiology. For this purpose, we have investigated which genomic regions are of higher importance; hence, first exon, 5'UTR and 200 bp near the transcription start sites are proposed as being more crucial compared to other genomic regions. Furthermore, we have searched for a valid methylation level change threshold, and as a result, 25 % methylation change in previously determined genomic regions showed the highest inverse correlation with expression data. As a final step, we have examined the commonly affected genes and pathways by integrating methylation and expression information. Remarkably, the GPR115 gene and ErbB signalling pathway were found to be significantly altered for all cancer types in our analysis. Overall, combining methylation and expression information and identifying commonly affected genes and pathways in a variety of cancer types revealed new insights of cancer disease mechanisms. Moreover, compared to previous methylation-based studies, we have identified more important genomic regions and have defined a methylation change threshold level in order to obtain more reliable results. In addition to the novel analysis framework that involves the analysis of four different cancer types, our study exposes essential information regarding the contribution of methylation changes and its impact on cancer disease biology, which may facilitate the identification of new drug targets.
Collapse
|
37
|
Abdul Aziz NA, Mokhtar NM, Harun R, Mollah MMH, Mohamed Rose I, Sagap I, Mohd Tamil A, Wan Ngah WZ, Jamal R. A 19-Gene expression signature as a predictor of survival in colorectal cancer. BMC Med Genomics 2016; 9:58. [PMID: 27609023 PMCID: PMC5016995 DOI: 10.1186/s12920-016-0218-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
Background Histopathological assessment has a low potential to predict clinical outcome in patients with the same stage of colorectal cancer. More specific and sensitive biomarkers to determine patients’ survival are needed. We aimed to determine gene expression signatures as reliable prognostic marker that could predict survival of colorectal cancer patients with Dukes’ B and C. Methods We examined microarray gene expression profiles of 78 archived tissues of patients with Dukes’ B and C using the Illumina DASL assay. The gene expression data were analyzed using the GeneSpring software and R programming. Results The outliers were detected and replaced with randomly chosen genes from the 90 % confidence interval of the robust mean for each group. We performed three statistical methods (SAM, LIMMA and t-test) to identify significant genes. There were 19 significant common genes identified from microarray data that have been permutated 100 times namely NOTCH2, ITPRIP, FRMD6, GFRA4, OSBPL9, CPXCR1, SORCS2, PDC, C12orf66, SLC38A9, OR10H5, TRIP13, MRPL52, DUSP21, BRCA1, ELTD1, SPG7, LASS6 and DUOX2. This 19-gene signature was able to significantly predict the survival of patients with colorectal cancer compared to the conventional Dukes’ classification in both training and test sets (p < 0.05). The performance of this signature was further validated as a significant independent predictor of survival using patient cohorts from Australia (n = 185), USA (n = 114), Denmark (n = 37) and Norway (n = 95) (p < 0.05). Validation using quantitative PCR confirmed similar expression pattern for the six selected genes. Conclusion Profiling of these 19 genes may provide a more accurate method to predict survival of patients with colorectal cancer and assist in identifying patients who require more intensive treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0218-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nurul Ainin Abdul Aziz
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Norfilza M Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Md Manir Hossain Mollah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Isa Mohamed Rose
- Histopathology Unit, Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ismail Sagap
- Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Azmi Mohd Tamil
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Hayes CJ, Dowling CM, Dwane S, McCumiskey ME, Tormey SM, Anne Merrigan B, Coffey JC, Kiely PA, Dalton TM. Extracellular matrix gene expression profiling using microfluidics for colorectal carcinoma stratification. BIOMICROFLUIDICS 2016; 10:054124. [PMID: 27822332 PMCID: PMC5097046 DOI: 10.1063/1.4966245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/14/2016] [Indexed: 05/15/2023]
Abstract
In cancer, biomarkers have many potential applications including generation of a differential diagnosis, prediction of response to treatment, and monitoring disease progression. Many molecular biomarkers have been put forward for different diseases but most of them do not possess the required specificity and sensitivity. A biomarker with a high sensitivity has a low specificity and vice versa. The inaccuracy of the biomarkers currently in use has led to a compelling need to identify more accurate markers with diagnostic and prognostic significance. The aim of the present study was to use a novel, droplet-based, microfluidic platform to evaluate the prognostic value of a panel of thirty-four genes that regulate the composition of extracellular matrices in colorectal carcinoma. Our method is a novel approach as it uses using continuous-flowing Polymerase Chain Reaction for the sensitive detection and accurate quantitation of gene expression. We identified a panel of relevant extracellular matrix genes whose expression levels were measured by real-time quantitative polymerase chain reaction using Taqman® reagents in twenty-four pairs of matched colorectal cancer tumour and associated normal tissue. Differential expression patterns occurred between the normal and malignant tissue and correlated with histopathological parameters and overall surgical staging. The findings demonstrate that a droplet-based microfluidic quantitative PCR system enables biomarker classification. It was further possible to sub-classify colorectal cancer based on extracellular matrix protein expressing groups which in turn correlated with prognosis.
