1
|
Farkas P, Fitzpatrick TB. Two pyridoxal phosphate homeostasis proteins are essential for management of the coenzyme pyridoxal 5'-phosphate in Arabidopsis. THE PLANT CELL 2024; 36:3689-3708. [PMID: 38954500 PMCID: PMC11371154 DOI: 10.1093/plcell/koae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Coenzyme management is important for homeostasis of the pool of active metabolic enzymes. The coenzyme pyridoxal 5'-phosphate (PLP) is involved in diverse enzyme reactions including amino acid and hormone metabolism. Regulatory proteins that contribute to PLP homeostasis remain to be explored in plants. Here, we demonstrate the importance of proteins annotated as PLP homeostasis proteins (PLPHPs) for controlling PLP in Arabidopsis (Arabidopsis thaliana). A systematic analysis indicates that while most organisms across kingdoms have a single PLPHP homolog, Angiosperms have two. PLPHPs from Arabidopsis bind PLP and exist as monomers, in contrast to reported PLP-dependent enzymes, which exist as multimers. Disrupting the function of both PLPHP homologs perturbs vitamin B6 (pyridoxine) content, inducing a PLP deficit accompanied by light hypersensitive root growth, unlike PLP biosynthesis mutants. Micrografting studies show that the PLP deficit can be relieved distally between shoots and roots. Chemical treatments probing PLP-dependent reactions, notably those for auxin and ethylene, provide evidence that PLPHPs function in the dynamic management of PLP. Assays in vitro show that Arabidopsis PLPHP can coordinate PLP transfer and withdrawal from other enzymes. This study thus expands our knowledge of vitamin B6 biology and highlights the importance of PLP coenzyme homeostasis in plants.
Collapse
Affiliation(s)
- Peter Farkas
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
2
|
Braga JD, Thongngam M, Kumrungsee T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut-brain axis. NPJ Sci Food 2024; 8:16. [PMID: 38565567 PMCID: PMC10987602 DOI: 10.1038/s41538-024-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) plays a crucial role in the central nervous system as an inhibitory neurotransmitter. Imbalances of this neurotransmitter are associated with neurological diseases, such as Alzheimer's and Parkinson's disease, and psychological disorders, including anxiety, depression, and stress. Since GABA has long been believed to not cross the blood-brain barrier, the effects of circulating GABA on the brain are neglected. However, emerging evidence has demonstrated that changes in both circulating and brain levels of GABA are associated with changes in gut microbiota composition and that changes in GABA levels and microbiota composition play a role in modulating mental health. This recent research has raised the possibility that GABA may be a potent mediator of the gut-brain axis. This review article will cover up-to-date information about GABA-producing microorganisms isolated from human gut and food sources, explanation why those microorganisms produce GABA, food factors inducing gut-GABA production, evidence suggesting GABA as a mediator linking between gut microbiota and mental health, including anxiety, depression, stress, epilepsy, autism spectrum disorder, and attention deficit hyperactivity disorder, and novel information regarding homocarnosine-a predominant brain peptide that is a putative downstream mediator of GABA in regulating brain functions. This review will help us to understand how the gut microbiota and GABA-homocarnosine metabolism play a significant role in brain functions. Nonetheless, it could support further research on the use of GABA production-inducing microorganisms and food factors as agents to treat neurological and psychological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
- Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanutchaporn Kumrungsee
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan.
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
3
|
De Vitto H, Belfon KKJ, Sharma N, Toay S, Abendroth J, Dranow DM, Lukacs CM, Choi R, Udell HS, Willis S, Barrera G, Beyer O, Li TD, Hicks KA, Torelli AT, French JB. Characterization of an Acinetobacter baumannii Monofunctional Phosphomethylpyrimidine Kinase That Is Inhibited by Pyridoxal Phosphate. Biochemistry 2024. [PMID: 38306231 PMCID: PMC11426312 DOI: 10.1021/acs.biochem.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Thiamin and its phosphate derivatives are ubiquitous molecules involved as essential cofactors in many cellular processes. The de novo biosynthesis of thiamin employs the parallel synthesis of 4-methyl-5-(2-hydroxyethyl)thiazole (THZ-P) and 4-amino-2-methyl-5(diphosphooxymethyl) pyrimidine (HMP) pyrophosphate (HMP-PP), which are coupled to generate thiamin phosphate. Most organisms that can biosynthesize thiamin employ a kinase (HMPK or ThiD) to generate HMP-PP. In nearly all cases, this enzyme is bifunctional and can also salvage free HMP, producing HMP-P, the monophosphate precursor of HMP-PP. Here we present high-resolution crystal structures of an HMPK from Acinetobacter baumannii (AbHMPK), both unliganded and with pyridoxal 5-phosphate (PLP) noncovalently bound. Despite the similarity between HMPK and pyridoxal kinase enzymes, our kinetics analysis indicates that AbHMPK accepts HMP exclusively as a substrate and cannot turn over pyridoxal, pyridoxamine, or pyridoxine nor does it display phosphatase activity. PLP does, however, act as a weak inhibitor of AbHMPK with an IC50 of 768 μM. Surprisingly, unlike other HMPKs, AbHMPK catalyzes only the phosphorylation of HMP and does not generate the diphosphate HMP-PP. This suggests that an additional kinase is present in A. baumannii, or an alternative mechanism is in operation to complete the biosynthesis of thiamin.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kafi K J Belfon
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Sarah Toay
- Department of Biological Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - David M Dranow
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Christine M Lukacs
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Hannah S Udell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Sydney Willis
- Department of Chemistry, Rollins College, Winter Park, Florida 32789, United States
| | - George Barrera
- Department of Chemistry and Biochemistry, Weber State University, Ogden, Utah 84408, United States
| | - Olive Beyer
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Teng Da Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Katherine A Hicks
- Chemistry Department, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Andrew T Torelli
- Department of Chemistry, Ithaca College, Ithaca, New York 14850, United States
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| |
Collapse
|
4
|
Wei L, Liu L, Gong W. Structure of mycobacterial ergothioneine-biosynthesis C-S lyase EgtE. J Biol Chem 2024; 300:105539. [PMID: 38072054 PMCID: PMC10805701 DOI: 10.1016/j.jbc.2023.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024] Open
Abstract
L-ergothioneine is widely distributed among various microbes to regulate their physiology and pathogenicity within complex environments. One of the key steps in the ergothioneine-biosynthesis pathway, the C-S bond cleavage reaction, uses the pyridoxal 5'-phosphate dependent C-S lyase to produce the final product L-ergothioneine. Here, we present the crystallographic structure of the ergothioneine-biosynthesis C-S lyase EgtE from Mycobacterium smegmatis (MsEgtE) represents the first published structure of ergothioneine-biosynthesis C-S lyases in bacteria and shows the effects of active site residues on the enzymatic reaction. The MsEgtE and the previously reported ergothioneine-biosynthesis C-S lyase Egt2 from Neurospora crassa (NcEgt2) fold similarly. However, discrepancies arise in terms of substrate recognition, as observed through sequence and structure comparison of MsEgtE and NcEgt2. The structural-based sequence alignment of the ergothioneine-biosynthesis C-S lyase from fungi and bacteria shows clear distinctions among the recognized substrate residues, but Arg348 is critical and an extremely conserved residue for substrate recognition. The α14 helix is exclusively found in the bacteria EgtE, which represent the most significant difference between bacteria EgtE and fungi Egt2, possibly resulting from the convergent evolution of bacteria and fungi.
