1
|
Fukushi M, Ohsawa R, Okinaka Y, Oikawa D, Kiyono T, Moriwaki M, Irie T, Oda K, Kamei Y, Tokunaga F, Sotomaru Y, Maruyama H, Kawakami H, Sakaguchi T. Optineurin deficiency impairs autophagy to cause interferon beta overproduction and increased survival of mice following viral infection. PLoS One 2023; 18:e0287545. [PMID: 37352136 PMCID: PMC10289332 DOI: 10.1371/journal.pone.0287545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNβ), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNβ than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNβ overproduction during optineurin deficiency both in vitro and in vivo. METHODS To investigate the mechanism of IFNβ overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS IFNβ overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNβ overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNβ overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNβ overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.
Collapse
Affiliation(s)
- Masaya Fukushi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masaya Moriwaki
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Irie
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Ibañez LI, Martinez VP, Iglesias AA, Bellomo CM, Alonso DO, Coelho RM, Martinez Peralta L, Periolo N. Decreased expression of surfactant Protein-C and CD74 in alveolar epithelial cells during influenza virus A(H1N1)pdm09 and H3N2 infection. Microb Pathog 2023; 176:106017. [PMID: 36736545 DOI: 10.1016/j.micpath.2023.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The primary replication site of Influenza A virus (IAV) is type II alveolar epithelial cells (AECII), which are central to normal lung function and present important immune functions. Surfactant components are synthesized primarily by AECII, which play a crucial role in host defense against infection. The aim of this study was to analyze if the impact of influenza infection is differential between A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) on costimulatory molecules and ProSP-C expression in AECII from BALB/c mice infected and A549 cell line infected with both strains. Pandemic A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) were used to infect BALB/c mice and the A549 cell line. We evaluated the surface expression of co-stimulatory molecules (CD45/CD31/CD74/ProSP-C) in AECII and A549 cell lines. Our results showed a significant decrease in ProSP-C+ CD31- CD45- and CD74+ CD31- CD45- expression in AECII and A549 cell line with the virus strain A(H1N1)pdm09 versus A/Victoria/3/75 (H3N2) and controls (non-infection conditions). Our findings indicate that changes in the expression of ProSP-C in AECII and A549 cell lines in infection conditions could result in dysfunction leading to decreased lung compliance, increased work of breathing and increased susceptibility to injury.
Collapse
Affiliation(s)
- L I Ibañez
- Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina; Instituto de Quimica Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160, Buenos Aires, Argentina
| | - V P Martinez
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - A A Iglesias
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - C M Bellomo
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - D O Alonso
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - R M Coelho
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - L Martinez Peralta
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Argentina
| | - N Periolo
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas. (CONICET), Argentina.
| |
Collapse
|
3
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
4
|
Santo KP, Neimark AV. Adsorption of Pulmonary and Exogeneous Surfactants on SARS-CoV-2 Spike Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.04.490631. [PMID: 35547841 PMCID: PMC9094101 DOI: 10.1101/2022.05.04.490631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 is transmitted by inhaling SARS-CoV-2 virions, which are enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. In the respiratory tract, virions interact with surfactant films composed of phospholipids and cholesterol that coat lung airways. Here, we explore by using coarse-grained molecular dynamics simulations the physico-chemical mechanisms of surfactant adsorption on Spike proteins. With examples of zwitterionic dipalmitoyl phosphatidyl choline, cholesterol, and anionic sodium dodecyl sulphate, we show that surfactants form micellar aggregates that selectively adhere to the specific regions of S1 domain of the Spike protein that are responsible for binding with ACE2 receptors and virus transmission into the cells. We find high cholesterol adsorption and preferential affinity of anionic surfactants to Arginine and Lysine residues within S1 receptor binding motif. These findings have important implications for informing the search for extraneous therapeutic surfactants for curing and preventing COVID-19 by SARS-CoV-2 and its variants.