Collapse
Affiliation(s)
| | | | - Susan Dwane
- Stokes Laboratories, Bernal Institute, University of Limerick , Limerick, Ireland
| | | | - Shona M Tormey
- Department of Surgery, University Hospital Limerick , Limerick, Ireland
| | - B Anne Merrigan
- Department of Surgery, University Hospital Limerick , Limerick, Ireland
| | | | | | - Tara M Dalton
- Stokes Laboratories, Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
39
|
Lee JR, Kwon CH, Choi Y, Park HJ, Kim HS, Jo HJ, Oh N, Park DY. Transcriptome analysis of paired primary colorectal carcinoma and liver metastases reveals fusion transcripts and similar gene expression profiles in primary carcinoma and liver metastases. BMC Cancer 2016; 16:539. [PMID: 27461012 PMCID: PMC4962348 DOI: 10.1186/s12885-016-2596-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/21/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Despite the clinical significance of liver metastases, the difference between molecular and cellular changes in primary colorectal cancers (CRC) and matched liver metastases is poorly understood. METHODS In order to compare gene expression patterns and identify fusion genes in these two types of tumors, we performed high-throughput transcriptome sequencing of five sets of quadruple-matched tissues (primary CRC, liver metastases, normal colon, and liver). RESULTS The gene expression patterns in normal colon and liver were successfully distinguished from those in CRCs; however, RNA sequencing revealed that the gene expression between primary CRCs and their matched liver metastases is highly similar. We identified 1895 genes that were differentially expressed in the primary carcinoma and liver metastases, than that in the normal colon tissues. A major proportion of the transcripts, identified by gene expression profiling as significantly enriched in the primary carcinoma and metastases, belonged to gene ontology categories involved in the cell cycle, mitosis, and cell division. Furthermore, we identified gene fusion events in primary carcinoma and metastases, and the fusion transcripts were experimentally confirmed. Among these, a chimeric transcript resulting from the fusion of RNF43 and SUPT4H1 was found to occur frequently in primary colorectal carcinoma. In addition, knockdown of the expression of this RNF43-SUPT4H1 chimeric transcript was found to have a growth-inhibitory effect in colorectal cancer cells. CONCLUSIONS The present study reports a high concordance of gene expression in the primary carcinoma and liver metastases, and reveals potential new targets, such as fusion genes, against primary and metastatic colorectal carcinoma.
Collapse
Affiliation(s)
- Ja-Rang Lee
- Department of Pathology Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, 602-739, Korea.,BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea
| | - Chae Hwa Kwon
- Department of Pathology Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, 602-739, Korea.,BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea
| | - Yuri Choi
- Department of Pathology Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, 602-739, Korea.,BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea
| | - Hye Ji Park
- Department of Pathology Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, 602-739, Korea.,BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea
| | - Hyun Sung Kim
- BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea.,Department of Surgery Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, Korea
| | - Hong-Jae Jo
- BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea.,Department of Surgery Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, Korea
| | - Nahmgun Oh
- BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea.,Department of Surgery Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, Korea
| | - Do Youn Park
- Department of Pathology Pusan National University Hospital, Pusan National University School of Medicine, Seo-Gu, Busan, 602-739, Korea. .,BioMedical Research Institute Pusan National University Hospital, Seo-Gu, Busan, Korea.