Collapse
Affiliation(s)
- Lili Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Weimin Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Tramonti A, Donkor AK, Parroni A, Musayev FN, Barile A, Ghatge MS, Graziani C, Alkhairi M, AlAwadh M, di Salvo ML, Safo MK, Contestabile R. Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli: a pivotal enzyme in the vitamin B6 salvage pathway. FEBS J 2023; 290:5628-5651. [PMID: 37734924 PMCID: PMC10872706 DOI: 10.1111/febs.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Akua K Donkor
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Alessia Parroni
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Claudio Graziani
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Mona Alkhairi
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed AlAwadh
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| |
Collapse
|
6
|
Ciapaite J, van Roermund CWT, Bosma M, Gerrits J, Houten SM, IJlst L, Waterham HR, van Karnebeek CDM, Wanders RJA, Zwartkruis FJT, Jans JJ, Verhoeven-Duif NM. Maintenance of cellular vitamin B 6 levels and mitochondrial oxidative function depend on pyridoxal 5'-phosphate homeostasis protein. J Biol Chem 2023; 299:105047. [PMID: 37451483 PMCID: PMC10463200 DOI: 10.1016/j.jbc.2023.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands.
| | - Carlo W T van Roermund
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Johan Gerrits
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lodewijk IJlst
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D M van Karnebeek
- United for Metabolic Diseases, The Netherlands; Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ronald J A Wanders
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith J Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| |
Collapse
|
7
|
Rivero M, Boneta S, Novo N, Velázquez-Campoy A, Polo V, Medina M. Riboflavin kinase and pyridoxine 5′-phosphate oxidase complex formation envisages transient interactions for FMN cofactor delivery. Front Mol Biosci 2023; 10:1167348. [PMID: 37056721 PMCID: PMC10086132 DOI: 10.3389/fmolb.2023.1167348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymes catalysing sequential reactions have developed different mechanisms to control the transport and flux of reactants and intermediates along metabolic pathways, which usually involve direct transfer of metabolites from an enzyme to the next one in a cascade reaction. Despite the fact that metabolite or substrate channelling has been widely studied for reactant molecules, such information is seldom available for cofactors in general, and for flavins in particular. Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) act as cofactors in flavoproteins and flavoenzymes involved in a wide range of physiologically relevant processes in all type of organisms. Homo sapiens riboflavin kinase (RFK) catalyses the biosynthesis of the flavin mononucleotide cofactor, and might directly interplay with its flavin client apo-proteins prior to the cofactor transfer. Non-etheless, none of such complexes has been characterized at molecular or atomic level so far. Here, we particularly evaluate the interaction of riboflavin kinase with one of its potential FMN clients, pyridoxine-5′-phosphate oxidase (PNPOx). The interaction capacity of both proteins is assessed by using isothermal titration calorimetry, a methodology that allows to determine dissociation constants for interaction in the micromolar range (in agreement with the expected transient nature of the interaction). Moreover, we show that; i) both proteins become thermally stabilized upon mutual interaction, ii) the tightly bound FMN product can be transferred from RFK to the apo-form of PNPOx producing an efficient enzyme, and iii) the presence of the apo-form of PNPOx slightly enhances RFK catalytic efficiency. Finally, we also show a computational study to predict likely RFK-PNPOx binding modes that can envisage coupling between the FMN binding cavities of both proteins for the potential transfer of FMN.
Collapse
Affiliation(s)
- Maribel Rivero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Nerea Novo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Victor Polo
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
- *Correspondence: Milagros Medina,
| |
Collapse
|
8
|
Xue C, Ng IS. Investigation of enzymatic quality and quantity using pyridoxal 5'-phosphate (PLP) regeneration system as a decoy in Escherichia coli. Int J Biol Macromol 2023; 235:123814. [PMID: 36841388 DOI: 10.1016/j.ijbiomac.2023.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), an essential cofactor for multiple enzymes, was used as a protein decoy to prompt enzyme expression and activity for the first time. The best chassis, denoted as WJK, was developed using a pyridoxal kinase (PdxK) and integrated at the HK022 phage attack site of Escherichia coli W3110. When compared with the original strain, the amount and activity of lysine decarboxylase (CadA) in WJK were significantly increased by 100 % and 120 %, respectively. When supplementary nineteen amino acids as second carbon source, cell growth and protein trade-off were observed. The transcriptional levels of genes from glycolysis to TCA cycle, adhE, argH and gdhA were dominating and redirected more flux into α-ketoglutarate, thus facilitated cell growth. Stepwise improvement was conducted with pyridoxal and nitrogen-rich medium; hence, CadA activity was increased to 60 g-cadaverine/g-dry cell weight/h. By reutilizing the whole-cell biocatalysts in two repeated reactions with the supplementation of fresh cells, a total cadaverine of 576 g/L was obtained even without additional PLP. Notably, PLP decoy augment the enzymatic activities of 5-aminolevulinic acid synthase and glutamate/lysine/arginine decarboxylases by over 100 %. Finally, a conserved PLP-binding pocket, Ser-His-Lys, was identified as a vital PLP sponge site that simultaneously improved protein quality and quantity.
Collapse
Affiliation(s)
- Chengfeng Xue
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
9
|
Elucidating the Interaction between Pyridoxine 5'-Phosphate Oxidase and Dopa Decarboxylase: Activation of B6-Dependent Enzyme. Int J Mol Sci 2022; 24:ijms24010642. [PMID: 36614085 PMCID: PMC9820991 DOI: 10.3390/ijms24010642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, serves as a cofactor for scores of B6-dependent (PLP-dependent) enzymes involved in many cellular processes. One such B6 enzyme is dopa decarboxylase (DDC), which is required for the biosynthesis of key neurotransmitters, e.g., dopamine and serotonin. PLP-dependent enzymes are biosynthesized as apo-B6 enzymes and then converted to the catalytically active holo-B6 enzymes by Schiff base formation between the aldehyde of PLP and an active site lysine of the protein. In eukaryotes, PLP is made available to the B6 enzymes through the activity of the B6-salvage enzymes, pyridoxine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PLK). To minimize toxicity, the cell keeps the content of free PLP (unbound) very low through dephosphorylation and PLP feedback inhibition of PNPO and PLK. This has led to a proposed mechanism of complex formation between the B6-salvage enzymes and apo-B6 enzymes prior to the transfer of PLP, although such complexes are yet to be characterized at the atomic level, presumably due to their transient nature. A computational study, for the first time, was used to predict a likely PNPO and DDC complex, which suggested contact between the allosteric PLP tight-binding site on PNPO and the active site of DDC. Using isothermal calorimetry and/or surface plasmon resonance, we also show that PNPO binds both apoDDC and holoDDC with dissociation constants of 0.93 ± 0.07 μM and 2.59 ± 0.11 μM, respectively. Finally, in the presence of apoDDC, the tightly bound PLP on PNPO is transferred to apoDDC, resulting in the formation of about 35% holoDDC.
