1
|
van den Dolder FW, Dinani R, Warnaar VAJ, Vučković S, Passadouro AS, Nassar AA, Ramsaroep AX, Burchell GB, Schoonmade LJ, van der Velden J, Goversen B. Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review. JACC Basic Transl Sci 2025; 10:511-546. [PMID: 40306862 DOI: 10.1016/j.jacbts.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025]
Abstract
To advance research in hypertrophic cardiomyopathy (HCM), and guide researchers in choosing the optimal model to answer their research questions, we performed a systematic review of all models investigating HCM induced by gene variants ranging from animal models to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our research question entailed: which experimental models of HCM have been created thus far, and which major hallmarks of HCM do they present? Out of the 603 included papers, the majority included animal models, though a clear transition to hiPSC-CM is visible since 2010. Our review showed that only 36 mouse models showed minimal 4 out of 6 HCM disease markers (cell/cardiac hypertrophy, disarray, fibrosis, diastolic dysfunction, and arrhythmias), while only 17 hiPSC-CM models showed 3 out of 4 HCM cell characteristics. Our review emphasizes the need to better report data on sample size, sex, age, and relevant disease-specific characteristics.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Sofija Vučković
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Passadouro
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Ali A Nassar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Azhaar X Ramsaroep
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands
| | - George B Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Birgit Goversen
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Labib D, Haykowsky M, Sonnex E, Mackey JR, Thompson RB, Paterson DI, Pituskin E. Long-term cardiac MRI follow up of MANTICORE (Multidisciplinary Approach to Novel Therapies in Cardio-Oncology REsearch). CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:13. [PMID: 39923094 PMCID: PMC11806551 DOI: 10.1186/s40959-025-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND This study investigates the long-term cardiac effects of trastuzumab-based chemotherapy in early breast cancer (EBC) survivors. We extend the original MANTICORE trial which showed that angiotensin-converting enzyme inhibitors (ACEI) and beta-blockers (BB) could mitigate the decline in left ventricular (LV) ejection fraction (EF) during the first year of trastuzumab treatment. OBJECTIVES We hypothesized that, over time, cardiac function would decline further and adverse changes in cardiac geometry would occur due to the aging of the population and prior treatment. METHODS The study enrolled 52 participants from the original MANTICORE trial cohort, with cardiac magnetic resonance (CMR) imaging conducted at a median of 6.5 years post randomization to treatment. RESULTS We found that, contrary to the hypothesis, participants maintained LV EF over the follow-up period. Specifically, the placebo group exhibited a recovery in LV EF to levels comparable with the treatment groups, suggesting no long-term differential impact on cardiac function. However, a significant reduction in LV mass was observed across all groups, the clinical implications of which remain unclear. CONCLUSIONS The findings suggest that in a selected population receiving trastuzumab-based chemotherapy, extended cardiac imaging surveillance beyond one-year post-treatment may be unnecessary. We posit that the presence of HER2 overexpressing breast cancer influenced hypertrophic changes to cardiac geometry observed at baseline and one year, which resolved after completing HER2-blocking treatment. The study also highlights the need for further research to understand the significance of changes in cardiac geometry during and after breast cancer treatment.
Collapse
Affiliation(s)
- Dina Labib
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Department of Cardiovascular Medicine, Cairo University, Cairo, Egypt
| | - Mark Haykowsky
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
| | | | | | - Richard B Thompson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - D Ian Paterson
- University of Ottawa Heart Institute, Ottawa Ontario, Canada
| | - Edith Pituskin
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Fortini F, Vieceli Dalla Sega F, Lazzarini E, Aquila G, Sysa-Shah P, Bertero E, Ascierto A, Severi P, Ouambo Talla AW, Schirone A, Gabrielson K, Morciano G, Patergnani S, Pedriali G, Pinton P, Ferrari R, Tremoli E, Ameri P, Rizzo P. ErbB2-NOTCH1 axis controls autophagy in cardiac cells. Biofactors 2025; 51:e2091. [PMID: 38994725 DOI: 10.1002/biof.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Although the epidermal growth factor receptor 2 (ErbB2) and Notch1 signaling pathways have both significant roles in regulating cardiac biology, their interplay in the heart remains poorly investigated. Here, we present evidence of a crosstalk between ErbB2 and Notch1 in cardiac cells, with effects on autophagy and proliferation. Overexpression of ErbB2 in H9c2 cardiomyoblasts induced Notch1 activation in a post-transcriptional, p38-dependent manner, while ErbB2 inhibition with the specific inhibitor, lapatinib, reduced Notch1 activation. Moreover, incubation of H9c2 cells with lapatinib resulted in stalled autophagic flux and decreased proliferation, consistent with the established cardiotoxicity of this and other ErbB2-targeting drugs. Confirming the findings in H9c2 cells, exposure of primary neonatal mouse cardiomyocytes to exogenous neuregulin-1, which engages ErbB2, stimulated proliferation, and this effect was abrogated by concomitant inhibition of the enzyme responsible for Notch1 activation. Furthermore, the hearts of transgenic mice specifically overexpressing ErbB2 in cardiomyocytes had increased levels of active Notch1 and of Notch-related genes. These data expand the knowledge of ErbB2 and Notch1 functions in the heart and may allow better understanding the mechanisms of the cardiotoxicity of ErbB2-targeting cancer treatments.
