1
|
Shahid GB, Ahan RE, Ostaku J, Seker UOS. Bacterial Living Therapeutics with Engineered Protein Secretion Circuits to Eliminate Breast Cancer Cells. ACS Synth Biol 2024; 13:3150-3162. [PMID: 39367855 DOI: 10.1021/acssynbio.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Cancer therapy can be limited by potential side effects, and bacteria-based living cancer therapeutics have gained scientific interest in recent years. However, the full potential of bacteria as therapeutics has yet to be explored due to engineering challenges. In this study, we present a bacterial device designed to specifically target and eliminate breast cancer cells. We have engineered Escherichia coli (E. coli) to bind to HER2 receptors on breast cancer cells while also secreting a toxin, HlyE, which is a pore-forming protein. The binding of E. coli to HER2 is facilitated by a nanobody expressed on the bacteria's surface via the Ag43 autotransporter protein system. Our findings demonstrate that the nanobody efficiently binds to HER2+ cells in vitro, and we have utilized the YebF secretion tag to secrete HlyE and kill the target cancer cells. Overall, our results highlight the potential of our engineered bacteria as an innovative strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Gozeel Binte Shahid
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Julian Ostaku
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Chen K, Guan Y, Hu R, Cui X, Liu Q. Characterization of the LysP2110-HolP2110 Lysis System in Ralstonia solanacearum Phage P2110. Int J Mol Sci 2023; 24:10375. [PMID: 37373522 DOI: 10.3390/ijms241210375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Ralstonia solanacearum, a pathogen causing widespread bacterial wilt disease in numerous crops, currently lacks an optimal control agent. Given the limitations of traditional chemical control methods, including the risk of engendering drug-resistant strains and environmental harm, there is a dire need for sustainable alternatives. One alternative is lysin proteins that selectively lyse bacteria without contributing to resistance development. This work explored the biocontrol potential of the LysP2110-HolP2110 system of Ralstonia solanacearum phage P2110. Bioinformatics analyses pinpointed this system as the primary phage-mediated host cell lysis mechanism. Our data suggest that LysP2110, a member of the Muraidase superfamily, requires HolP2110 for efficient bacterial lysis, presumably via translocation across the bacterial membrane. LysP2110 also exhibits broad-spectrum antibacterial activity in the presence of the outer membrane permeabilizer EDTA. Additionally, we identified HolP2110 as a distinct holin structure unique to the Ralstonia phages, underscoring its crucial role in controlling bacterial lysis through its effect on bacterial ATP levels. These findings provide valuable insights into the function of the LysP2110-HolP2110 lysis system and establish LysP2110 as a promising antimicrobial agent for biocontrol applications. This study underpins the potential of these findings in developing effective and environment-friendly biocontrol strategies against bacterial wilt and other crop diseases.
Collapse
Affiliation(s)
- Kaihong Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanhui Guan
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ronghua Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodong Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Li X, Zhang B, Hu Q, Chen C, Huang J, Liu L, Wang S. Refinement of the Fusion Tag PagP for Effective Formation of Inclusion Bodies in Escherichia coli. Microbiol Spectr 2023; 11:e0380322. [PMID: 37222613 PMCID: PMC10269538 DOI: 10.1128/spectrum.03803-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Methods for efficient insoluble protein production require further exploration. PagP, an Escherichia coli outer membrane protein with high β-sheet content, could function as an efficient fusion partner for inclusion body-targeted expression of recombinant peptides. The primary structure of a given polypeptide determines to a large extent its propensity to aggregate. Herein, aggregation "hot spots" (HSs) in PagP were analyzed using the web-based software AGGRESCAN, leading to identification of a C-terminal region harboring numerous HSs. Moreover, a proline-rich region was found in the β-strands. Substitution of these prolines by residues with high β-sheet propensity and hydrophobicity significantly improved its ability to form aggregates. Consequently, the absolute yields of recombinant antimicrobial peptides Magainin II, Metchnikowin, and Andropin were increased significantly when expressed in fusion with this refined version of PagP. We describe separation of recombinant target proteins expressed in inclusion bodies fused with the tag. An artificial NHT linker peptide with three motifs was implemented for separation and purification of authentic recombinant antimicrobial peptides. IMPORTANCE Fusion tag-induced formation of inclusion bodies provides a powerful means to express unstructured or toxic proteins. For a given fusion tag, how to enhance the formation of inclusion bodies remains to be explored. Our study illustrated that the aggregation HSs in a fusion tag played important roles in mediating its insoluble expression. Efficient production of inclusion bodies could also be implemented by refining its primary structure to form a more stable β-sheet with higher hydrophobicity. This study provides a promising method for improvement of the insoluble expression of recombinant proteins.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Baorong Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Quan Hu