Collapse
|
10
|
Neupane T, Chambers LR, Godfrey AJ, Monlux MM, Jacobs EJ, Whitworth S, Spawn JE, Clingman SHK, Vergunst KL, Niven FM, Townley JJ, Orion IW, Goodspeed CR, Cooper KA, Cronk JD, Shepherd JN, Langelaan DN. Microbial rhodoquinone biosynthesis proceeds via an atypical RquA-catalyzed amino transfer from S-adenosyl-L-methionine to ubiquinone. Commun Chem 2022; 5:89. [PMID: 36697674 PMCID: PMC9814641 DOI: 10.1038/s42004-022-00711-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/20/2022] [Indexed: 01/28/2023] Open
Abstract
Rhodoquinone (RQ) is a close analogue of ubiquinone (UQ) that confers diverse bacterial and eukaryotic taxa the ability to utilize fumarate as an electron acceptor in hypoxic conditions. The RquA protein, identified in a Rhodospirillum rubrum RQ-deficient mutant, has been shown to be required for RQ biosynthesis in bacteria. In this report, we demonstrate that RquA, homologous to SAM-dependent methyltransferases, is necessary and sufficient to catalyze RQ biosynthesis from UQ in vitro. Remarkably, we show that RquA uses SAM as the amino group donor in a substitution reaction that converts UQ to RQ. In contrast to known aminotransferases, RquA does not use pyridoxal 5'-phosphate (PLP) as a coenzyme, but requires the presence of Mn2+ as a cofactor. As these findings reveal, RquA provides an example of a non-canonical SAM-dependent enzyme that does not catalyze methyl transfer, instead it uses SAM in an atypical amino transfer mechanism.
Collapse
Affiliation(s)
- Trilok Neupane
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Lydia R. Chambers
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Alexander J. Godfrey
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Melina M. Monlux
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Evan J. Jacobs
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Sophia Whitworth
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jamie E. Spawn
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Seo Hee K. Clingman
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Kathleen L. Vergunst
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Fair M. Niven
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - James J. Townley
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Iris W. Orion
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Carly R. Goodspeed
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Kathryn A. Cooper
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jeff D. Cronk
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jennifer N. Shepherd
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - David N. Langelaan
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
11
|
Pham MT, Tran TTA, Zayabaatar E. Discovery of inhibitors against mycobacterium branched-chain amino acid aminotransferases through in silico screening and experimental evaluation. Lett Appl Microbiol 2022; 75:942-950. [PMID: 35687522 DOI: 10.1111/lam.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is one of the most dangerous infectious diseases and is caused by Mycobacterium bovis (Mb) and Mycobacterium tuberculosis (Mt). Branched-chain amino acid aminotransferases (BCATs) were reported to be the key enzyme for methionine synthesis in Mycobacterium. Blocking the methionine synthesis in Mycobacterium can inhibit the growth of Mycobacterium. Therefore, in silico screening of inhibitors can be a good way to develop a potential drug for treating TB. A pyridoxal 5'-phosphate (PLP)-form of Mycobacterium bovis branched-chain amino acid aminotransferases (MbBCAT), an active form of MbBCAT, was constructed manually for docking approximately 150 000 compounds and the free energy was calculated in Autodock Vina. The 10 compounds which had the highest affinity to MbBCAT were further evaluated for their inhibitory effects against MbBCAT. Within the selected compounds, compound 4 (ZINC12359007) was found to be the best inhibitor against MbBCAT with the inhibitory constant Ki of 0·45 μmol l-1 and IC50 of 2·37 μmol l-1 . Our work provides potential candidates to develop effective drugs to prevent TB since the well-known structural information would be beneficial in the structure-based modification and design.
Collapse
Affiliation(s)
- M T Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - T T A Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - E Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Lim HJ, Jung DH, Cho ES, Seo MJ. Expression, purification, and characterization of glutamate decarboxylase from human gut-originated Lactococcus garvieae MJF010. World J Microbiol Biotechnol 2022; 38:69. [PMID: 35257236 DOI: 10.1007/s11274-022-03256-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Human gut-originated lactic acid bacteria were cultivated, and high γ-aminobutyric acid (GABA)-producing Lactococcus garvieae MJF010 was identified. To date, despite the importance of GABA, no studies have investigated GABA-producing Lactococcus species, except for Lc. lactis. A recombinant glutamate decarboxylase of the strain MJF010 (rLgGad) was successfully expressed in Escherichia coli BL21(DE3) with a size of 53.9 kDa. rLgGad could produce GABA, which was verified using the silylation-derivative fragment ions of GABA. The purified rLgGad showed the highest GABA-producing activity at 35 °C and pH 5. rLgGad showed a melting temperature of 43.84 °C. At 30 °C, more than 80% of the activity was maintained even after 7 h; however, it rapidly decreased at 50 °C. The kinetic parameters, Km, Vmax, and kcat, of rLgGad were 2.94 mM, 0.023 mM/min, and 12.3 min- 1, respectively. The metal reagents of CaCl2, MgCl2, and ZnCl2 significantly had positive effects on rLgGad activity. However, most coenzymes including pyridoxal 5'-phosphate showed no significant effects on enzyme activity. In conclusion, this is the first report of Gad from Lc. garvieae species and provides important enzymatic information related to GABA biosynthesis in the Lactococcus genus.
Collapse
Affiliation(s)
- Hyo Jung Lim
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, 22012, Incheon, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, 22689, Incheon, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, 22012, Incheon, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, 22012, Incheon, Republic of Korea. .,Division of Bioengineering, Incheon National University, 22012, Incheon, Republic of Korea. .,Research Center for Bio Materials & Process Development, Incheon National University, 22012, Incheon, Republic of Korea.
| |
Collapse
|
13
|
Bunik V, Aleshin V, Nogues I, Kähne T, Parroni A, Contestabile R, Salvo ML, Graf A, Tramonti A. Thiamine‐dependent regulation of mammalian brain pyridoxal kinase
in vitro
and
in vivo. J Neurochem 2022; 161:20-39. [DOI: 10.1111/jnc.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University Moscow 119991 Russia
- Sechenov University 119048 Moscow Russia
| | - Vasily Aleshin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Sechenov University 119048 Moscow Russia
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems Italian National Research Council Via Salaria Km. 29 300–00015 Monterotondo Scalo
| | - Thilo Kähne
- Institute of Exptl. Internal Medicine Otto‐von‐Guericke‐Universität Magdeburg 39120 Magdeburg Germany
| | - Alessia Parroni
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Martino Luigi Salvo
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Anastasia Graf
- Moscow Institute of Physics and Technology 123098 Moscow Russia
- Faculty of Biology Lomonosov Moscow State University 19991 Moscow Russia
| | - Angela Tramonti
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
- Istitute of Molecular Biology and Pathology Italian National Research Council P.le A. Moro 5 ‐ 00185 Rome Italy
| |
Collapse
|
14
|
Holmes JB, Liu V, Caulkins BG, Hilario E, Ghosh RK, Drago VN, Young RP, Romero JA, Gill AD, Bogie PM, Paulino J, Wang X, Riviere G, Bosken YK, Struppe J, Hassan A, Guidoulianov J, Perrone B, Mentink-Vigier F, Chang CEA, Long JR, Hooley RJ, Mueser TC, Dunn MF, Mueller LJ. Imaging active site chemistry and protonation states: NMR crystallography of the tryptophan synthase α-aminoacrylate intermediate. Proc Natl Acad Sci U S A 2022; 119:e2109235119. [PMID: 34996869 PMCID: PMC8764694 DOI: 10.1073/pnas.2109235119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate β-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue βLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cβ and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.