Collapse
|
5
|
Chakrabarti A, Nguyen A, Newhams MM, Ohlson MB, Yang X, Ulufatu S, Liu S, Park S, Xu M, Jiang J, Halpern WG, Anania VG, McBride JM, Rosenberger CM, Randolph AG. Surfactant protein D is a biomarker of influenza-related pediatric lung injury. Pediatr Pulmonol 2022; 57:519-528. [PMID: 34842360 PMCID: PMC8792225 DOI: 10.1002/ppul.25776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/30/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Biomarkers that can risk-stratify children with influenza virus lower respiratory infection may identify patients for targeted intervention. Early elevation of alveolar-related proteins in the bloodstream in these patients could indicate more severe lung damage portending worse outcomes. METHODS We used a mouse model of human influenza infection and evaluated relationships between lung pathophysiology and surfactant protein D (SP-D), SP-A, and Club cell protein 16 (CC16). We then measured SP-A, SP-D, and CC16 levels in plasma samples from 94 children with influenza-associated acute respiratory failure (PICFLU cohort), excluding children with underlying conditions explaining disease severity. We tested for associations between levels of circulating proteins and disease severity including the diagnosis of acute respiratory distress syndrome (ARDS), mechanical ventilator, intensive care unit and hospital days, and hospital mortality. RESULTS Circulating SP-D showed a greater increase than SP-A and CC16 in mice with increased alveolar-vascular permeability following influenza infection. In the PICFLU cohort, SP-D was associated with moderate-severe ARDS diagnosis (p = 0.01) and with mechanical ventilator (r = 0.45, p = 0.002), ICU (r = 0.44, p = 0.002), and hospital days (r = 0.37, p = 0.001) in influenza-infected children without bacterial coinfection. Levels of SP-D were lower in children with secondary bacterial pneumonia (p = 0.01) and not associated with outcomes. CC16 and SP-A levels did not differ with bacterial coinfection and were not consistently associated with severe outcomes. CONCLUSIONS SP-D has potential as an early circulating biomarker reflecting a degree of lung damage caused directly by influenza virus infection in children. Secondary bacterial pneumonia alters SP-D biomarker performance.
Collapse
Affiliation(s)
| | - Allen Nguyen
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Margaret M Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Maikke B Ohlson
- Biomarker Discovery, Genentech, Inc., South San Francisco, California, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoying Yang
- Biostatistics, Genentech, Inc., South San Francisco, California, USA
| | - Sheila Ulufatu
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Shannon Liu
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Summer Park
- Translational Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Min Xu
- Translational Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Jenny Jiang
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Wendy G Halpern
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Veronica G Anania
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | | | | | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Trousil J, Frgelecová L, Kubíčková P, Řeháková K, Drašar V, Matějková J, Štěpánek P, Pavliš O. Acute Pneumonia Caused by Clinically Isolated Legionella pneumophila Sg 1, ST 62: Host Responses and Pathologies in Mice. Microorganisms 2022; 10:179. [PMID: 35056629 PMCID: PMC8781576 DOI: 10.3390/microorganisms10010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Legionnaires' disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires' disease has been described in detail.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Lucia Frgelecová
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| | - Kristína Řeháková
- Small Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Vladimír Drašar
- National Legionella Reference Laboratory, Public Health Institute Ostrava, Masarykovo náměstí 16, 682 01 Vyškov, Czech Republic;
| | - Jana Matějková
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic;
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| |
Collapse
|
7
|
Simon M, Veit M, Osterrieder K, Gradzielski M. Surfactants - Compounds for inactivation of SARS-CoV-2 and other enveloped viruses. Curr Opin Colloid Interface Sci 2021; 55:101479. [PMID: 34149296 PMCID: PMC8196227 DOI: 10.1016/j.cocis.2021.101479] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We provide here a general view on the interactions of surfactants with viruses, with a particular emphasis on how such interactions can be controlled and employed for inhibiting the infectivity of enveloped viruses, including coronaviruses. The aim is to provide to interested scientists from different fields, including chemistry, physics, biochemistry, and medicine, an overview of the basic properties of surfactants and (corona)viruses, which are relevant to understanding the interactions between the two. Various types of interactions between surfactant and virus are important, and they act on different components of a virus such as the lipid envelope, membrane (envelope) proteins and nucleocapsid proteins. Accordingly, this cannot be a detailed account of all relevant aspects but instead a summary that bridges between the different disciplines. We describe concepts and cover a selection of the relevant literature as an incentive for diving deeper into the relevant material. Our focus is on more recent developments around the COVID-19 pandemic caused by SARS-CoV-2, applications of surfactants against the virus, and on the potential future use of surfactants for pandemic relief. We also cover the most important aspects of the historical development of using surfactants in combatting virus infections. We conclude that surfactants are already playing very important roles in various directions of defence against viruses, either directly, as in disinfection, or as carrier components of drug delivery systems for prophylaxis or treatment. By designing tailor-made surfactants, and consequently, advanced formulations, one can expect more and more effective use of surfactants, either directly as antiviral compounds or as part of more complex formulations.