Collapse
Affiliation(s)
| | | | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale Lugano, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Giorgio Aquila
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Edoardo Bertero
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Achille Wilfred Ouambo Talla
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessio Schirone
- Oncology and Hematology Department, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giampaolo Morciano
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Paolo Pinton
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
| | - Pietro Ameri
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Genova, Italy
- Cardiac, Thoracic, and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Rizzo
- GVM Care & Research, Maria Cecilia Hospital, Ravenna, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Hou C, Fei S, Jia F. Necroptosis and immune infiltration in hypertrophic cardiomyopathy: novel insights from bioinformatics analyses. Front Cardiovasc Med 2024; 11:1293786. [PMID: 38947229 PMCID: PMC11211569 DOI: 10.3389/fcvm.2024.1293786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background Hypertrophic Cardiomyopathy (HCM), a widespread genetic heart disorder, is largely associated with sudden cardiac fatality. Necroptosis, an emerging type of programmed cell death, plays a fundamental role in several cardiovascular diseases. Aim This research utilized bioinformatics analysis to investigate necroptosis's implication in HCM. Methods The study retrieved RNA sequencing datasets GSE130036 and GSE141910 from the Gene Expression Omnibus (GEO) database. It detected necroptosis-linked differentially expressed genes (NRDEGs) by reviewing both the gene set for necroptosis and the differently expressed genes (DEGs). The enriched signaling pathway of HCM was assessed using GSEA, while common DEGs were studied through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Concurrently, the Protein-Protein Interaction network (PPI) proved useful for identifying central genes. CIBERSORT facilitated evaluating the correlation between distinct immune cell-type prevalence and NRDEGs by analyzing immune infiltration patterns. Lastly, GSE141910 dataset validated the expression ranks of NRDEGs and immune-cell penetration. Results The investigation disclosed significant enrichment and activation of the necroptosis pathway in HCM specimens. Seventeen diverse genes, including CYBB, BCL2, and JAK2 among others, were identified in the process. PPI network scrutiny classified nine of these genes as central genes. Results from GO and KEGG enrichment analyses showed substantial connections of these genes to pathways pertaining to the HIF-1 signaling track, necroptosis, and NOD-like receptor signaling process. Moreover, an imbalance in M2 macrophage cells in HCM samples was observed. Finally, CYBB, BCL2, and JAK2 emerged as vital genes and were validated using the GSE141910 dataset. Conclusion These results indicate necroptosis as a probable underlying factor in HCM, with immune cell infiltration playing a part. Additionally, CYBB, BCL2, JAK2 could act as potential biomarkers for recognizing HCM. This information forms crucial insights into the basic mechanisms of HCM and could enhance its diagnosis and management.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Eggertsen TG, Saucerman JJ. Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy. Br J Pharmacol 2023; 180:2721-2735. [PMID: 37302817 PMCID: PMC10592153 DOI: 10.1111/bph.16163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Pathological cardiomyocyte hypertrophy is a response to cardiac stress that typically leads to heart failure. Despite being a primary contributor to pathological cardiac remodelling, the therapeutic space that targets hypertrophy is limited. Here, we apply a network model to virtually screen for FDA-approved drugs that induce or suppress cardiomyocyte hypertrophy. EXPERIMENTAL APPROACH A logic-based differential equation model of cardiomyocyte signalling was used to predict drugs that modulate hypertrophy. These predictions were validated against curated experiments from the prior literature. The actions of midostaurin were validated in new experiments using TGFβ- and noradrenaline (NE)-induced hypertrophy in neonatal rat cardiomyocytes. KEY RESULTS Model predictions were validated in 60 out of 70 independent experiments from the literature and identify 38 inhibitors of hypertrophy. We additionally predict that the efficacy of drugs that inhibit cardiomyocyte hypertrophy is often context dependent. We predicted that midostaurin inhibits cardiomyocyte hypertrophy induced by TGFβ, but not noradrenaline, exhibiting context dependence. We further validated this prediction by cellular experiments. Network analysis predicted critical roles for the PI3K and RAS pathways in the activity of celecoxib and midostaurin, respectively. We further investigated the polypharmacology and combinatorial pharmacology of drugs. Brigatinib and irbesartan in combination were predicted to synergistically inhibit cardiomyocyte hypertrophy. CONCLUSION AND IMPLICATIONS This study provides a well-validated platform for investigating the efficacy of drugs on cardiomyocyte hypertrophy and identifies midostaurin for consideration as an antihypertrophic drug.