Collapse
Affiliation(s)
- Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Bethany G Caulkins
- Department of Chemistry, University of California, Riverside, CA 92521
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rittik K Ghosh
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Victoria N Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Robert P Young
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jennifer A Romero
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Adam D Gill
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Paul M Bogie
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joana Paulino
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Gwladys Riviere
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Yuliana K Bosken
- Department of Biochemistry, University of California, Riverside, CA 92521
| | | | - Alia Hassan
- Bruker Switzerland AG 8117 Fällanden, Switzerland
| | | | | | | | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Richard J Hooley
- Department of Chemistry, University of California, Riverside, CA 92521
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Timothy C Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Michael F Dunn
- Department of Biochemistry, University of California, Riverside, CA 92521;
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521;
| |
Collapse
|
15
|
Janson N, Heinks T, Beuel T, Alam S, Höhne M, Bornscheuer UT, Fischer von Mollard G, Sewald N. Efficient Site‐Selective Immobilization of Aldehyde‐Tagged Peptides and Proteins by Knoevenagel Ligation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nils Janson
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Heinks
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Beuel
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Sarfaraz Alam
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Matthias Höhne
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | | | - Norbert Sewald
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
16
|
Česnik Katulić M, Sudar M, Hernández K, Qi Y, Charnock SJ, Vasić-Rački Đ, Clapés P, Findrik Blažević Z. Cascade Synthesis of l-Homoserine Catalyzed by Lyophilized Whole Cells Containing Transaminase and Aldolase Activities: The Mathematical Modeling Approach. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morana Česnik Katulić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Karel Hernández
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yuyin Qi
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Simon J. Charnock
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Đurdica Vasić-Rački
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Pere Clapés
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Zvjezdana Findrik Blažević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| |
Collapse
|
17
|
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183:18-29. [PMID: 33421502 PMCID: PMC11273822 DOI: 10.1016/j.biochi.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammed Al Mughram
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
18
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
19
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
20
|
Sasidharan S, Saudagar P. Mapping N- and C-terminals of Leishmania donovani tyrosine aminotransferase by gene truncation strategy: a functional study using in vitro and in silico approaches. Sci Rep 2020; 10:12463. [PMID: 32719483 PMCID: PMC7385629 DOI: 10.1038/s41598-020-69512-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
Tyrosine aminotransferase (TAT) catalyzes the transamination of amino acids in Leishmania sp.. TAT from Leishmania donovani has been found to be extremely stable at extreme temperatures and pH conditions. This study was conceived to map the functions of the non-conserved N-terminal and conserved C-terminal domain of TAT. N-terminal (NTAT) and C-terminal (CTAT) domain of TAT was truncated and cloned into the pET28a(+) vector. The truncated proteins were expressed, purified, and biochemically characterized. The Km of NTAT and CTAT for the tyrosine-pyruvate pair was determined to be 3.468 ± 0.796 mM and 4.581 ± 0.627 mM, repectively. Temperature and pH stability studies found NTAT to be stable like TAT but CTAT was extremely susceptible to temperature and pH changes. Upon docking and simulation for 100 ns, NTAT had lower SASA values. From UV spectroscopic study, PLP bound better to CTAT than NTAT because of the reduced SASA of NTAT. The sensitivity of CTAT was reasoned when the urea denaturation studies showed two-state denaturation which differed from NTAT’s and TAT’s biphasic folding mechanism. From this study, the authors hypothesize that the N-terminal is responsible for PLP stabilization and C-terminal protects the active site from extreme conditions.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
21
|
Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli. J Bacteriol 2020; 202:JB.00056-20. [PMID: 32253339 DOI: 10.1128/jb.00056-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and an essential cofactor in all organisms. In Escherichia coli, PLP is synthesized via the deoxyxylulose 5-phosphate (DXP)-dependent pathway that includes seven enzymatic steps and generates pyridoxine 5'-phosphate as an intermediate. Additionally, E. coli is able to salvage pyridoxal, pyridoxine, and pyridoxamine B6 vitamers to produce PLP using kinases PdxK/PdxY and pyridox(am)ine phosphate oxidase (PdxH). We found that E. coli strains blocked in PLP synthesis prior to the formation of pyridoxine 5'-phosphate (PNP) required significantly less exogenous pyridoxal (PL) than strains lacking pdxH and identified the conversion of PL to pyridoxine (PN) during cultivation to be the cause. Our data showed that PdxI, shown to have PL reductase activity in vitro, was required for the efficient salvage of PL in E. coli The pdxI+ E. coli strains converted exogenous PL to PN during growth, while pdxI mutants did not. In total, the data herein demonstrated that PdxI is a critical enzyme in the salvage of PL by E. coli IMPORTANCE The biosynthetic pathway of pyridoxal 5'-phosphate (PLP) has extensively been studied in Escherichia coli, yet limited information is available about the vitamin B6 salvage pathway. We show that the protein PdxI (YdbC) is the primary pyridoxal (PL) reductase in E. coli and is involved in the salvage of PL. The orthologs of PdxI occur in a wide range of bacteria and plants, suggesting that PL reductase in the B6 salvage pathway is more widely distributed than previously expected.
Collapse
|
22
|
Sasidharan S, Saudagar P. Concerted motion of structure and active site charge is required for tyrosine aminotransferase activity in Leishmania parasite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118133. [PMID: 32086045 DOI: 10.1016/j.saa.2020.118133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Leishmania donovani tyrosine aminotransferase (LdTAT) is an essential enzyme that catalyzes the first step of amino acid catabolism. To understand LdTAT activity at different pH, molecular dynamics simulations were performed and trajectory and T-pad analysis pad were conducted. Fluorescence spectroscopy of LdTAT at various pH was measured to understand structural stability. UV studies on PLP were performed to determine the binding of the enzyme to cofactor PLP at different pH. The MD simulations showed that the structure of LdTAT was stable and no structural denaturation was observed at pH 2, 7 and 12. LdTAT exhibited the highest activity at pH -8 and fluorescent spectroscopy also corroborated by exhibiting the highest intensity at pH -8. Moreover, no structural denaturation was observed during the pH gradient. UV studies concluded that the aldimine bond forms only around neutral pH and redshift was observed on enzyme binding. From our observation, we hypothesize that the activity of LdTAT is a close interplay between the structure and charges of K286 and PLP. This study may provide significant insight into understanding parasitic enzymes like LdTAT during the life-cycle of Leishmania parasite. Knowledge of such enzyme mechanisms can pave the way for the design and delivery of enzyme-specific inhibitors.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India.