Collapse
Key Words
- AFM, atomic force microscopy
- BVDV, Bovine Viral Diarrhea Virus
- C12E8, dodecyloctaglycol
- CPyC, cetylpyridinium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- Disinfection
- Enveloped viruses
- Flu, influenza virus
- HIV, human immunodeficiency virus
- HSV, herpes simplex virus
- ITC, isothermal titration calorimetry
- Ld, liquid-disordered
- Lipid bilayers
- Lo, liquid-ordered
- PA, phosphatidic acid (anionic)
- PC, phosphatidylcholine (zwitterionic)
- PE, phosphatidylethanolamine (zwitterionic)
- PI, phosphatidylinositol (anionic)
- POPC, 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- PS, phosphatidylserine (anionic)
- QUAT, quaternary alkyl ammonium
- RNP, ribonucleoprotein particle
- SAXS, small-angle X-ray scattering
- SDS, sodium dodecyl sulphate
- Surfactant
- TBP, tri-n-butyl phosphate
- TEM, transmission electron microscopy
- Virus inactivation
- cac, critical aggregate concentration
- cmc, critical micelle concentration
- p, packing parameter
Collapse
Affiliation(s)
- Miriam Simon
- Dept. of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL 3200003, Israel
| | - Michael Veit
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Klaus Osterrieder
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Straße des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
8
|
Pramod K, Kotta S, Jijith US, Aravind A, Abu Tahir M, Manju CS, Gangadharappa HV. Surfactant-based prophylaxis and therapy against COVID-19: A possibility. Med Hypotheses 2020; 143:110081. [PMID: 32653736 PMCID: PMC7340033 DOI: 10.1016/j.mehy.2020.110081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Hand hygiene by washing with soap and water is recommended for the prevention of COVID-19 spread. Soaps and detergents are explained to act by damaging viral spike glycoproteins (peplomers) or by washing out the virus through entrapment in the micelles. Technically, soaps come under a functional category of molecules known as surfactants. Surfactants are widely used in pharmaceutical formulations as excipients. We wonder why surfactants are still not tried for prophylaxis or therapy against COVID-19? That too when many of them have proven antiviral properties. Moreover, lung surfactants have already shown benefits in respiratory viral infections. Therefore, we postulate that surfactant-based prophylaxis and therapy would be promising. We believe that our hypothesis would stimulate debate or new research exploring the possibility of surfactant-based prophylaxis and therapy against COVID-19. The success of a surfactant-based technique would save the world from any such pandemic in the future too.