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Changchao Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Jiahua Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Lu Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Shengbin Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Li X, Huang J, Zhou J, Sun C, Zheng Y, Wang Y, Zhu J, Wang S. Acyl carrier protein tag can enhance tobacco etch virus protease stability and promote its covalent immobilisation. Appl Microbiol Biotechnol 2023; 107:1697-1705. [PMID: 36763116 PMCID: PMC10006060 DOI: 10.1007/s00253-023-12377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Fusion expression is widely employed to enhance the solubility of recombinant proteins. However, removal of the fusion tag is often required due to its potential impact on the structure and activity of passenger proteins. Tobacco etch virus (TEV) protease is widely used for this purpose due to its stringent sequence recognition. In the present work, fusion to the acyl carrier protein from E. coli fatty acid synthase (ACP) significantly increased the yield of recombinant soluble TEV, and the ACP tag also greatly improved TEV stability. The cleavage activity of TEV was not affected by the ACP fusion tag, and ACP-TEV retained high activity, even at unfavourable pH values. Moreover, ACP-TEV could be efficiently modified by co-expressed E. coli holo-ACP synthase (AcpS), leading to covalent attachment of 4'-phosphopantetheine (4'-PP) group to ACP. The sulfhydryl group of the long, flexible 4'-PP chain displayed high specific reactivity with iodoacetyl groups on the solid support. Thus, TEV could be immobilised effectively and conveniently via the active holo-ACP, and immobilised TEV retained high cleavage activity after a long storage period and several cycles of reuse. As a low-cost and recyclable biocatalyst, TEV immobilised by this method holds promise for biotechnological research and development. KEY POINTS: • The ACP tag greatly increased the soluble expression and stability of TEV protease. • The ACP tag did not affect the cleavage activity of TEV. • The holo-ACP Tag effectively mediated the covalent immobilisation of TEV.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China
| | - Jiahua Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China
| | - Junjie Zhou
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China
| | - Changsheng Sun
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China
| | - Yujiao Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China
| | - Yuan Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China
| | - Jin Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China
| | - Shengbin Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
5
|
Chao S, Liu Y, Ding N, Lin Y, Wang Q, Tan J, Li W, Zheng Y, Hu X, Li J. Highly Expressed Soluble Recombinant Anti-GFP VHHs in Escherichia coli via Optimized Signal Peptides, Strains, and Inducers. Front Mol Biosci 2022; 9:848829. [PMID: 35359590 PMCID: PMC8960375 DOI: 10.3389/fmolb.2022.848829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Antigen-binding variable domains of the H chain of heavy-chain antibodies (VHHs), also known as nanobodies (Nbs), are of great interest in imaging technique, disease prevention, diagnosis, and therapy. High-level expression of soluble Nbs is very important for its industrial production. In this study, we optimized the expression system of anti-green fluorescent protein (GFP) VHHs with three different signal peptides (SPs), outer-membrane protein A (OmpA), pectate lyase B (PelB), and L-asparaginase II SP (L-AsPsII), in different Escherichia coli strains via isopropyl β-D-thiogalactoside (IPTG) induction and auto-induction, respectively. The solubility of recombinant anti-GFP VHHs with PelB or OmpA was significantly enhanced to the same extent by IPTG induction and auto-induction in BL21 (DE3) E. coli strain and the maximum yield of target protein reached approximately 0.4 mg/l in a shake flask. The binding activity of recombinant anti-GFP VHHs was also confirmed to be retained by native-polyacrylamide gel electrophoresis (PAGE). These results suggest that SPs like OmpA and PelB could efficiently improve the recombinant anti-GFP VHH solubility without changing its bioactivity, providing a novel strategy to optimize the E. coli expression system of soluble VHHs, and lay the foundation for the industrial production of soluble recombinant anti-GFP VHHs and the research of other VHHs in the future.