Collapse
Affiliation(s)
- Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
6
|
Peters AE, Nguyen M, Green JB, Pearson ER, Buse J, Sourij H, Hernandez AF, Sattar N, Holman RR, Mentz RJ, Shah SH. Proteomic Pathways across Ejection Fraction Spectrum in Heart Failure: an EXSCEL Substudy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.16.23288273. [PMID: 37293003 PMCID: PMC10246051 DOI: 10.1101/2023.05.16.23288273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Ejection fraction (EF) is a key component of heart failure (HF) classification, including the increasingly codified HF with mildly reduced EF (HFmrEF) category. However, the biologic basis of HFmrEF as an entity distinct from HF with preserved EF (HFpEF) and reduced EF (HFrEF) has not been well characterized. Methods The EXSCEL trial randomized participants with type 2 diabetes (T2DM) to once-weekly exenatide (EQW) vs. placebo. For this study, profiling of ∼5000 proteins using the SomaLogic SomaScan platform was performed in baseline and 12-month serum samples from N=1199 participants with prevalent HF at baseline. Principal component analysis (PCA) and ANOVA (FDR p<0.1) were used to determine differences in proteins between three EF groups, as previously curated in EXSCEL (EF>55% [HFpEF], EF 40-55% [HFmrEF], EF<40% [HFrEF]). Cox proportional hazards was used to assess association between baseline levels of significant proteins, and changes in protein level between baseline and 12-month, with time-to-HF hospitalization. Mixed models were used to assess whether significant proteins changed differentially with exenatide vs. placebo therapy. Results Of N=1199 EXSCEL participants with prevalent HF, 284 (24%), 704 (59%) and 211 (18%) had HFpEF, HFmrEF and HFrEF, respectively. Eight PCA protein factors and 221 individual proteins within these factors differed significantly across the three EF groups. Levels of the majority of proteins (83%) demonstrated concordance between HFmrEF and HFpEF, but higher levels in HFrEF, predominated by the domain of extracellular matrix regulation, e.g. COL28A1 and tenascin C [TNC]; p<0.0001. Concordance between HFmrEF and HFrEF was observed in a minority of proteins (1%) including MMP-9 (p<0.0001). Biologic pathways of epithelial mesenchymal transition, ECM receptor interaction, complement and coagulation cascades, and cytokine receptor interaction demonstrated enrichment among proteins with the dominant pattern, i.e. HFmrEF-HFpEF concordance. Baseline levels of 208 (94%) of the 221 proteins were associated with time-to-incident HF hospitalization including domains of extracellular matrix (COL28A1, TNC), angiogenesis (ANG2, VEGFa, VEGFd), myocyte stretch (NT-proBNP), and renal function (cystatin-C). Change in levels of 10 of the 221 proteins from baseline to 12 months (including increase in TNC) predicted incident HF hospitalization (p<0.05). Levels of 30 of the 221 significant proteins (including TNC, NT-proBNP, ANG2) were reduced differentially by EQW compared with placebo (interaction p<0.0001). Conclusions In this HF substudy of a large clinical trial of people with T2DM, we found that serum levels of most proteins across multiple biologic domains were similar between HFmrEF and HFpEF. HFmrEF may be more biologically similar to HFpEF than HFrEF, and specific related biomarkers may offer unique data on prognosis and pharmacotherapy modification with variability by EF.