Collapse
Affiliation(s)
- K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Saudi Arabia
| | - U S Jijith
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - A Aravind
- College of Pharmaceutical Sciences, Govt. Medical College, Thiruvananthapuram, Kerala, India
| | - M Abu Tahir
- Formulation & Development, Steril-gene Life Sciences, Puducherry, India
| | - C S Manju
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreshwara Nagar, Bannimantap, Mysuru 570015, Karnataka, India
| |
Collapse
|
9
|
Terasaki Y, Terasaki M, Kanazawa S, Kokuho N, Urushiyama H, Kajimoto Y, Kunugi S, Maruyama M, Akimoto T, Miura Y, Igarashi T, Ohsawa I, Shimizu A. Effect of H 2 treatment in a mouse model of rheumatoid arthritis-associated interstitial lung disease. J Cell Mol Med 2019; 23:7043-7053. [PMID: 31424157 PMCID: PMC6787460 DOI: 10.1111/jcmm.14603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD), a primary cause of mortality in patients with RA, has limited treatment options. A previously established RA model in D1CC transgenic mice aberrantly expressed major histocompatibility complex class II genes in joints, developing collagen II-induced polyarthritis and anti-cyclic citrullinated peptide antibodies and interstitial pneumonitis, similar to those in humans. Molecular hydrogen (H2 ) is an efficient antioxidant that permeates cell membranes and alleviates the reactive oxygen species-induced injury implicated in RA pathogenesis. We used D1CC mice to analyse chronic lung fibrosis development and evaluate H2 treatment effects. We injected D1CC mice with type II collagen and supplied them with H2 -rich or control water until analysis. Increased serum surfactant protein D values and lung densities images were observed 10 months after injection. Inflammation was patchy within the perilymphatic stromal area, with increased 8-hydroxy-2'-deoxyguanosine-positive cell numbers and tumour necrosis factor-α, BAX, transforming growth factor-β, interleukin-6 and soluble collagen levels in the lungs. Inflammatory and fibrotic changes developed diffusely within the perilymphatic stromal area, as observed in humans. H2 treatment decreased these effects in the lungs. Thus, this model is valuable for studying the effects of H2 treatment and chronic interstitial pneumonia pathophysiology in humans. H2 appears to protect against RA-ILD by alleviating oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Satoshi Kanazawa
- Department of Molecular and Cellular Biology, Nagoya City University, Nagoya, Japan
| | - Nariaki Kokuho
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirokazu Urushiyama
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yusuke Kajimoto
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Motoyo Maruyama
- Division of Laboratory Animal Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoko Miura
- Department of Molecular and Cellular Biology, Nagoya City University, Nagoya, Japan
| | - Tsutomu Igarashi
- Department of Ophthalmology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
10
|
Liu JX, Zhang Y, Hu QP, Li JQ, Liu YT, Wu QG, Wu JG, Lai XP, Zhang ZD, Li X, Li G. Anti-inflammatory effects of rosmarinic acid-4-O-β-D-glucoside in reducing acute lung injury in mice infected with influenza virus. Antiviral Res 2017; 144:34-43. [PMID: 28461072 DOI: 10.1016/j.antiviral.2017.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
Rosmarinic acid-4-O-β-D-glucoside (RAG) is a dicaffeoyl phenolic compound isolated from Sarcandra glabra (Thunb.) Nakai. Preliminary studies show that RAG has significant anti-inflammatory properties and can alleviate ear swelling in mice and the paw swelling in rats. Here, the anti-influenza effects of RAG were investigated in mice infected with A/FM/1/47 H1N1 virus. The survival rate and body weight were observed, the lung edema, virus copies, inflammatory cytokines (including IL-4, IL-5, TNF-α and IFN-γ) and oxidative damage indexes (including SOD, MDA, NO, and CAT) were measured. Moreover, immune cell recruitment in alveoli was measured with white blood cells and differential counts. Therapeutic RAG concentrations substantially improve the symptoms, mitigate body weight loss and alleviate lung edema induced by virus, thus improve survival protection effects. Furthermore, RAG was shown to regulate influenza virus-induced inflammatory cytokine expression, specifically by downregulating the Th1 cell cytokines IFN-γ, TNF-α and upregulating the Th2 cell cytokines IL-4, IL-5. Cell migration and infiltration were also diminished after RAG administration.