Collapse
Affiliation(s)
- Shuangying Chao
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Yuhang Liu
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Ning Ding
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Yue Lin
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Qian Wang
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Junwen Tan
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Wei Li
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Yang Zheng
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
- *Correspondence: Yang Zheng, ; Xuejun Hu, ; Junming Li,
| | - Xuejun Hu
- Medical College, Dalian University, Dalian, China
- DalianKey Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
- *Correspondence: Yang Zheng, ; Xuejun Hu, ; Junming Li,
| | - Junming Li
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
- *Correspondence: Yang Zheng, ; Xuejun Hu, ; Junming Li,
| |
Collapse
|
6
|
Identification and Characterization of a New Type of Holin-Endolysin Lysis Cassette in Acidovorax oryzae Phage AP1. Viruses 2022; 14:v14020167. [PMID: 35215761 PMCID: PMC8879335 DOI: 10.3390/v14020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Phages utilize lysis systems to allow the release of newly assembled viral particles that kill the bacterial host. This is also the case for phage AP1, which infects the rice pathogen Acidovorax oryzae. However, how lysis occurs on a molecular level is currently unknown. We performed in silico bioinformatics analyses, which indicated that the lysis cassette contains a holin (HolAP) and endolysin (LysAP), which are encoded by two adjacent genes. Recombinant expression of LysAP caused Escherichia coli lysis, while HolAP arrested growth. Co-expression of both proteins resulted in enhanced lysis activity compared to the individual proteins alone. Interestingly, LysAP contains a C-terminal region transmembrane domain, which is different from most known endolysins where a N-terminal hydrophobic region is found, with the potential to insert into the membrane. We show that the C-terminal transmembrane domain is crucial for protein localization and bacterial lysis in phage AP1. Our study characterizes the new phage lysis cassette and the mechanism to induce cell disruption, giving new insight in the understanding of phage life cycles.
Collapse
|
7
|
Burdette LA, Leach SA, Wong HT, Tullman-Ercek D. Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb Cell Fact 2018; 17:196. [PMID: 30572895 PMCID: PMC6302416 DOI: 10.1186/s12934-018-1041-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/08/2018] [Indexed: 11/10/2022] Open
Abstract
Gram-negative bacteria are attractive hosts for recombinant protein production because they are fast growing, easy to manipulate, and genetically stable in large cultures. However, the utility of these microbes would expand if they also could secrete the product at commercial scales. Secretion of biotechnologically relevant proteins into the extracellular medium increases product purity from cell culture, decreases downstream processing requirements, and reduces overall cost. Thus, researchers are devoting significant attention to engineering Gram-negative bacteria to secrete recombinant proteins to the extracellular medium. Secretion from these bacteria operates through highly specialized systems, which are able to translocate proteins from the cytosol to the extracellular medium in either one or two steps. Building on past successes, researchers continue to increase the secretion efficiency and titer through these systems in an effort to make them viable for industrial production. Efforts include modifying the secretion tags required for recombinant protein secretion, developing methods to screen or select rapidly for clones with higher titer or efficiency, and improving reliability and robustness of high titer secretion through genetic manipulations. An additional focus is the expression of secretion machineries from pathogenic bacteria in the "workhorse" of biotechnology, Escherichia coli, to reduce handling of pathogenic strains. This review will cover recent advances toward the development of high-expressing, high-secreting Gram-negative production strains.