| |
Collapse
|
40
|
Feasibility of Unbiased RNA Profiling of Colorectal Tumors: A Proof of Principle. PLoS One 2016; 11:e0159522. [PMID: 27441409 PMCID: PMC4956030 DOI: 10.1371/journal.pone.0159522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022] Open
Abstract
Despite recent advances in molecular profiling of colorectal cancer (CRC), as of yet this has not translated into an unbiased molecular liquid biopsy profile which can accurately screen for early CRC. In this study we depict the profile of early stage CRC as well as for advanced adenomas (AA) by combination of current molecular knowledge with microarray technology, using efficient circulating free plasma RNA purification from blood and RNA amplification technologies. We joined literature search with Affymetrix gene chip experimental procedure to draw the circulating free plasma RNA profile of colorectal cancer disease reflected in blood. The RNA panel was tested by two datasets comparing patients with CRC with healthy subjects and patients with AA to healthy subjects. For the CRC patient cohort (28 CRC cases vs. 41 healthy controls), the ROC analysis of the selected biomarker panel generated a sensitivity of 75% and a specificity of 93% for the detection of CRC using 8-gene classification model. For the AA patient cohort (28 subjects vs. 46 healthy controls), a sensitivity of 60% and a specificity of 87% were calculated using a 2-gene classification model. We have identified a panel of 8 plasma RNA markers as a preliminary panel for CRC detection and subset markers suitable for AA detection. Subjected to extensive clinical validation we suggest that this panel represents a feasible approach and a potential strategy for noninvasive early diagnosis, as a first-line screening test for asymptomatic, average-risk population before colonoscopy.
Collapse
|
41
|
Wu Y, Yu J, Ma Y, Wang F, Liu H. miR-148a and miR-375 may serve as predictive biomarkers for early diagnosis of laryngeal carcinoma. Oncol Lett 2016; 12:871-878. [PMID: 27446362 PMCID: PMC4950576 DOI: 10.3892/ol.2016.4707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/18/2016] [Indexed: 12/29/2022] Open
Abstract
The role of microRNAs (miRs) as possible biomarkers and therapy targets has been extensively investigated in a number of types of cancer. However, the aberrant expression of miRs in laryngeal squamous cell carcinoma (LSCC), particularly during the progression of the disease, is poorly understood. In the present study, the role of miRs as possible novel early pre-diagnostic biomarkers of LSCC was investigated. TaqMan probe stem-loop quantitative polymerase chain reaction was utilized to accurately measure the amount of miR-148a and miR-375 in clinical samples of mild dysplasia, moderate dysplasia, severe dysplasia, cancer in situ, laryngeal cancer and normal epithelial controls. The application of miR-148a and miR-375 as potential predictive biomarkers for early diagnosis of LSCC was analyzed. The results of the present study suggested that miR-148a and miR-375 were significantly upregulated in LSCC tissues, and increased expression of miR-375 was associated with a more aggressive phenotype of LSCC. Additional investigation revealed that miR-148a and miR-375 increased during different dysplasia stages of LSCC carcinogenesis, and high-level expression of miR-148a or miR-375 in patients with laryngeal dysplasia may predict subsequent malignant transformation. miR-148a and miR-375 were significantly upregulated during LSCC carcinogenesis and may serve as possible predictive biomarkers for early diagnosis of LSCC.
Collapse
Affiliation(s)
- Ying Wu
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yanni Ma
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Honggang Liu
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
42
|
Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, Kunttas-Tatli E, McCartney BM, Minden JS. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin. Development 2016; 143:2629-40. [PMID: 27287809 DOI: 10.1242/dev.130567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/31/2016] [Indexed: 01/02/2023]
Abstract
Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.
Collapse
Affiliation(s)
- Malachi A Blundon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Danielle R Schlesinger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amritha Parthasarathy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha L Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah M Kolev
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David A Vinson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
Shi JL, Luo W, Li Y, Yang C, Tang YP, Li KZ, Cao J. Screening differentially expressed genes in hepatocellular carcinoma by cross-species and cross-carcinogenic factors strategy based on RNA-Seq. Shijie Huaren Xiaohua Zazhi 2016; 24:1664-1675. [DOI: 10.11569/wcjd.v24.i11.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify key molecules involved in progression of hepatocellular carcinoma (HCC) by cross-species (human and tupaia) and cross-carcinogenic factors (HBV and AFB1) strategy based on RNA sequencing (RNA-Seq).
METHODS: The transcripts in human and tupaia HCC, tumor adjacent liver tissue (para-HCC) and normal liver tissue were thoroughly analyzed by RNA sequencing. Tupaia HCC was induced by HBV infection or aflatoxin B1 (AFB1). Differentially expressed genes were collected between these tissues, and common differential genes which cross human and Tupaia as well as HBV and AFB1 carcinogenic factors were identified.