Collapse
Affiliation(s)
- Jian-Xing Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiu-Ping Hu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji-Qiang Li
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yun-Tao Liu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Qing-Guang Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jian-Guo Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Ping Lai
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Dongguan, 523808, China
| | - Zhong-de Zhang
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Xiong Li
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Geng Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Awogbindin IO, Olaleye DO, Farombi EO. Mechanistic perspective of the oxido-immunopathologic resolution property of kolaviron in mice influenza pneumonitis. APMIS 2017; 125:184-196. [PMID: 28116826 DOI: 10.1111/apm.12640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/23/2016] [Indexed: 12/18/2022]
Abstract
Implicated in influenza-associated pathology are innate defence overzealousness and unabated secretion of oxidative tissue-sensitive antimicrobial agents. At different time points, mice were pre-treated with kolaviron (400 mg/kg), a natural antioxidant and anti-inflammatory agent, and subsequently challenged with 2 LD50 influenza A/H3N2/Perth/16/09 virus. After euthanasia at day 6, blood, lungs, liver and spleen were collected and processed for biochemical, immunohistochemical and flow cytometric assessment of redo-inflammatory imbalance, cytokine storm indices and T helper 1 host response. Previously kolaviron was reported to delay mortality onset, improve morbidity and attenuate myeloperoxidase activity and nitric oxide production with minimal impact on viral clearance. This study additionally confirmed nitric oxide, but not hydrogen peroxide, as the major culprit implicated in influenza virus-induced oxido-pathology. Systemic effect of the sustained inflammation and nitrosative stress was more prominent in the spleen and lung than in the liver of mice infected with A/H3N2/Perth/16/09. Influential to immunopathology was heightened pulmonary expression of IL-1β, RANTES, IL-10, MCP-1, NF-κB, iNOS and COX-2. However, kolaviron combated the influenza-established nitrative stress, reversed the elicited cytokine storm and restored the oxidized environment to a reductive milieu. Our data also suggest that kolaviron administration early in infection may foster CD4+ response. These data indicate that kolaviron may confer disease-dwindling properties during acute influenza infection via a system-wide protective approach involving multiple targets especially at the early stage of the infection.
Collapse
Affiliation(s)
| | - David O Olaleye
- Department of Virology, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
12
|
Zeng LY, Yang J, Liu S. Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin Investig Drugs 2016; 26:63-73. [PMID: 27918208 DOI: 10.1080/13543784.2017.1269170] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Seasonal influenza and pandemic outbreaks typically result in high mortality and morbidity associated with severe economic burdens. Vaccines and anti-influenza drugs have made great contributions to control the infection. However, antigenic drifts and shifts allow influenza viruses to easily escape immune neutralization and antiviral drug activity. Hemagglutinin (HA)is an important envelope protein for the entry of influenza viruses into host cells, thus, HA-targeted agents may be potential anti-influenza drugs. Areas covered: In this review, we describe arbidol, a unique licensed drug targeting HA; discuss and summarize HA-targeted anti-influenza agents been tested before or being tested currently in clinical trials, including monoclonal antibodies, small molecule inhibitors, proteins and peptides. Other small molecule inhibitors are also briefly introduced. Expert opinion: Exploring new clinical applications for existing drugs can provide additional anti-influenza candidates with promising safety and bioavailability, and largely shortened time and costs. To enhance therapeutic efficacy and avoid drug-resistance, combination therapy involving in HA-targeted anti-influenza agent is reasonable and attractive. For drug discovery, it is helpful to keep an eye on the development of methodology in organic synthesis and probe into the co-crystal structure of HA in complex with small molecule.
