1
|
Kudo A, Fukuda A, Gotoh K, Shibata H. Indoxyl Sulfate and Its Potential Role in Mineralocorticoid Receptor Transactivation in Chronic Kidney Disease. Cureus 2024; 16:e75236. [PMID: 39759603 PMCID: PMC11700523 DOI: 10.7759/cureus.75236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The uremic toxin indoxyl sulfate (IS) is an important factor in chronic kidney disease (CKD) progression. Inhibitors of the renin-angiotensin system and add-on therapy with mineralocorticoid receptor (MR) antagonists can help reduce proteinuria and suppress CKD progression. However, the association between IS and MR activation remains unknown. MATERIALS AND METHODS In vivo experiments utilized the 5/6 nephrectomy model to assess mineralocorticoid receptor (MR) activation in chronic kidney disease (CKD). The clinical parameters and immunohistochemical analysis of IS and MR proteins were investigated. In vitro experiments involved transfecting COS-7 cells with MR expression plasmids and MR response element-luciferase reporter plasmids. The cells were then treated with aldosterone (10⁻¹⁰ mol/L), indoxyl sulfate (IS, 500 μmol/L), and α-lipoic acid (10⁻³ mol/L). MR transcriptional activity was investigated by luciferase assays, and protein levels were measured by Western blotting. RESULTS In the 5/6 nephrectomy model, the serum IS concentration was significantly increased; however, the plasma aldosterone levels were decreased. Immunohistochemistry showed that the expression of IS protein increased in injured tubular cells in the 5/6 nephrectomy group compared with that in the sham group. Furthermore, evaluations of serial kidney sections revealed that the expression site of IS protein was colocalized with the distal nephron, where the expression of MR protein was observed. MR-mediated transcriptional activity in COS-7 cells was increased in an aldosterone concentration-dependent manner. IS increased MR-mediated transcriptional activity and protein levels with and without aldosterone, and α-lipoic acid attenuated this increase. CONCLUSIONS IS could enhance MR transactivation by increasing MR protein levels through oxidative stress in CKD rats, indicating that treatment with MR antagonists and antioxidants may play a permissive role in inhibiting IS-induced CKD progression.
Collapse
Affiliation(s)
- Akiko Kudo
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN
| | - Akihiro Fukuda
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN
| | - Koro Gotoh
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN
- Faculty of Welfare and Health Science, Oita University, Oita, JPN
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN
| |
Collapse
|
2
|
Lack of PPAR β/ δ-Inactivated SGK-1 Is Implicated in Liver Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9563851. [PMID: 33083492 PMCID: PMC7556072 DOI: 10.1155/2020/9563851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/05/2022]
Abstract
Objective The present study examined the role of PPARβ/δ in hepatocellular carcinoma (HCC). Methods The effect of PPARβ/δ on HCC development was analyzed using PPARβ/δ-overexpressed liver cancer cells and PPARβ/δ-knockout mouse models. Results PPARβ/δ(-/-) mice were susceptible to diethylnitrosamine- (DEN-) induced HCC (87.5% vs. 37.5%, p < 0.05). In addition, PPARβ/δ-overexpressed HepG2 cells had reduced proliferation, migration, and invasion capabilities accompanied by increased apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, differential gene expression profiling uncovered that the levels of serine/threonine-protein kinase (SGK-1) mRNA and its encoded protein were reduced in PPARβ/δ-overexpressed HepG2 cells. Consistently, elevated SGK-1 levels were found in PPARβ/δ(-/-) mouse livers as well as PPARβ/δ-knockdown human SMMC-7721 HCC cells. Chromatin immunoprecipitation (ChIP) assays followed by real-time quantitative polymerase chain reaction (qPCR) assays further revealed the binding of PPARβ/δ to the SGK-1 regulatory region in HepG2 cells. Conclusions Due to the known tumor-promoting effect of SGK1, the present data suggest that PPARβ/δ-deactivated SGK1 is a novel pathway for inhibiting liver carcinogenesis.