RESULTS: Compared to human para-HCC and normal liver tissues, 68 differential genes were screened in human HCC, among which 14 were up-regulated and 54 down-regulated. Compared to Tupaia para-HCC and normal liver tissues, 314 differential genes were screened in HBV induced Tupaia HCC, and 20 were screened in AFB1 induced Tupaia HCC. There were 11 common differential genes between HBV and AFB1 induced Tupaia HCC, all of which were down-regulated. There were 2 common differential genes between human HCC and Tupaia HCC, and they were apolipoprotein F (APOF) and insulin-like growth factor binding protein, acid labile subunit (IGFALS), both of which were down-regulated in HCC.
CONCLUSION: The cross-species, cross-carcinogenic factors screening strategy based on RNA-Seq may promote the process of identifying key molecules for human HCC. APOF and IGFALS may be important factors for HCC.
Collapse
|
44
|
Alternative Splicing in Adhesion- and Motility-Related Genes in Breast Cancer. Int J Mol Sci 2016; 17:ijms17010121. [PMID: 26784191 PMCID: PMC4730362 DOI: 10.3390/ijms17010121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells can manipulate alternative splicing patterns to modulate the expression of adhesion- and motility-related molecules, also at the isoform level. In this study, combining RNA-Sequencing on MCF-7 to targeted experimental validations—in human breast cell lines and breast tumor biopsies—we identified 12 new alternative splicing transcripts in genes encoding adhesion- and motility-related molecules, including semaphorins, their receptors and co-receptors. Among them, a new SEMA3F transcript is expressed in all breast cell lines and breast cancer biopsies, and is translated into a new semaphorin 3F isoform. In silico analysis predicted that most of the new putative proteins lack functional domains, potentially missing some functions and acquiring new ones. Our findings better describe the extent of alternative splicing in breast cancer and highlight the need to further investigate adhesion- and motility-related molecules to gain insights into breast cancer progression.
Collapse
|
45
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol Sin 2015; 36:1200-11. [PMID: 26299954 DOI: 10.1038/aps.2015.67] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles.
Collapse
|
47
|
Zhang H, Ye J, Weng X, Liu F, He L, Zhou D, Liu Y. Comparative transcriptome analysis reveals that the extracellular matrix receptor interaction contributes to the venous metastases of hepatocellular carcinoma. Cancer Genet 2015; 208:482-91. [PMID: 26271415 DOI: 10.1016/j.cancergen.2015.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer in the world. Portal vein tumor thrombus (PVTT) is one of the most serious complications of HCC and is strongly correlated with a poor prognosis for HCC patients. However, the detailed mechanism of PVTT development remains to be explored. In this study, we present a large-scale transcriptome analysis, by RNA sequencing, of 11 patients diagnosed with HCC with PVTT. The dysregulated genes between HCC and PVTT suggested that the extracellular matrix receptor interaction was correlated with the venous metastases of HCC. Among all of the recurrent alternative splicing events, we identified exon 6 skipping of RPS24, which is likely to be a cancer driver. We also identified five common fusion genes between HCC and its corresponding PVTT samples, including ARID1A-GPATCH3, MDM1-NUP107, PTGES3-RARG, PRLR-TERT, and C9orf3-TMC1. All of these findings broaden our knowledge of PVTT development and may also contribute to the diagnosis and treatment of HCC patients with PVTT.
Collapse
Affiliation(s)
- Hong Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junyi Ye
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoling Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fatao Liu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Lin He
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Daizhan Zhou
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Yun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Villaveces JM, Koti P, Habermann BH. Tools for visualization and analysis of molecular networks, pathways, and -omics data. Adv Appl Bioinform Chem 2015; 8:11-22. [PMID: 26082651 PMCID: PMC4461095 DOI: 10.2147/aabc.s63534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biological pathways have become the standard way to represent the coordinated reactions and actions of a series of molecules in a cell. A series of interconnected pathways is referred to as a biological network, which denotes a more holistic view on the entanglement of cellular reactions. Biological pathways and networks are not only an appropriate approach to visualize molecular reactions. They have also become one leading method in -omics data analysis and visualization. Here, we review a set of pathway and network visualization and analysis methods and take a look at potential future developments in the field.