Collapse
Affiliation(s)
- Li-Yan Zeng
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Jie Yang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Shuwen Liu
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China.,b State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology , Southern Medical University , Guangzhou , China
| |
Collapse
|
13
|
Woods PS, Doolittle LM, Rosas LE, Joseph LM, Calomeni EP, Davis IC. Lethal H1N1 influenza A virus infection alters the murine alveolar type II cell surfactant lipidome. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1160-L1169. [PMID: 27836900 DOI: 10.1152/ajplung.00339.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 11/22/2022] Open
Abstract
Alveolar type II (ATII) epithelial cells are the primary site of influenza virus replication in the distal lung. Development of acute respiratory distress syndrome in influenza-infected mice correlates with significant alterations in ATII cell function. However, the impact of infection on ATII cell surfactant lipid metabolism has not been explored. C57BL/6 mice were inoculated intranasally with influenza A/WSN/33 (H1N1) virus (10,000 plaque-forming units/mouse) or mock-infected with virus diluent. ATII cells were isolated by a standard lung digestion protocol at 2 and 6 days postinfection. Levels of 77 surfactant lipid-related compounds of known identity in each ATII cell sample were measured by ultra-high-performance liquid chromatography-mass spectrometry. In other mice, bronchoalveolar lavage fluid was collected to measure lipid and protein content using commercial assay kits. Relative to mock-infected animals, ATII cells from influenza-infected mice contained reduced levels of major surfactant phospholipids (phosphatidylcholine, phosphatidylglycerol, and phosphatidylethanolamine) but increased levels of minor phospholipids (phosphatidylserine, phosphatidylinositol, and sphingomyelin), cholesterol, and diacylglycerol. These changes were accompanied by reductions in cytidine 5'-diphosphocholine and 5'-diphosphoethanolamine (liponucleotide precursors for ATII cell phosphatidylcholine and phosphatidylethanolamine synthesis, respectively). ATII cell lamellar bodies were ultrastructurally abnormal after infection. Changes in ATII cell phospholipids were reflected in the composition of bronchoalveolar lavage fluid, which contained reduced amounts of phosphatidylcholine and phosphatidylglycerol but increased amounts of sphingomyelin, cholesterol, and protein. Influenza infection significantly alters ATII cell surfactant lipid metabolism, which may contribute to surfactant dysfunction and development of acute respiratory distress syndrome in influenza-infected mice.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; and
| | - Lauren M Doolittle
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; and
| | - Lucia E Rosas
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; and
| | - Lisa M Joseph
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; and
| | - Edward P Calomeni
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Ian C Davis
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
14
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
15
|
Fukasaka M, Asari D, Kiyotoh E, Okazaki A, Gomi Y, Tanimoto T, Takeuchi O, Akira S, Hori M. A Lipopolysaccharide from Pantoea Agglomerans Is a Promising Adjuvant for Sublingual Vaccines to Induce Systemic and Mucosal Immune Responses in Mice via TLR4 Pathway. PLoS One 2015; 10:e0126849. [PMID: 25978818 PMCID: PMC4433252 DOI: 10.1371/journal.pone.0126849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/08/2015] [Indexed: 12/30/2022] Open
Abstract
A lipopolysaccharide from Pantoea agglomerans (LPSpa) has been applied to various fields for human use as a Toll-like receptor 4 ligand and its safety has been confirmed. Here, we showed for the first time the application of LPSpa as an effective mucosal adjuvant for activating vaccine-induced antigen specific immune responses. Mice sublingually immunized with influenza vaccine (HA split vaccine) with LPSpa induced both HA-specific IgG (systemic) and IgA (mucosal) antibody responses, which led to a significant increase in survival rate against lethal influenza virus challenge compared with subcutaneous vaccination. After sublingual administration of ovalbumin with LPSpa, ovalbumin-specific mucosal IgA responses were induced at both mucosal surfaces close to the immunized site and at remote mucosal surfaces. Sublingual administration of LPSpa evoked local antigen-uptake by dendritic cells in cervical lymph nodes. LPSpa induced cytokine production and the maturation and proliferation of innate immune cells via Toll-like receptor 4 in dendritic cells. Collectively, these results suggest that LPSpa can be used as an effective mucosal adjuvant to stimulate and activate local innate immune cells to improve and enhance mucosal vaccine potency against various pathogens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Sublingual
- Animals