Collapse
|
3
|
Spencer S, Wheeler‐Jones C, Elliott J. Aldosterone and the mineralocorticoid receptor in renal injury: A potential therapeutic target in feline chronic kidney disease. J Vet Pharmacol Ther 2020; 43:243-267. [PMID: 32128854 PMCID: PMC8614124 DOI: 10.1111/jvp.12848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/20/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022]
Abstract
There is a growing body of experimental and clinical evidence supporting mineralocorticoid receptor (MR) activation as a powerful mediator of renal damage in laboratory animals and humans. Multiple pathophysiological mechanisms are proposed, with the strongest evidence supporting aldosterone-induced vasculopathy, exacerbation of oxidative stress and inflammation, and increased growth factor signalling promoting fibroblast proliferation and deranged extracellular matrix homeostasis. Further involvement of the MR is supported by extensive animal model experiments where MR antagonists (such as spironolactone and eplerenone) abrogate renal injury, including ischaemia-induced damage. Additionally, clinical trials have shown MR antagonists to be beneficial in human chronic kidney disease (CKD) in terms of reducing proteinuria and cardiovascular events, though current studies have not evaluated primary end points which allow conclusions to made about whether MR antagonists reduce mortality or slow CKD progression. Although differences between human and feline CKD exist, feline CKD shares many characteristics with human disease including tubulointerstitial fibrosis. This review evaluates the evidence for the role of the MR in renal injury and summarizes the literature concerning aldosterone in feline CKD. MR antagonists may represent a promising therapeutic strategy in feline CKD.
Collapse
Affiliation(s)
- Sarah Spencer
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| | | | - Jonathan Elliott
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| |
Collapse
|
4
|
Hosohata K, Jin D, Takai S, Iwanaga K. Involvement of Vanin-1 in Ameliorating Effect of Oxidative Renal Tubular Injury in Dahl-Salt Sensitive Rats. Int J Mol Sci 2019; 20:ijms20184481. [PMID: 31514290 PMCID: PMC6769908 DOI: 10.3390/ijms20184481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
In salt-sensitive hypertension, reactive oxygen species (ROS) play a major role in the progression of renal disease partly through the activation of the mineralocorticoid receptor (MR). We have previously demonstrated that urinary vanin-1 is an early biomarker of oxidative renal tubular injury. However, it remains unknown whether urinary vanin-1 might reflect the treatment effect. The objective of this study was to clarify the treatment effect for renal tubular damage in Dahl salt-sensitive (DS) rats. DS rats (six weeks old) were given one of the following for four weeks: high-salt diet (8% NaCl), high-salt diet plus a superoxide dismutase mimetic, tempol (3 mmol/L in drinking water), high-salt diet plus eplerenone (100 mg/kg/day), and normal-salt diet (0.3% NaCl). After four-week treatment, blood pressure was measured and kidney tissues were evaluated. ROS were assessed by measurements of malondialdehyde and by immunostaining for 4-hydroxy-2-nonenal. A high-salt intake for four weeks caused ROS and histological renal tubular damages in DS rats, both of which were suppressed by tempol and eplerenone. Proteinuria and urinary N-acetyl-β-D-glucosaminidase exhibited a significant decrease in DS rats receiving a high-salt diet plus eplerenone, but not tempol. In contrast, urinary vanin-1 significantly decreased in DS rats receiving a high-salt diet plus eplerenone as well as tempol. Consistent with these findings, immunohistochemical analysis revealed that vanin-1 was localized in the renal proximal tubules but not the glomeruli in DS rats receiving a high-salt diet, with the strength attenuated by tempol or eplerenone treatment. In conclusion, these results suggest that urinary vanin-1 is a potentially sensitive biomarker for ameliorating renal tubular damage in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Osaka 569-8686, Japan.
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Osaka 569-8686, Japan.