Collapse
Affiliation(s)
- Lisa Ann Burdette
- Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley, USA
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Samuel Alexander Leach
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, USA
| | - Han Teng Wong
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, USA
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, USA
| |
Collapse
|
8
|
Wang J, Guo J, Wang S, Zeng Z, Zheng D, Yao X, Yu H, Ruan L. The global strategy employed by Xanthomonas oryzae pv. oryzae to conquer low-oxygen tension. J Proteomics 2017; 161:68-77. [PMID: 28412528 DOI: 10.1016/j.jprot.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a notorious rice pathogen that causes bacterial leaf blight (BLB), a destructive rice disease. Low-oxygen tension in the xylem vessels of rice stresses Xoo during infection. In this study, differentially expressed proteins under normoxic and hypoxic conditions were identified using high-performance liquid chromatography (HPLC) coupled with LC-MS/MS to investigate the global effects of low oxygen environment on Xoo PXO99A. A statistically validated list of 187 (normoxia) and 140 (hypoxia) proteins with functional assignments was generated, allowing the reconstruction of central metabolic pathways. Ten proteins involved in aromatic amino acid biosynthesis, glycolysis, butanoate metabolism, propanoate metabolism and biological adhesion were significantly modulated under low-oxygen tension. The genes encoded by these proteins were in-frame deleted, and three of them were determined to be required for full virulence in Xoo. The contributions of these three genes to important virulence-associated functions, including extracellular polysaccharide, cell motility and antioxidative ability, are presented. BIOLOGICAL SIGNIFICANCE To study how Xanthomonas oryzae pv. oryzae (Xoo) conquers low-oxygen tension in the xylem of rice, we identified differentially expressed proteins under normoxic and hypoxia. We found 140 proteins that uniquely expressed under the hypoxia were involved in 33 metabolism pathways. We identified 3 proteins were required for full virulence in Xoo and related to the ability of extracellular polysaccharide, cell motility, and antioxidative. This study is helpful for broadening our knowledge of the metabolism processed of Xoo in the xylem of rice.
Collapse
Affiliation(s)
- Jianliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Guo
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shasha Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Zeng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoquan Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Natarajan A, Haitjema CH, Lee R, Boock JT, DeLisa MP. An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli. ACS Synth Biol 2017; 6:875-883. [PMID: 28182400 DOI: 10.1021/acssynbio.6b00366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved for most synthetic biology and metabolic engineering applications. To address this challenge, we developed a generalizable survival-based selection strategy that effectively couples extracellular protein secretion to antibiotic resistance and enables facile isolation of rare mutants from very large populations (i.e., 1010-12 clones) based simply on cell growth. Using this strategy in the context of the YebF pathway, a comprehensive library of E. coli single-gene knockout mutants was screened and several gain-of-function mutations were isolated that increased the efficiency of extracellular expression without compromising the integrity of the outer membrane. We anticipate that this user-friendly strategy could be leveraged to better understand the YebF pathway and other secretory mechanisms-enabling the exploration of protein secretion in pathogenesis as well as the creation of designer E. coli strains with greatly expanded secretomes-all without the need for expensive exogenous reagents, assay instruments, or robotic automation.
Collapse
Affiliation(s)
- Aravind Natarajan
- Department
of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Charles H. Haitjema
- Department
of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Robert Lee
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jason T. Boock
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, Ithaca, New York 14853, United States
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Mao YH, Ma JC, Li F, Hu Z, Wang HH. Ralstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III. PLoS One 2015; 10:e0136261. [PMID: 26305336 PMCID: PMC4549310 DOI: 10.1371/journal.pone.0136261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants. However, thus far, the fatty acid biosynthesis pathway of R. solanacearum has not been well studied. In this study, we characterized two forms of 3-keto-ACP synthase III, RsFabH and RsFabW, in R. solanacearum. RsFabH, the homologue of Escherichia coli FabH, encoded by the chromosomal RSc1050 gene, catalyzes the condensation of acetyl-CoA with malonyl-ACP in the initiation steps of fatty acid biosynthesis in vitro. The RsfabH mutant lost de novo fatty acid synthetic ability, and grows in medium containing free fatty acids. RsFabW, a homologue of Pseudomonas aeruginosa PA3286, encoded by a megaplasmid gene, RSp0194, condenses acyl-CoA (C2-CoA to C10-CoA) with malonyl-ACP to produce 3-keto-acyl-ACP in vitro. Although the RsfabW mutant was viable, RsfabW was responsible for RsfabH mutant growth on medium containing free fatty acids. Our results also showed that RsFabW could condense acyl-ACP (C4-ACP to C8-ACP) with malonyl-ACP, to produce 3-keto-acyl-ACP in vitro, which implies that RsFabW plays a special role in fatty acid synthesis of R. solanacearum. All of these data confirm that R. solanacearum not only utilizes acetyl-CoA, but also, utilizes medium-chain acyl-CoAs or acyl-ACPs as primers to initiate fatty acid synthesis.
Collapse
Affiliation(s)
- Ya-Hui Mao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Feng Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
- * E-mail:
| |
Collapse
|
11
|
Low KO, Muhammad Mahadi N, Md. Illias R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97:3811-26. [DOI: 10.1007/s00253-013-4831-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|