Collapse
|
7
|
Xu M, Bermea KC, Ayati M, Kim HB, Yang X, Medina A, Fu Z, Heravi A, Zhang X, Na CH, Everett AD, Gabrielson K, Foster DB, Paolocci N, Murphy AM, Ramirez-Correa GA. Alteration in tyrosine phosphorylation of cardiac proteome and EGFR pathway contribute to hypertrophic cardiomyopathy. Commun Biol 2022; 5:1251. [PMID: 36380187 PMCID: PMC9666710 DOI: 10.1038/s42003-022-04021-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of serine/threonine phosphorylation of the cardiac proteome are a hallmark of heart failure. However, the contribution of tyrosine phosphorylation (pTyr) to the pathogenesis of cardiac hypertrophy remains unclear. We use global mapping to discover and quantify site-specific pTyr in two cardiac hypertrophic mouse models, i.e., cardiac overexpression of ErbB2 (TgErbB2) and α myosin heavy chain R403Q (R403Q-αMyHC Tg), compared to control hearts. From this, there are significant phosphoproteomic alterations in TgErbB2 mice in right ventricular cardiomyopathy, hypertrophic cardiomyopathy (HCM), and dilated cardiomyopathy (DCM) pathways. On the other hand, R403Q-αMyHC Tg mice indicated that the EGFR1 pathway is central for cardiac hypertrophy, along with angiopoietin, ErbB, growth hormone, and chemokine signaling pathways activation. Surprisingly, most myofilament proteins have downregulation of pTyr rather than upregulation. Kinase-substrate enrichment analysis (KSEA) shows a marked downregulation of MAPK pathway activity downstream of k-Ras in TgErbB2 mice and activation of EGFR, focal adhesion, PDGFR, and actin cytoskeleton pathways. In vivo ErbB2 inhibition by AG-825 decreases cardiomyocyte disarray. Serine/threonine and tyrosine phosphoproteome confirm the above-described pathways and the effectiveness of AG-825 Treatment. Thus, altered pTyr may play a regulatory role in cardiac hypertrophic models.
Collapse
Affiliation(s)
- Mingguo Xu
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,Department of Pediatrics, The Third People’s Hospital of Longgang District, Shenzhen, 518115 China
| | - Kevin C. Bermea
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Marzieh Ayati
- grid.449717.80000 0004 5374 269XDeparment of Computer Science/College of Engineering and Computer Science, University of Texas Rio Grande Valley School of Medicine, Edinburgh, Texas USA
| | - Han Byeol Kim
- grid.21107.350000 0001 2171 9311Department of Neurology/Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Xiaomei Yang
- grid.27255.370000 0004 1761 1174Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Andres Medina
- Department of Molecular Science/UT Health Rio Grande Valley, McAllen, TX USA
| | - Zongming Fu
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amir Heravi
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Xinyu Zhang
- grid.27255.370000 0004 1761 1174Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Chan Hyun Na
- grid.21107.350000 0001 2171 9311Department of Neurology/Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Biological Chemistry/McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Allen D. Everett
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kathleen Gabrielson
- grid.21107.350000 0001 2171 9311Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - D. Brian Foster
- grid.21107.350000 0001 2171 9311Department of Medicine/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nazareno Paolocci
- grid.21107.350000 0001 2171 9311Department of Medicine/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anne M. Murphy
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Genaro A. Ramirez-Correa
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,Department of Molecular Science/UT Health Rio Grande Valley, McAllen, TX USA
| |
Collapse
|
8
|
Masbuchin AN, Widodo, Rohman MS, Liu PY. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system? Front Cardiovasc Med 2022; 9:986570. [PMID: 36237897 PMCID: PMC9552878 DOI: 10.3389/fcvm.2022.986570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in cancer treatment due to their effectiveness in cancer cell killing. However, an off-target of this agent limits its success. Cardiotoxicity-associated TKIs have been widely reported. Tyrosine kinase is involved in many regulatory processes in a cell, and it is involved in cancer formation. Recent evidence suggests the role of tyrosine kinase in cardiovascular calcification, specifically, the calcification of heart vessels and valves. Herein, we summarized the accumulating evidence of the crucial role of receptor tyrosine kinase (RTK) in cardiovascular calcification and provided the potential clinical implication of TKIs-related ectopic calcification. We found that RTKs, depending on the ligand and tissue, can induce or suppress cardiovascular calcification. Therefore, RTKs may have varying effects on ectopic calcification. Additionally, in the context of cardiovascular calcification, TKIs do not always relate to an unfavored outcome-they might offer benefits in some cases.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Pecoraro M, Marzocco S, Franceschelli S, Popolo A. Trastuzumab and Doxorubicin Sequential Administration Increases Oxidative Stress and Phosphorylation of Connexin 43 on Ser368. Int J Mol Sci 2022; 23:ijms23126375. [PMID: 35742818 PMCID: PMC9224207 DOI: 10.3390/ijms23126375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER2) is overexpressed in up to 30% of breast cancer cases, causing a more aggressive tumour growth and poor prognosis. Trastuzumab, the humanized antibody targeted to HER2, increased the life expectancy of patients, but severe cardiotoxicity emerged as a long-term adverse effect. Clinical evidence highlights that Trastuzumab-induced cardiotoxicity drastically increases in association with Doxorubicin; however, the exact mechanisms involved remain incompletely understood. In order to analyse the molecular mechanisms involved and the possible adaptative responses to Trastuzumab and Doxorubicin treatment, in this study, H9c2 cardiomyoblasts were used. Results showed that Trastuzumab and Doxorubicin sequential administration in cardiomyoblast increased cytosolic and mitochondrial ROS production, intracellular calcium dysregulation, mitochondrial membrane depolarization, and the consequent apoptosis, induced by both Trastuzumab and Doxorubicin alone. Furthermore, in these conditions, we observed increased levels of Connexin43 phosphorylated on Ser368 (pCx43). Since phosphorylation on Ser368 decreases gap junction intracellular communication, thus reducing the spread of death signals to adjacent cells, we hypothesized that the increase in pCx43 could be an adaptative response implemented by cells to defend neighbouring cells by Trastuzumab and Doxorubicin sequential administration. However, the other side of the coin is the resulting conduction abnormalities.