| | - Kazunori Iwanaga
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| |
Collapse
|
5
|
Hira S, Packialakshmi B, Zhou X. EAE-induced upregulation of mitochondrial MnSOD is associated with increases of mitochondrial SGK1 and Tom20 protein in the mouse kidney cortex. J Physiol Sci 2019; 69:723-732. [PMID: 31177508 PMCID: PMC10717134 DOI: 10.1007/s12576-019-00687-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
Abstract
Our previous demonstration that severe experimental autoimmune encephalomyelitis (EAE) increases MnSOD protein abundance in the mouse kidney cortex led this study to elucidate the underlying mechanism with monensin-treated HEK293 cells as a model. Severe EAE increases mitochondrial protein abundance of SGK1 kinase and Tom20, a critical subunit of mitochondrial translocase in the renal cortex. In HEK293 cells, catalase inhibits monensin-induced increases of mitochondrial SGK1 and Tom20 protein levels. Further, GSK650394, a specific inhibitor of SGK1 reduces monensin-induced increase of mitochondrial protein abundance of Tom20 and MnSOD. Finally, RNAi of Tom20 reduces the effect of monensin on MnSOD. MnSOD and Tom20 physically associate with each other. In conclusion, in HEK293 cells, mitochondrial reactive oxygen species increase protein abundance of mitochondrial SGK1, which leads to a rise of mitochondrial Tom20, resulting in importing MnSOD protein into the mitochondria. This could be a mechanism by which severe EAE up-regulates mitochondrial MnSOD in the kidney cortex.
Collapse
Affiliation(s)
- Sharanpreet Hira
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Balamuguran Packialakshmi
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Bhuiyan AS, Rafiq K, Kobara H, Masaki T, Nakano D, Nishiyama A. Effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone (CS-3150), on blood pressure and renal injury in high salt-treated type 2 diabetic mice. Hypertens Res 2019; 42:892-902. [PMID: 30664703 DOI: 10.1038/s41440-019-0211-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Although beneficial antihypertensive and antialbuminuric effects of steroidal mineralocorticoid receptor (MR) antagonists have been shown, the use of these drugs has been clinically limited in diabetic kidney disease (DKD) because of the high incidence of side effects. Here, we aimed to examine the effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone, on blood pressure and renal injury in high salt-treated type 2 diabetic KK-Ay mice, a model of human hypertensive DKD. KK-Ay mice were treated with a normal salt diet (NS: 0.3% NaCl, n = 5), high salt diet (HS: 4% NaCl, n = 8), HS + esaxerenone (1 mg/kg/day, p.o., n = 8), or HS + spironolactone, a steroidal non-selective MR antagonist (20 mg/kg/day, p.o., n = 7) for 8 weeks. Renal tissue oxidative stress was evaluated by dihydroethidium florescence intensity. HS-treated diabetic KK-Ay mice showed higher blood pressure and severe albuminuria, glomerular injury, tubulointerstitial fibrosis, renal inflammation, and oxidative stress than NS-treated diabetic KK-Ay mice. Treatment with esaxerenone or spironolactone decreased blood pressure to a similar extent in HS-treated KK-Ay mice. Conversely, esaxerenone elicited a greater attenuation of albuminuria, glomerular injury, tubulointerstitial fibrosis, and renal inflammation than spironolactone, which were associated with reduction in renal oxidative stress. These data indicate for the first time that a nonsteroidal MR antagonist elicits renoprotective effects in DKD mice.
Collapse
Affiliation(s)
- Abdus Sattar Bhuiyan
- Department of Pharmacology, Bangaldesh Agricultural University, Mymensingh, Bangladesh.,Department of Cardiology, Mymensingh Medical College, Mymensingh, Bangladesh.,Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kazi Rafiq
- Department of Pharmacology, Bangaldesh Agricultural University, Mymensingh, Bangladesh. .,Department of Cardiology, Mymensingh Medical College, Mymensingh, Bangladesh. .,Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
7
|
Li L, Guan Y, Kobori H, Morishita A, Kobara H, Masaki T, Nakano D, Nishiyama A. Effects of the novel nonsteroidal mineralocorticoid receptor blocker, esaxerenone (CS-3150), on blood pressure and urinary angiotensinogen in low-renin Dahl salt-sensitive hypertensive rats. Hypertens Res 2018; 42:769-778. [PMID: 30587856 DOI: 10.1038/s41440-018-0187-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Abstract
Herein, we studied the effects of the novel nonsteroidal selective mineralocorticoid receptor (MR) blocker, esaxerenone, on blood pressure and renal injury in Dahl salt-sensitive (DSS) rats. We also monitored intact urinary and total angiotensinogen (AGT). DSS rats were given a normal salt diet (NS: 0.4% NaCl, n = 10), a high-salt diet (HS: 8% NaCl, n = 10), HS + esaxerenone (1 mg/kg/day, p.o., n = 10), or HS + losartan (angiotensin II receptor blocker, 10 mg/kg/day, p.o., n = 10) for 6 weeks. Glomerular and tubulointerstitial tissues were obtained via a laser capture method. HS-treated DSS rats developed hypertension, albuminuria, and glomerular injury, which were associated with increased glomerular desmin staining and reduced mRNA levels of glomerular podocin and nephrin. HS-treated DSS rats also showed tubulointerstitial fibrosis with an increase in renal oxidative stress (4-hydroxynonenal staining). The urinary ((total AGT-intact AGT)/intact AGT) ratio, an indicator of intrarenal renin activity, was significantly suppressed in HS-treated DSS rats. Treatment with esaxerenone significantly decreased blood pressure, while losartan did not. Furthermore, esaxerenone attenuated the development of albuminuria, glomerular injury, and tubulointerstitial fibrosis more than losartan did, and this effect was associated with reduced renal oxidative stress. These data indicate that esaxerenone has antihypertensive and renal protective effects in salt-dependent hypertensive mice with suppressed intrarenal renin activity, as indicated by low levels of the urinary (total AGT-intact AGT)/intact AGT ratio.