Collapse
Affiliation(s)
- Jose M Villaveces
- Max Planck Institute of Biochemistry, Research Group Computational Biology, Martinsried, Germany
| | - Prasanna Koti
- Max Planck Institute of Biochemistry, Research Group Computational Biology, Martinsried, Germany
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Research Group Computational Biology, Martinsried, Germany
| |
Collapse
|
49
|
Peng G, Dan W, Jun W, Junjun Y, Tong R, Baoli Z, Yang X. Transcriptome profiling of the cancer and adjacent nontumor tissues from cervical squamous cell carcinoma patients by RNA sequencing. Tumour Biol 2015; 36:3309-17. [PMID: 25586346 DOI: 10.1007/s13277-014-2963-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023] Open
Abstract
Cervical cancer is the third most common cancer and the fourth leading cause of cancer deaths among women in the world. The discovery of vital diagnostic and therapeutic markers against cervical squamous cell carcinoma (CSCC) would broaden our understanding on the molecular basis of CSCC. In this study, we thoroughly analyzed the transcriptome of CSCC and matched adjacent nontumor (ATN) tissue. RNA sequencing was performed to screen the differentially expressed genes (DEGs) of three pairs of CSCC and ATN tissues. Functional enrichment analysis was used to uncover the biological functions of DEGs. Protein interaction network was carried out to reveal interaction of DEGs. Quantitative real-time PCR was conducted to validate the expression of DEGs. Immunohistochemistry was used to detect the relationship between clinicopathological parameters of CSCC and DEGs. There were a total of 347 significantly common DEGs in the three paired examples, including 104 consistent upregulated and 148 consistent downregulated DEGs. The 347 DEGs were categorized into 73 functional categories by Gene Ontology (GO) analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested six significantly signal pathways. The protein interaction network uncovered three important DEGs, including retinol dehydrogenase 12 (RDH12), ubiquitin D (UBD), and serum amyloid A1 (SAA1). We found that RDH12 expression was decreased in 74.5 % of CSCC tissues. RDH12 expression was negatively associated with tumor size and depth of cervical invasion. The UBD was overexpressed in 61.7 % of CSCC tissues and was positively related with tumor size and lymphatic metastasis. The SAA1 protein was overexpressed in 57.4 % of CSCC tissues and was positively related with clinicopathological parameters of tumor size, lymphatic metastasis, and depth of cervical invasion. The RDH12, UBD, and SAA1 genes might participate in the progression of CSCC.
Collapse
Affiliation(s)
- Guo Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Wang Fu Jing Street, Beijing, 100730, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu F, Ji F, Ji Y, Jiang Y, Sun X, Lu Y, Zhang L, Han Y, Liu X. Dissecting the mechanism of colorectal tumorigenesis based on RNA-sequencing data. Exp Mol Pathol 2015; 98:246-53. [PMID: 25576648 DOI: 10.1016/j.yexmp.2015.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/26/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to identify the differentially expressed genes (DEGs), mutated genes and fusion genes in colorectal cancer. MATERIALS AND METHODS RNA-sequencing data (ID: SRP009386) from cancerous, paracancerous non-tumor and distant normal tissue from one Chinese patient with stage III colorectal cancer were downloaded from Sequence Read Archive. Quality control was checked using FastQC, followed by sequence alignment against the hg19 reference genome using TopHat v1.3.3. The expression levels were quantified using Cufflinks, followed by DEGs screening using NOISeq. Enrichment analysis was performed using DAVID. Transcription factors were screened using TRANSFA. Mutated loci were identified using SAMTools and VCFTools. Gene fusion events were detected by TopHat-fusion. RESULTS In total 2440, 1887 and 834 DEGs were respectively detected in cancerous vs. normal tissue, cancerous vs. paracancerous tissue and paracancerous vs. normal tissue. The up-regulated genes from cancerous and paracancerous tissue compared with normal tissue were enriched in "extracellular matrix receptor interaction" and "focal adhesion pathway" as well as some biological processes except for "negative regulation of programmed cell death" uniquely presenting in cancer. Dysregulated transcription factors including SOX4, BCL6, CEBPB and MSX2 were enriched in the unique biological process. Trp53 was identified with one mutated locus 7577142 (C → T) on chromosome 17. BCL6 also experienced missense mutation. Additionally, COL1A1-PPP2R2C and EXPH5-COL1A2 were observed fusion genes in cancer tissue. CONCLUSIONS The unique biological process in cancer tissue may be the cause for colorectal carcinogenesis. The screened transcription factors, mutated genes and fusion genes may contribute to the progression of colorectal cancer.
Collapse
Affiliation(s)
- Fuguo Liu
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Fengzhi Ji
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Yuling Ji
- Statistics Division, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Yueping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Xueguo Sun
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Yanyan Lu
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Lingyun Zhang
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Xishuang Liu
- Department of Gastroenterology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China.
| |
Collapse
|