| |
Collapse
|
23
|
Barile A, Tramonti A, di Salvo ML, Nogués I, Nardella C, Malatesta F, Contestabile R. Allosteric feedback inhibition of pyridoxine 5'-phosphate oxidase from Escherichia coli. J Biol Chem 2019; 294:15593-15603. [PMID: 31484724 DOI: 10.1074/jbc.ra119.009697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/02/2019] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the synthesis of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, takes place through the so-called deoxyxylulose 5-phosphate-dependent pathway, whose last step is pyridoxine 5'-phosphate (PNP) oxidation to PLP, catalyzed by the FMN-dependent enzyme PNP oxidase (PNPOx). This enzyme plays a pivotal role in controlling intracellular homeostasis and bioavailability of PLP. PNPOx has been proposed to undergo product inhibition resulting from PLP binding at the active site. PLP has also been reported to bind tightly at a secondary site, apparently without causing PNPOx inhibition. The possible location of this secondary site has been indicated by crystallographic studies as two symmetric surface pockets present on the PNPOx homodimer, but this site has never been verified by other experimental means. Here, we demonstrate, through kinetic measurements, that PLP inhibition is actually of a mixed-type nature and results from binding of this vitamer at an allosteric site. This interpretation was confirmed by the characterization of a mutated PNPOx form, in which substrate binding at the active site is heavily hampered but PLP binding is preserved. Structural and functional connections between the active site and the allosteric site were indicated by equilibrium binding experiments, which revealed different PLP-binding stoichiometries with WT and mutant PNPOx forms. These observations open up new horizons on the mechanisms that regulate E. coli PNPOx, which may have commonalities with the mechanisms regulating human PNPOx, whose crucial role in vitamin B6 metabolism and epilepsy is well-known.
Collapse
Affiliation(s)
- Anna Barile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Angela Tramonti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy.,Istituto di Biologia e Patologia Molecolari, CNR, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Isabel Nogués
- Istituto di Ricerca sugli Ecosistemi Terrestri, CNR, Via G. Marconi 2, 05010 Porano (TR), Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Francesco Malatesta
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
24
|
Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B 6 metabolism. J Inherit Metab Dis 2019; 42:629-646. [PMID: 30671974 DOI: 10.1002/jimd.12060] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Vitamin B6 is present in our diet in many forms, however, only pyridoxal 5'-phosphate (PLP) can function as a cofactor for enzymes. The intestine absorbs nonphosphorylated B6 vitamers, which are converted by specific enzymes to the active PLP form. The role of PLP is enabled by its reactive aldehyde group. Pathways reliant on PLP include amino acid and neurotransmitter metabolism, folate and 1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism, mitochondrial function and erythropoiesis. Besides the role of PLP as a cofactor B6 vitamers also play other cellular roles, for example, as antioxidants, modifying expression and action of steroid hormone receptors, affecting immune function, as chaperones and as an antagonist of Adenosine-5'-triphosphate (ATP) at P2 purinoceptors. Because of the vital role of PLP in neurotransmitter metabolism, particularly synthesis of the inhibitory transmitter γ-aminobutyric acid, it is not surprising that various inborn errors leading to PLP deficiency manifest as B6 -responsive epilepsy, usually of early onset. This includes pyridox(am)ine phosphate oxidase deficiency (a disorder affecting PLP synthesis and recycling), disorders affecting PLP import into the brain (hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects), a disorder of an intracellular PLP-binding protein (PLPBP, previously named PROSC) and disorders where metabolites accumulate that inactivate PLP, for example, ALDH7A1 deficiency and hyperprolinaemia type II. Patients with these disorders can show rapid control of seizures in response to either pyridoxine and/or PLP with a lifelong dependency on supraphysiological vitamin B6 supply. The clinical and biochemical features of disorders leading to B6 -responsive seizures and the treatment of these disorders are described in this review.
Collapse
Affiliation(s)
- Matthew P Wilson
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Childrens' Hospital Graz, Medical University Graz, Graz, Austria
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
25
|
Deka G, Kalyani JN, Jahangir FB, Sabharwal P, Savithri HS, Murthy MRN. Structural and functional studies on Salmonella typhimurium pyridoxal kinase: the first structural evidence for the formation of Schiff base with the substrate. FEBS J 2019; 286:3684-3700. [PMID: 31116912 DOI: 10.1111/febs.14933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/07/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
A large number of enzymes depend on the ubiquitous cofactor pyridoxal 5' phosphate (PLP) for their activity. Pyridoxal kinase (PLK) is the key enzyme involved in the synthesis of PLP from the three forms of vitamin B6 via the salvage pathway. In the present work, we determined the unliganded structure of StPLK in a monoclinic form and its ternary complex with bound pyridoxal (PL), ADP and Mg2+ in two different tetragonal crystal forms (Form I and Form II). We found that, in the ternary complex structure of StPLK, the active site Lys233 forms a Schiff base linkage with the substrate (PL). Although formation of a Schiff base with the active site Lys229 was demonstrated in the Escherichia coli enzyme based on biochemical studies, the ternary complex of StPLK represents the first crystal structure where the Schiff bond formation has been observed. We also identified an additional site for PLP binding away from the active site in one of the ternary complexes (crystal Form I), suggesting a probable route for the product release. This is the first ternary complex structure where the modeled γ-phosphate of ATP is close enough to PL for the phosphorylation of the substrate. StPLK prefers PL over pyridoxamine as its substrate and follows a sequential mechanism of catalysis. Surface plasmon resonance studies suggest that StPLK interacts with apo-PLP-dependent enzymes with μm affinity supporting the earlier proposed direct transfer mechanism of PLP from PLK to PLP-dependent enzymes.