Collapse
Affiliation(s)
- Lei Li
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yu Guan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology and Nephrology, Faculty of Medicine, International University of Health and Welfare, Narita, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
8
|
Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res 2018; 42:293-300. [PMID: 30523293 DOI: 10.1038/s41440-018-0158-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023]
Abstract
Accumulating evidence has indicated the potential contributions of aldosterone and mineralocorticoid receptor (MR) to the pathophysiology of cardiovascular disease (CVD) and chronic kidney disease (CKD). Patients with primary aldosteronism have a higher risk of CVD and CKD than those with essential hypertension. MR is strongly expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages, glomerular mesangial cells, podocytes, and proximal tubular cells. In these cardiovascular and renal cells, aldosterone-induced cell injury is prevented by MR blockade. Interestingly, MR antagonists elicit beneficial effects on CVD and CKD in subjects with low or normal plasma aldosterone levels. Recent studies have shown that during development of CVD and CKD, cardiovascular and renal MR is activated by glucocorticoid and ligand-independent mechanisms, such as Rac1 signaling pathways. These data indicate that inappropriate activation of local MR contributes to cardiovascular and renal tissue injury through aldosterone-dependent and -independent mechanisms. In this review, recent findings on the specific role of cardiovascular and renal MR in the pathogenesis of CVD and CKD are summarized.
Collapse
|
9
|
Parker BM, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. Int J Mol Sci 2018; 19:3764. [PMID: 30486399 PMCID: PMC6320977 DOI: 10.3390/ijms19123764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mineralocorticoid hormone aldosterone regulates sodium and potassium homeostasis but also adversely modulates the maladaptive process of cardiac adverse remodeling post-myocardial infarction. Through activation of its mineralocorticoid receptor (MR), a classic steroid hormone receptor/transcription factor, aldosterone promotes inflammation and fibrosis of the heart, the vasculature, and the kidneys. This is why MR antagonists reduce morbidity and mortality of heart disease patients and are part of the mainstay pharmacotherapy of advanced human heart failure. A plethora of animal studies using cell type⁻specific targeting of the MR gene have established the importance of MR signaling and function in cardiac myocytes, vascular endothelial and smooth muscle cells, renal cells, and macrophages. In terms of its signaling properties, the MR is distinct from nuclear receptors in that it has, in reality, two physiological hormonal agonists: not only aldosterone but also cortisol. In fact, in several tissues, including in the myocardium, cortisol is the primary hormone activating the MR. There is a considerable amount of evidence indicating that the effects of the MR in each tissue expressing it depend on tissue- and ligand-specific engagement of molecular co-regulators that either activate or suppress its transcriptional activity. Identification of these co-regulators for every ligand that interacts with the MR in the heart (and in other tissues) is of utmost importance therapeutically, since it can not only help elucidate fully the pathophysiological ramifications of the cardiac MR's actions, but also help design and develop novel better MR antagonist drugs for heart disease therapy. Among the various proteins the MR interacts with are molecules involved in cardiac G protein-coupled receptor (GPCR) signaling. This results in a significant amount of crosstalk between GPCRs and the MR, which can affect the latter's activity dramatically in the heart and in other cardiovascular tissues. This review summarizes the current experimental evidence for this GPCR-MR crosstalk in the heart and discusses its pathophysiological implications for cardiac adverse remodeling as well as for heart disease therapy. Novel findings revealing non-conventional roles of GPCR signaling molecules, specifically of GPCR-kinase (GRK)-5, in cardiac MR regulation are also highlighted.