- Enzyme-Linked Immunosorbent Assay
- Female
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- Immunity, Mucosal/drug effects
- Immunity, Mucosal/immunology
- Immunoglobulin A/immunology
- Immunoglobulin G/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Lipopolysaccharides/administration & dosage
- Lipopolysaccharides/immunology
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Pantoea/immunology
- Toll-Like Receptor 4/physiology
Collapse
Affiliation(s)
- Masahiro Fukasaka
- Life Science Research Center, Corporate Research & Development Division, Nitto Denko Corporation, Ibaraki, Osaka, Japan
- * E-mail: (MF); (MH)
| | - Daisuke Asari
- Life Science Research Center, Corporate Research & Development Division, Nitto Denko Corporation, Ibaraki, Osaka, Japan
| | - Eiji Kiyotoh
- Life Science Research Center, Corporate Research & Development Division, Nitto Denko Corporation, Ibaraki, Osaka, Japan
| | - Arimichi Okazaki
- Life Science Research Center, Corporate Research & Development Division, Nitto Denko Corporation, Ibaraki, Osaka, Japan
| | - Yasuyuki Gomi
- Research and Production Technology Department, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | - Takeshi Tanimoto
- Research and Production Technology Department, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Shogoin Kawara-cho, Sakyo-ku, Kyoto, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mitsuhiko Hori
- Life Science Research Center, Corporate Research & Development Division, Nitto Denko Corporation, Ibaraki, Osaka, Japan
- * E-mail: (MF); (MH)
| |
Collapse
|
16
|
Abstract
Observational data suggest that the treatment of influenza infection with neuraminidase inhibitors decreases progression to more severe illness, especially when treatment is started soon after symptom onset. However, even early treatment might fail to prevent complications in some patients, particularly those infected with novel viruses such as the 2009 pandemic influenza A H1N1, avian influenza A H5N1 virus subtype, or the avian influenza A H7N9 virus subtype. Furthermore, treatment with one antiviral drug might promote the development of antiviral resistance, especially in immunocompromised hosts and critically ill patients. An obvious strategy to optimise antiviral therapy is to combine drugs with different modes of action. Because host immune responses to infection might also contribute to illness pathogenesis, improved outcomes might be gained from the combination of antiviral therapy with drugs that modulate the immune response in an infected individual. We review available data from preclinical and clinical studies of combination antiviral therapy and of combined antiviral-immunomodulator therapy for influenza. Early-stage data draw attention to several promising antiviral combinations with therapeutic potential in severe infections, but there remains a need to substantiate clinical benefit. Combination therapies with favourable experimental data need to be tested in carefully designed aclinical trials to assess their efficacy.
Collapse
|
17
|
Administration of antenatal glucocorticoids and postnatal surfactant ameliorates respiratory distress syndrome-associated neonatal lethality in Erk3(-/-) mouse pups. Pediatr Res 2014; 76:24-32. [PMID: 24732107 PMCID: PMC4062596 DOI: 10.1038/pr.2014.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Respiratory distress syndrome (RDS) persists as a prevalent cause of infant morbidity and mortality. We have previously demonstrated that deletion of Erk3 results in pulmonary immaturity and neonatal lethality. Using RNA sequencing, we identified corticotrophin releasing hormone (CRH) and surfactant protein B (SFTPB) as potential molecular mediators of Erk3-dependent lung maturation. In this study, we characterized the impact of antenatal glucocorticoids and postnatal surfactant on neonatal survival of Erk3 null mice. METHODS In a double crossover design, we administered dexamethasone (dex) or saline to pregnant dams during the saccular stage of lung development, followed by postnatal surfactant or saline via inhalation intubation. Survival was recorded, and detailed lung histological analysis and staining for CRH and SFTPB protein expression were performed. RESULTS Without treatment, Erk3 null pups die within 6 h of birth with reduced aerated space, impaired thinning of the alveolar septa, and abundant glycogen stores, as described in human RDS. The administration of dex and surfactant improved RDS-associated lethality of Erk3(-/-) pups and partially restored functional fetal lung maturation by accelerating the downregulation of pulmonary CRH and partially rescuing the production of SFTPB. CONCLUSION These findings emphasize that Erk3 is integral to terminal differentiation of type II cells, SFTPB production, and fetal pulmonary maturity.
Collapse
|
18
|
Eyer L, Hruska K. Antiviral agents targeting the influenza virus: a review and publication analysis. VET MED-CZECH 2013; 58:113-185. [DOI: 10.17221/6746-vetmed] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|