Collapse
Affiliation(s)
- Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Josyula N Kalyani
- Biochemistry Department, Indian Institute of Science, Bangalore, India
| | | | - Pallavi Sabharwal
- Biochemistry Department, Indian Institute of Science, Bangalore, India
| | | | - Mathur R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
27
|
Tramonti A, Nardella C, di Salvo ML, Barile A, Cutruzzolà F, Contestabile R. Human Cytosolic and Mitochondrial Serine Hydroxymethyltransferase Isoforms in Comparison: Full Kinetic Characterization and Substrate Inhibition Properties. Biochemistry 2018; 57:6984-6996. [PMID: 30500180 DOI: 10.1021/acs.biochem.8b01074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible conversion of l-serine and tetrahydrofolate into glycine and 5,10-methylenetetrahydrofolate. This enzyme, which plays a pivotal role in one-carbon metabolism, is involved in cancer metabolic reprogramming and is a recognized target of chemotherapy intervention. In humans, two isoforms of the enzyme exist, which are commonly termed cytosolic SHMT1 and mitochondrial SHMT2. Considerable attention has been paid to the structural, mechanistic, and metabolic features of these isozymes. On the other hand, a detailed comparison of their catalytic and regulatory properties is missing, although this aspect seems to be considerably important, considering that SHMT1 and SHMT2 reside in different cellular compartments, where they play distinct roles in folate metabolism. Here we performed a full kinetic characterization of the serine hydroxymethyltransferase reaction catalyzed by SHMT1 and SHMT2, with a focus on pH dependence and substrate inhibition. Our investigation, which allowed the determination of all kinetic parameters of serine hydroxymethyltransferase forward and backward reactions, uncovered a previously unobserved substrate inhibition by l-serine and highlighted several interesting differences between SHMT1 and SHMT2. In particular, SHMT2 maintains a pronounced tetrahydrofolate substrate inhibition even at the alkaline pH characteristic of the mitochondrial matrix, whereas with SHMT1 this is almost abolished. At this pH, SHMT2 also shows a catalytic efficiency that is much higher than that of SHMT1. These observations suggest that such different properties represent an adaptation of the isoforms to the respective cellular environments and that substrate inhibition may be a form of regulation.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari , Consiglio Nazionale delle Ricerche , Piazzale Aldo Moro 5 , 00185 Roma , Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Anna Barile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| |
Collapse
|
28
|
Dimerization misalignment in human glutamate-oxaloacetate transaminase variants is the primary factor for PLP release. PLoS One 2018; 13:e0203889. [PMID: 30208107 PMCID: PMC6135512 DOI: 10.1371/journal.pone.0203889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
The active form of vitamin B6, pyridoxal 5’-phosphate (PLP), plays an essential role in the catalytic mechanism of various proteins, including human glutamate-oxaloacetate transaminase (hGOT1), an important enzyme in amino acid metabolism. A recent molecular and genetic study showed that the E266K, R267H, and P300L substitutions in aspartate aminotransferase, the Arabidopsis analog of hGOT1, genetically suppress a developmentally arrested Arabidopsis RUS mutant. Furthermore, CD analyses suggested that the variants exist as apo proteins and implicated a possible role of PLP in the regulation of PLP homeostasis and metabolic pathways. In this work, we assessed the stability of PLP bound to hGOT1 for the three variant and wildtype (WT) proteins using a combined 6 μs of molecular dynamics (MD) simulation. For the variants and WT in the holo form, the MD simulations reproduced the “closed-open” transition needed for substrate binding. This conformational transition was associated with the rearrangement of the P15-R32 small domain loop providing substrate access to the R387/R293 binding motif. We also showed that formation of the dimer interface is essential for PLP affinity to the active site. The position of PLP in the WT binding site was stabilized by a unique hydrogen bond network of the phosphate binding cup, which placed the cofactor for formation of the covalent Schiff base linkage with K259 for catalysis. The amino acid substitutions at positions 266, 267, and 300 reduced the structural correlation between PLP and the protein active site and/or integrity of the dimer interface. Principal component analysis and energy decomposition clearly suggested dimer misalignment and dissociation for the three variants tested in our work. The low affinity of PLP in the hGOT1 variants observed in our computational work provided structural rationale for the possible role of vitamin B6 in regulating metabolic pathways.
Collapse
|
29
|
Naowarojna N, Huang P, Cai Y, Song H, Wu L, Cheng R, Li Y, Wang S, Lyu H, Zhang L, Zhou J, Liu P. In Vitro Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C–S Lyase and Methyltransferase Reactions. Org Lett 2018; 20:5427-5430. [DOI: 10.1021/acs.orglett.8b02332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nathchar Naowarojna
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Pei Huang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200032, China
| | - Yujuan Cai
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Heng Song
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Lian Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ronghai Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yan Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shu Wang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Huijue Lyu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Lixin Zhang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
Lim HS, Seo DH, Cha IT, Lee H, Nam YD, Seo MJ. Expression and characterization of glutamate decarboxylase from Lactobacillus brevis HYE1 isolated from kimchi. World J Microbiol Biotechnol 2018; 34:44. [PMID: 29500614 DOI: 10.1007/s11274-018-2427-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni-NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.
Collapse
Affiliation(s)
- Hee Seon Lim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, Republic of Korea
| | - Dong-Ho Seo
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju, Republic of Korea
| | - In-Tae Cha
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyunjin Lee
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
31
|
Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism. Cell Chem Biol 2018; 25:519-529.e4. [PMID: 29503207 DOI: 10.1016/j.chembiol.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 02/05/2018] [Indexed: 11/22/2022]
Abstract
Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis.
Collapse
|
32
|
Tremiño L, Forcada-Nadal A, Contreras A, Rubio V. Studies on cyanobacterial protein PipY shed light on structure, potential functions, and vitamin B 6 -dependent epilepsy. FEBS Lett 2017; 591:3431-3442. [PMID: 28914444 DOI: 10.1002/1873-3468.12841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/21/2017] [Accepted: 09/01/2017] [Indexed: 11/11/2022]
Abstract
The Synechococcus elongatus COG0325 gene pipY functionally interacts with the nitrogen regulatory gene pipX. As a first step toward a molecular understanding of such interactions, we characterized PipY. This 221-residue protein is monomeric and hosts pyridoxal phosphate (PLP), binding it with limited affinity and losing it upon incubation with D-cycloserine. PipY crystal structures with and without PLP reveal a single-domain monomer folded as the TIM barrel of type-III fold PLP enzymes, with PLP highly exposed, fitting a role for PipY in PLP homeostasis. The mobile PLP phosphate-anchoring C-terminal helix might act as a trigger for PLP exchange. Exploiting the universality of COG0325 functions, we used PipY in site-directed mutagenesis studies to shed light on disease causation by epilepsy-associated mutations in the human COG0325 gene PROSC.
Collapse
Affiliation(s)
- Lorena Tremiño
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain.,Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| |
Collapse
|
33
|
Labella JI, Cantos R, Espinosa J, Forcada-Nadal A, Rubio V, Contreras A. PipY, a Member of the Conserved COG0325 Family of PLP-Binding Proteins, Expands the Cyanobacterial Nitrogen Regulatory Network. Front Microbiol 2017; 8:1244. [PMID: 28744260 PMCID: PMC5504682 DOI: 10.3389/fmicb.2017.01244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 11/13/2022] Open
Abstract
Synechococcus elongatus PCC 7942 is a paradigmatic model organism for nitrogen regulation in cyanobacteria. Expression of genes involved in nitrogen assimilation is positively regulated by the 2-oxoglutarate receptor and global transcriptional regulator NtcA. Maximal activation requires the subsequent binding of the co-activator PipX. PII, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance, binds to PipX to counteract NtcA activity at low 2-oxoglutarate levels. PII-PipX complexes can also bind to the transcriptional regulator PlmA, whose regulon remains unknown. Here we expand the nitrogen regulatory network to PipY, encoded by the bicistronic operon pipXY in S. elongatus. Work with PipY, the cyanobacterial member of the widespread family of COG0325 proteins, confirms the conserved roles in vitamin B6 and amino/keto acid homeostasis and reveals new PLP-related phenotypes, including sensitivity to antibiotics targeting essential PLP-holoenzymes or synthetic lethality with cysK. In addition, the related phenotypes of pipY and pipX mutants are consistent with genetic interactions in the contexts of survival to PLP-targeting antibiotics and transcriptional regulation. We also showed that PipY overexpression increased the length of S. elongatus cells. Taken together, our results support a universal regulatory role for COG0325 proteins, paving the way to a better understanding of these proteins and of their connections with other biological processes.