Collapse
Affiliation(s)
- Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Jackson Memorial Hospital, Miami, FL 33136, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
10
|
Hermidorff MM, de Assis LVM, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev 2018; 22:65-89. [PMID: 27942913 DOI: 10.1007/s10741-016-9591-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.
Collapse
Affiliation(s)
- Milla Marques Hermidorff
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
11
|
Abstract
The first mineralocorticoid receptor (MR) antagonist, spironolactone, was developed almost 60 years ago to treat primary aldosteronism and pathological edema. Its use waned in part because of its lack of selectivity. Subsequently, knowledge of the scope of MR function was expanded along with clinical evidence of the therapeutic importance of MR antagonists to prevent the ravages of inappropriate MR activation. Forty-two years elapsed between the first and MR-selective second generation of MR antagonists. Fifteen years later, despite serious shortcomings of the existing antagonists, a third-generation antagonist has yet to be marketed. Progress has been slowed by the lack of appreciation of the large variety of cell types that express the MR and its diverse cell-type-specific actions, and also its unique complex interaction actions at the molecular level. New MR antagonists should preferentially target the inflammatory and fibrotic effects of MR and perhaps its excitatory effects on sympathetic nervous system, but not the renal tubular epithelium or neurons of the cortex and hippocampus. This review briefly describes efforts to develop a third-generation MR antagonist and why fourth generation antagonists and selective agonists based on structural determinants of tissue and ligand-specific MR activation should be contemplated.
Collapse
|
12
|
Sun Y, Fan J, Chai D, Zhang M. Oxidative Stress Is Involved in the Renal Dysfunction Induced by Sinoaortic Denervation in Rats. Chem Pharm Bull (Tokyo) 2016; 64:1458-1465. [PMID: 27489120 DOI: 10.1248/cpb.c16-00318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis that oxidative stress contributes to renal dysfunction in sinoaortically denervated (SAD) rats was investigated. Rats were sinoaortically denervated and received treatment with tempol (0.5 mmol/L in drinking water) for 8 weeks. Although the tempol treatment of the SAD rats had no significant effect on blood pressure or blood pressure viability, it significantly ameliorated the renal dysfunction as indicated by increases in renal blood flow (RBF) and the glomerular filtration rate (GFR) and reductions in plasma creatinine, blood urea nitrogen (BUN), the urine albumin excretion rate (UAE), and the glomerular sclerosis score (GSS). The SAD rats treated with tempol exhibited decreased plasma and renal malondialdehyde (MDA) levels and reduced renal formation of reactive oxygen species (ROS), superoxide (O2-), peroxynitrite (OONO-) and 3-nitrotyrosine. Treatment with tempol suppressed the nuclear concentration of nuclear factor-kappaB (NF-κB) and reduced the renal levels of macrophage chemoattractant protein 1 (MCP-1) and interleukin-6 (IL-6). The tempol-treated SAD rats exhibited decreased renal advanced glycation end product (AGE) levels and decreased receptor for advanced glycation end products (RAGE) protein expression. The tempol treatment of the SAD rats restored mitochondrial adenosine triphosphate (ATP) formation, DNA content, membrane integrity and the renal oxygen consumption rate. Additionally, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S epoxide transferase (GST), and catalase were decreased, and the activities of xanthin oxidase (XO) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were enhanced in the kidneys of the SAD rats. In conclusion, our work firstly provided direct evidence that oxidative stress played an important role in the renal dysfunction of SAD rats.
Collapse
Affiliation(s)
- Yan Sun
- Clinical Pharmacy Laboratory, PLA Greneral Hospital
| | | | | | | |
Collapse
|
13
|
Asao T, Oki K, Yoneda M, Tanaka J, Kohno N. Hypothalamic-pituitary-adrenal axis activity is associated with the prevalence of chronic kidney disease in diabetic patients. Endocr J 2016; 63:119-26. [PMID: 26537094 DOI: 10.1507/endocrj.ej15-0360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Progression of chronic kidney disease (CKD) in diabetic patients can occur through enhanced hypothalamic-pituitary-adrenal (HPA) axis activity. The purpose of our study was to determine whether HPA axis activity influences the prevalence of CKD in patients with type 2 diabetes mellitus. Seventy-seven diabetic patients (mean age, 60 years) were enrolled. CKD was defined by K/DOQI criteria, and serum cortisol level was measured after the 1 mg overnight dexamethasone suppression test (F-DST). F-DST values were significantly negatively correlated with estimated glomerular filtration rate (eGFR), and significantly positively correlated with cystatin C level and spot urine albumin to creatinine ratio in simple and multiple regression analyses. The subjects were divided into 3 groups (low, middle, and high) according to the F-DST, and the odds for CKD were 8.7-fold (95% confidence interval 2.56 to 29.6, P=0.01) and 12.5-fold (95% confidence interval 3.3 to 47.9, P<0.001) higher in subjects in the middle and high groups than those in the low group, respectively. In multivariate regression analysis, subjects in the middle group and high group (compared to those in the low group) had 13.0-fold (95% confidence interval, 2.9 to 58.8 and P=0.001) and 14.7-fold (95% confidence interval, 2.8 to 78.5 and P=0.002), respectively, higher risk for CKD. In conclusion, F-DST values have a relationship with decreased eGFR and increased cystatin C or albumin excretion involved in CKD, and enhanced HPA axis activity may be an independent risk factor for CKD in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Takako Asao
- Department of Epidemiology, Infectious Disease Control and Prevention, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
14
|
Clark JL, Rech L, Chaity N, Sihag J, Taylor CG, Aliani M. Possible deleterious hormonal changes associated with low-sodium diets. Nutr Rev 2015; 73:22-35. [PMID: 26024055 DOI: 10.1093/nutrit/nuu003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The average salt intake of people in Canada, the United States, and Europe is about 3,400 mg of sodium per day, which exceeds the recommended intake levels set by various health organizations. The World Health Organization recommends a worldwide reduction of sodium intake to less than 2,000 mg per day. Most research to date has focused on the negative effects of high-sodium intake; however, little information is available on the metabolic effects of low-sodium intakes. This review focuses on the hormonal changes associated with low-sodium diets, especially the hormones involved in metabolism and cardiovascular and renal function. Based largely on rodent studies, low-sodium diets have been associated with changes in glycemic control, energy metabolism, cardiovascular disease risk, cholesterol concentrations, inflammation, and functioning of the renin-angiotensin-aldosterone system. Overall, research has revealed mixed results regarding the impact of dietary sodium intake on various hormones. Further research is required to assess the effects of sodium reduction on hormones and their associated pathways in order to determine the likelihood of any unintended effects.
Collapse
Affiliation(s)
- Jaime L Clark
- J.L. Clark, L. Rech, N. Chaity, J. Sihag, C.G. Taylor, and M. Aliani are with the Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. J.L. Clark, L. Rech, C.G. Taylor, and M. Aliani are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada. C.G. Taylor is with the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leslie Rech
- J.L. Clark, L. Rech, N. Chaity, J. Sihag, C.G. Taylor, and M. Aliani are with the Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. J.L. Clark, L. Rech, C.G. Taylor, and M. Aliani are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada. C.G. Taylor is with the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nazia Chaity
- J.L. Clark, L. Rech, N. Chaity, J. Sihag, C.G. Taylor, and M. Aliani are with the Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. J.L. Clark, L. Rech, C.G. Taylor, and M. Aliani are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada. C.G. Taylor is with the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jyoti Sihag
- J.L. Clark, L. Rech, N. Chaity, J. Sihag, C.G. Taylor, and M. Aliani are with the Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. J.L. Clark, L. Rech, C.G. Taylor, and M. Aliani are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada. C.G. Taylor is with the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- J.L. Clark, L. Rech, N. Chaity, J. Sihag, C.G. Taylor, and M. Aliani are with the Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. J.L. Clark, L. Rech, C.G. Taylor, and M. Aliani are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada. C.G. Taylor is with the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michel Aliani
- J.L. Clark, L. Rech, N. Chaity, J. Sihag, C.G. Taylor, and M. Aliani are with the Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. J.L. Clark, L. Rech, C.G. Taylor, and M. Aliani are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada. C.G. Taylor is with the Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
15
|
Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension 2014; 65:257-63. [PMID: 25368026 DOI: 10.1161/hypertensionaha.114.04488] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Johann Bauersachs
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.).