Collapse
Affiliation(s)
- José I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| | - Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| | - Alicia Forcada-Nadal
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain.,Instituto de Biomedicina de Valencia - Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia - Consejo Superior de Investigaciones CientíficasValencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos IIIValencia, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| |
Collapse
|
34
|
Gu J, Chen Y, Guo H, Sun M, Yang M, Wang X, Zhang X, Deng J. Lysine acetylation regulates the activity of Escherichia coli pyridoxine 5'-phosphate oxidase. Acta Biochim Biophys Sin (Shanghai) 2017; 49:186-192. [PMID: 28039149 DOI: 10.1093/abbs/gmw129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/14/2022] Open
Abstract
Nɛ-lysine acetylation is one of the most abundant post-translational modifications in eukaryote and prokaryote. Protein acetylome of Escherichia coli has been screened using mass spectrometry (MS) technology, and many acetylated proteins have been identified, including the pyridoxine 5'-phosphate oxidase (EcPNPOx), but the biological roles played by lysine acetylation in EcPNPOx still remain unknown. In this study, EcPNPOx was firstly overexpressed and purified, and two acetylated lysine residues were identified by the subsequent liquid chromatography-tandem mass spectrometry analysis. Site-directed mutagenesis analysis demonstrated that acetylated lysine residues play important roles in the enzymatic activity and enzymatic properties of the protein. EcPNPOx could be non-enzymatically acetylated by acetyl-phosphate and deacetylated by CobB in vitro. Furthermore, enzymatic activities of acetylated and deacetylated EcPNPOx were compared in vitro, and results showed that acetylation led to a decrease of its enzymatic activity, which could be rescued by CobB deacetylation. Taken together, our data suggest that CobB modulates the enzymatic activity of EcPNPOx in vitro.
Collapse
Affiliation(s)
- Jing Gu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuanyuan Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Hongsen Guo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Manluan Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingkun Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xude Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian'en Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaoyu Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
35
|
Tramonti A, Milano T, Nardella C, di Salvo ML, Pascarella S, Contestabile R. Salmonella typhimurium PtsJ is a novel MocR-like transcriptional repressor involved in regulating the vitamin B 6 salvage pathway. FEBS J 2017; 284:466-484. [PMID: 27987384 DOI: 10.1111/febs.13994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
The vitamin B6 salvage pathway, involving pyridoxine 5'-phosphate oxidase (PNPOx) and pyridoxal kinase (PLK), recycles B6 vitamers from nutrients and protein turnover to produce pyridoxal 5'-phosphate (PLP), the catalytically active form of the vitamin. Regulation of this pathway, widespread in living organisms including humans and many bacteria, is very important to vitamin B6 homeostasis but poorly understood. Although some information is available on the enzymatic regulation of PNPOx and PLK, little is known on their regulation at the transcriptional level. In the present work, we identified a new MocR-like regulator, PtsJ from Salmonella typhimurium, which controls the expression of the pdxK gene encoding one of the two PLKs expressed in this organism (PLK1). Analysis of pdxK expression in a ptsJ knockout strain demonstrated that PtsJ acts as a transcriptional repressor. This is the first case of a MocR-like regulator acting as repressor of its target gene. Expression and purification of PtsJ allowed a detailed characterisation of its effector and DNA-binding properties. PLP is the only B6 vitamer acting as effector molecule for PtsJ. A DNA-binding region composed of four repeated nucleotide sequences is responsible for binding of PtsJ to its target promoter. Analysis of binding stoichiometry revealed that protein subunits/DNA molar ratio varies from 4 : 1 to 2 : 1, depending on the presence or absence of PLP. Structural characteristics of DNA transcriptional factor-binding sites suggest that PtsJ binds DNA according to a different model with respect to other characterised members of the MocR subgroup.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
36
|
Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol Adv 2016; 35:31-40. [PMID: 27890703 DOI: 10.1016/j.biotechadv.2016.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Vitamin B6 is a designation for the six vitamers pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate, and pyridoxamine. PLP, being the most important B6 vitamer, serves as a cofactor for many proteins and enzymes. In contrast to other organisms, animals and humans have to ingest vitamin B6 with their food. Several disorders are associated with vitamin B6 deficiency. Moreover, pharmaceuticals interfere with metabolism of the cofactor, which also results in vitamin B6 deficiency. Therefore, vitamin B6 is a valuable compound for the pharmaceutical and the food industry. Although vitamin B6 is currently chemically synthesized, there is considerable interest on the industrial side to shift from chemical processes to sustainable fermentation technologies. Here, we review recent findings regarding biosynthesis and homeostasis of vitamin B6 and describe the approaches that have been made in the past to develop microbial production processes. Moreover, we will describe novel routes for vitamin B6 biosynthesis and discuss their potential for engineering bacteria that overproduce the commercially valuable substance. We also highlight bottlenecks of the vitamin B6 biosynthetic pathways and propose strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University of Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
37
|
Prunetti L, El Yacoubi B, Schiavon CR, Kirkpatrick E, Huang L, Bailly M, El Badawi-Sidhu M, Harrison K, Gregory JF, Fiehn O, Hanson AD, de Crécy-Lagard V. Evidence that COG0325 proteins are involved in PLP homeostasis. MICROBIOLOGY-SGM 2016; 162:694-706. [PMID: 26872910 DOI: 10.1099/mic.0.000255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for nearly 60 Escherichia coli enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the E. coli COG0325 (yggS) mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The E. coli yggS mutant accumulates the PLP precursor pyridoxine 5'-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic yggS orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.