| | - Frédéric Jaisser
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| | - Robert Toto
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| |
Collapse
|
16
|
Chen H, Sun F, Zhong X, Shao Y, Yoshimura A, Liu Y. Eplerenone-mediated aldosterone blockade prevents renal fibrosis by reducing renal inflammation, interstitial cell proliferation and oxidative stress. Kidney Blood Press Res 2013; 37:557-66. [PMID: 24296802 DOI: 10.1159/000355736] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Prolonged elevation of serum aldosterone leads to renal fibrosis. Inflammation also plays a role in the pathogenesis of renal disease. We used a rat model of interstitial renal fibrosis to test the hypothesis that eplerenone-mediated aldosterone blockade prevents renal fibrosis due to its anti-inflammatory and anti-proliferative effects. METHODS Eplerenone (a selective aldosterone blocker) or vehicle (control), was given to male Wistar rats (50 mg/kg, twice daily) for 7 days before unilateral ureteral obstruction (UUO) and for an additional 28 days after surgery. Body weight, blood pressure, renal histo-morphology, immune-staining for macrophages, monocyte chemotactic protein-1, proliferating cell nuclear antigen, α-smooth muscle actin, and serum and urine markers of renal function and oxidative stress were determined for both groups on 7, 14, and 28 days after surgery. RESULTS Epleronone had no effect on body weight or blood pressure. However, eplerenone inhibited the development of renal fibrosis, inflammation (macrophage and monocyte infiltration), interstitial cell proliferation, and activation of interstitial cells (α-SMA expression). Epleronone also reduced oxidative stress. CONCLUSION The anti-fibrotic effect of eplerenone appears to be unrelated to its effect on blood pressure. Eplerenone inhibits renal inflammation, interstitial cell proliferation, phenotypic changes of interstitial cells, and reduces oxidative stress.
Collapse
Affiliation(s)
- Hui Chen
- Department of internal medicine , Guangzhou City Red Cross Hospital, Guangdong Province Guangzhou City 510220, China
| | | | | | | | | | | |
Collapse
|
17
|
Mineralocorticoid receptor activation as an etiological factor in kidney diseases. Clin Exp Nephrol 2013; 18:16-23. [DOI: 10.1007/s10157-013-0827-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
|
18
|
Ohnishi K, Murase M, Nakano D, Pelisch N, Hitomi H, Kobori H, Morimoto S, Mori H, Masaki T, Ohmori K, Kohno M, Ichihara A, Nishiyama A. Angiotensin-converting enzyme inhibitor does not suppress renal angiotensin II levels in angiotensin I-infused rats. J Pharmacol Sci 2013; 122:103-8. [PMID: 23698111 DOI: 10.1254/jphs.13045fp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Angiotensin II (Ang II) infusion into rats elevates local angiotensin II levels through an AT1 receptor-dependent pathway in the kidney. We examined whether treatment with an angiotensin-converting enzyme (ACE) inhibitor, temocapril, or an AT1-receptor blocker, olmesartan, prevented elevation of Ang II levels in the kidney of angiotensin I (Ang I)-infused rats. Rats were infused with Ang I (100 ng/min) and treated with temocapril (30 mg/kg per day, n = 10) or olmesartan (10 mg/kg per day, n = 9) for 4 weeks. Ang I infusion significantly elevated blood pressure compared with vehicle-infused rats (n = 6). Treatment with temocapril or olmesartan suppressed Ang I-induced hypertension. Temocapril suppressed both plasma and renal ACE activity. Ang I infusion increased Ang II content in the kidney. Interestingly, temocapril failed to reduce the level of Ang II in the kidney, while olmesartan markedly suppressed an increase in renal Ang II levels. These results suggest a limitation of temocapril and a benefit of olmesartan to inhibit the renal renin-angiotensin system and suggest the possible existence of an ACE inhibitor-insensitive pathway that increases Ang II levels in rat kidney.
Collapse
Affiliation(s)
- Keisuke Ohnishi
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, Mattson DL, Sorokin A, Lombard JH, Cowley AW, Staruschenko A. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol 2013; 24:1053-62. [PMID: 23599382 DOI: 10.1681/asn.2012080839] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various stimuli, including hormones and growth factors, modulate epithelial sodium channels (ENaCs), which fine-tune Na(+) absorption in the kidney. Members of the EGF family are important for maintaining transepithelial Na(+) transport, but whether EGF influences ENaC, perhaps mediating salt-sensitive hypertension, is not well understood. Here, the ENaC inhibitor benzamil attenuated the development of hypertension in Dahl salt-sensitive rats. Feeding these salt-sensitive rats a high-salt diet led to lower levels of EGF in the kidney cortex and enhanced the expression and activity of ENaC compared with feeding a low-salt diet. To directly evaluate the role of EGF in the development of hypertension and its effect on ENaC activity, we infused EGF intravenously while continuously monitoring BP of the salt-sensitive rats. Infusion of EGF decreased ENaC activity, prevented the development of hypertension, and attenuated glomerular and renal tubular damage. Taken together, these findings indicate that cortical EGF levels decrease with a high-salt diet in salt-sensitive rats, promoting ENaC-mediated Na(+) reabsorption in the collecting duct and the development of hypertension.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lang F, Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 2013; 22:701-14. [PMID: 23506284 DOI: 10.1517/13543784.2013.778971] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditions, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). AREAS COVERED The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. EXPERT OPINION Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- University of Tuebingen, Department of Physiology, Tuebingen, Germany.
| | | |
Collapse
|
21
|
Simic D, Simutis F, Euler C, Thurby C, Peden WM, Bunch RT, Pilcher G, Sanderson T, Van Vleet T. Determination of relative Notch1 and gamma-secretase-related gene expression in puromycin-treated microdissected rat kidneys. Gene Expr 2013; 16:39-47. [PMID: 24397211 PMCID: PMC8750201 DOI: 10.3727/105221613x13806435102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Notch signaling pathways are involved in the regulation of cell differentiation and are highly conserved across species. Notch ligand binding leads to gamma-secretase-mediated proteolytic cleavage of the Notch receptor releasing the Notch intracellular domain, resulting in its subsequent translocation into the nucleus and gene expression regulation. To investigate the level of expression of Notch signaling pathway components in microanatomic regions following renal injury, kidneys from untreated, vehicle control, and puromycin aminonucleoside (PA, 150 mg/kg)-treated rats were evaluated. Frozen tissue sections from rats were microdissected using laser capture microdissection (LCM) to obtain glomeruli, cortical (proximal) tubules, and collecting ducts, and relative gene expression levels of Presenilin1, Notch1 and Hes1 were determined. In untreated rats, the Notch1 expression in glomeruli was higher than in the proximal tubules and similar to that in collecting ducts, whereas Presenilin1 and Hes1 expressions were highest in the collecting ducts, followed by cortical tubules and glomeruli. Following PA-induced renal injury, Hes1 gene expression increased significantly in the glomeruli and tubules compared to the collecting ducts where no injury was observed microscopically. Although these data present some evidence of change in Notch signaling related to injury, the expression of Presenilin1, Notch1, and Hes1 in the microanatomic regions of the kidney following PA treatment were not significantly different when compared to controls. These results demonstrate that there are differences in Notch-related gene expression in the different microanatomic regions of the kidneys in rats and suggest a minimal role for Notch in renal injury induced by PA. In addition, this work shows that LCM coupled with the RT-PCR can be used to determine the relative differences in target gene expression within regions of a complex organ.
Collapse
Affiliation(s)
- Damir Simic
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA.
| | - Frank Simutis
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Catherine Euler
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Christina Thurby
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - W Mike Peden
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - R Todd Bunch
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Gary Pilcher
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Thomas Sanderson
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Terry Van Vleet
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| |
Collapse
|