Collapse
Affiliation(s)
- Laurence Prunetti
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Cara R Schiavon
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ericka Kirkpatrick
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lili Huang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Marc Bailly
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Mona El Badawi-Sidhu
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Katherine Harrison
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jesse F Gregory
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, USA
| | - Andrew D Hanson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Ghatge MS, Karve SS, David TMS, Ahmed MH, Musayev FN, Cunningham K, Schirch V, Safo MK. Inactive mutants of human pyridoxine 5'-phosphate oxidase: a possible role for a noncatalytic pyridoxal 5'-phosphate tight binding site. FEBS Open Bio 2016; 6:398-408. [PMID: 27419045 PMCID: PMC4856418 DOI: 10.1002/2211-5463.12042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/11/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a cofactor for many vitamin B6-requiring enzymes that are important for the synthesis of neurotransmitters. Pyridoxine 5'-phosphate oxidase (PNPO) is one of two enzymes that produce PLP. Some 16 known mutations in human PNPO (hPNPO), including R95C and R229W, lead to deficiency of PLP in the cell and have been shown to cause neonatal epileptic encephalopathy (NEE). This disorder has no effective treatment, and is often fatal unless treated with PLP. In this study, we show that R95C hPNPO exhibits a 15-fold reduction in affinity for the FMN cofactor, a 71-fold decrease in affinity for the substrate PNP, a 4.9-fold decrease in specific activity, and a 343-fold reduction in catalytic activity, compared to the wild-type enzyme. We have reported similar findings for R229W hPNPO. This report also shows that wild-type, R95C and R229W hPNPO bind PLP tightly at a noncatalytic site and transfer it to activate an apo-B6 enzyme into the catalytically active holo-form. We also show for the first time that hPNPO forms specific interactions with several B6 enzymes with dissociation constants ranging from 0.3 to 12.3 μm. Our results suggest a possible in vivo role for the tight binding of PLP in hPNPO, whether wild-type or variant, by protecting the very reactive PLP, and transferring this PLP directly to activate apo-B6 enzymes.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Sayali S Karve
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Tanya M S David
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Faik N Musayev
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Kendra Cunningham
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Verne Schirch
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Martin K Safo
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
39
|
Whittaker JW. Intracellular trafficking of the pyridoxal cofactor. Implications for health and metabolic disease. Arch Biochem Biophys 2015; 592:20-6. [PMID: 26619753 DOI: 10.1016/j.abb.2015.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
The importance of the vitamin B6-derived pyridoxal cofactor for human health has been established through more than 70 years of intensive biochemical research, revealing its fundamental roles in metabolism. B6 deficiency, resulting from nutritional limitation or impaired uptake from dietary sources, is associated with epilepsy, neuromuscular disease and neurodegeneration. Hereditary disorders of B6 processing are also known, and genetic defects in pathways involved in transport of B6 into the cell and its transformation to the pyridoxal-5'-phosphate enzyme cofactor can contribute to cardiovascular disease by interfering with homocysteine metabolism and the biosynthesis of vasomodulatory polyamines. Compared to the processes involved in cellular uptake and processing of the B6 vitamers, trafficking of the PLP cofactor across intracellular membranes is very poorly understood, even though the availability of PLP within subcellular compartments (particularly the mitochondrion) may have important health implications. The aim of this review is to concisely summarize the state of current knowledge of intracellular trafficking of PLP and to identify key directions for future research.
Collapse
Affiliation(s)
- James W Whittaker
- Institute of Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
40
|
Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Sci Rep 2015; 5:11870. [PMID: 26149121 PMCID: PMC4493562 DOI: 10.1038/srep11870] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction.
Collapse
|
41
|
Tramonti A, Fiascarelli A, Milano T, di Salvo ML, Nogués I, Pascarella S, Contestabile R. Molecular mechanism of PdxR – a transcriptional activator involved in the regulation of vitamin B6 biosynthesis in the probiotic bacterium Bacillus clausii. FEBS J 2015; 282:2966-84. [PMID: 26059598 DOI: 10.1111/febs.13338] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 01/11/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), the well-known active form of vitamin B6 , is an essential enzyme cofactor involved in a large number of metabolic processes. PLP levels need to be finely tuned in response to cell requirements; however, little is known about the regulation of PLP biosynthesis and recycling pathways. The transcriptional regulator PdxR activates transcription of the pdxST genes encoding PLP synthase. It is characterized by an N-terminal helix-turn-helix motif that binds DNA and an effector-binding C-terminal domain homologous to PLP-dependent enzymes. Although it is known that PLP acts as an anti-activator, the mechanism of action of PdxR is unknown. In the present study, we analyzed the biochemical and DNA-binding properties of PdxR from the probiotic Bacillus clausii. Spectroscopic measurements showed that PLP is the only B6 vitamer that acts as an effector molecule of PdxR. Binding of PLP to PdxR determines a protein conformational change, as detected by gel filtration chromatography and limited proteolysis experiments. We showed that two direct repeats and one inverted repeat are present in the DNA promoter region and PdxR is able to bind DNA fragments containing any combination of two of them. However, when PLP binds to PdxR, it modifies the DNA-binding properties of the protein, making it selective for inverted repeats. A molecular mechanism is proposed in which the two different DNA binding modalities of PdxR determined by the presence or absence of PLP are responsible for the control of pdxST transcription.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Alessio Fiascarelli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Isabel Nogués
- Istituto di Biologia Ambientale e Forestale, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
42
|
di Salvo ML, Nogués I, Parroni A, Tramonti A, Milano T, Pascarella S, Contestabile R. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5'-phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1160-6. [PMID: 25655354 DOI: 10.1016/j.bbapap.2015.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a crucial role in several cellular processes. In most organisms, PLP is recycled from nutrients and degraded B6-enzymes in a salvage pathway that involves pyridoxal kinase (PLK), pyridoxine phosphate oxidase and phosphatase activities. Regulation of the salvage pathway is poorly understood. Escherichia coli possesses two distinct pyridoxal kinases, PLK1, which is the focus of the present work, and PLK2. From previous studies dating back to thirty years ago, pyridoxal (PL) was shown to inhibit E. coli PLK1 forming a covalent link with the enzyme. This inhibition was proposed to play a regulative role in vitamin B6 metabolism, although its details had never been clarified. Recently, we have shown that also PLP produced during PLK1 catalytic cycle acts as an inhibitor, forming a Schiff base with Lys229, without being released in the solvent. The question arises as to which is the actual inhibition mechanism by PL and PLP. In the present work, we demonstrated that also PL binds to Lys229 as a Schiff base. However, the isolated covalent PLK1-PL complex is not inactive but, in the presence of ATP, is able to catalyse the single turnover production of PLP, which binds tightly to the enzyme and is ultimately responsible for its inactivation. The inactivation mechanism mediated by Lys229 may play a physiological role in controlling cellular levels of PLP. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Isabel Nogués
- Istituto di Biologia Ambientale e Forestale, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Alessia Parroni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185 Roma, Italy; Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
43
|
Achmon Y, Ben-Barak Zelas Z, Fishman A. Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Appl Microbiol Biotechnol 2013; 98:3603-11. [DOI: 10.1007/s00253-013-5269-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
44
|
Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporin biosynthesis and a model of catalytic promiscuity. Arch Biochem Biophys 2012; 529:55-65. [PMID: 23219598 DOI: 10.1016/j.abb.2012.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/22/2012] [Accepted: 11/28/2012] [Indexed: 11/20/2022]
Abstract
Cyclosporin A, a cyclic peptide produced by the fungus Tolypocladium inflatum, is a widely employed immunosuppressant drug. Its biosynthesis is strictly dependent on the action of the pyridoxal 5'-phosphate-dependent enzyme alanine racemase, which produces the d-alanine incorporated in the cyclic peptide. This enzyme has a different fold with respect to bacterial alanine racemases. The interest elicited by T. inflatum alanine racemase not only relies on its biotechnological relevance, but also on its evolutionary and structural similarity to the promiscuous enzymes serine hydroxymethyltransferase and threonine aldolase. The three enzymes represent a model of divergent evolution from an ancestral enzyme that was able to catalyse all the reactions of the modern enzymes. A protocol to express and purify with high yield recombinant T. inflatum alanine racemase was developed. The catalytic properties of the enzyme were characterized. Similarly to serine hydroxymethyltransferase and threonine aldolase, T. inflatum alanine racemase was able to catalyse retroaldol cleavage and transamination reactions. This observation corroborates the hypothesis of the common evolutionary origin of these enzymes. A three-dimensional model of T. inflatum alanine racemase was constructed on the basis of threonine aldolase crystal structure. The model helped rationalise the experimental data and explain the catalytic properties of the enzymes.
Collapse
|