Collapse
|
10
|
Genome-Wide DNA Methylation Signatures Predict the Early Asymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246291. [PMID: 34944912 PMCID: PMC8699582 DOI: 10.3390/cancers13246291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This study aimed to determine whether the methylation signature of peripheral blood mononuclear cells (PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip. We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are needed to confirm these findings.
Collapse
|
11
|
Gupta MK, Sahu A, Sun Y, Mohan ML, Kumar A, Zalavadia A, Wang X, Martelli EE, Stenson K, Witherow CP, Drazba J, Dasarathy S, Naga Prasad SV. Cardiac expression of microRNA-7 is associated with adverse cardiac remodeling. Sci Rep 2021; 11:22018. [PMID: 34759299 PMCID: PMC8581024 DOI: 10.1038/s41598-021-00778-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Although microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Anita Sahu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Yu Sun
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Maradumane L Mohan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Avinash Kumar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ajaykumar Zalavadia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xi Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Elizabeth E Martelli
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Kate Stenson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Conner P Witherow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Judy Drazba
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Srinivasan Dasarathy
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
12
|
Palanisamy S, Xue C, Ishiyama S, Naga Prasad SV, Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal 2021; 86:110092. [PMID: 34303814 DOI: 10.1016/j.cellsig.2021.110092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Cell surface receptors including the epidermal growth factor receptor (EGFR) family and G-protein coupled receptors (GPCRs) play quintessential roles in physiology, and in diseases, including cardiovascular diseases. While downstream signaling from these individual receptor families has been well studied, the cross-talk between EGF and GPCR receptor families is still incompletely understood. Including members of both receptor families, the number of receptor and ligand combinations for unique interactions is vast, offering a frontier of pharmacologic targets to explore for preventing and treating disease. This molecular cross-talk, called receptor transactivation, is reviewed here with a focus on the cardiovascular system featuring the well-studied GPCR receptors, but also discussing less-studied receptors from both families for a broad understanding of context of expansile interactions, repertoire of cellular signaling, and disease consequences. Attention is given to cell type, level of chronicity, and disease context given that transactivation and comorbidities, including diabetes, hypertension, coronavirus infection, impact cardiovascular disease and health outcomes.
Collapse
Affiliation(s)
| | - Carolyn Xue
- University of California, Los Angeles, 101 Hershey Hall, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center, Department of Surgery, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Sathyamangla Venkata Naga Prasad
- NB50, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, 1, Cleveland, OH 44195, USA.
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Miller Research Building, Room 807, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
13
|
Cheng N, Mo Q, Donelson J, Wang L, Breton G, Rodney GG, Wang J, Hirschi KD, Wehrens XHT, Nakata PA. Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. Int J Biol Sci 2021; 17:2871-2883. [PMID: 34345213 PMCID: PMC8326124 DOI: 10.7150/ijbs.60263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jimmonique Donelson
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Guo S, Okyere AD, McEachern E, Strong JL, Carter RL, Patwa VC, Thomas TP, Landy M, Song J, Lucchese AM, Martin TG, Gao E, Rajan S, Kirk JA, Koch WJ, Cheung JY, Tilley DG. Epidermal growth factor receptor-dependent maintenance of cardiac contractility. Cardiovasc Res 2021; 118:1276-1288. [PMID: 33892492 DOI: 10.1093/cvr/cvab149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
AIMS Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodeling. METHODS AND RESULTS A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, hemodynamic and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodeling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the β-adrenergic receptor (βAR) agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2 A (PP2A) regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban (PLB) and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS Altogether our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression. TRANSLATIONAL PERSPECTIVE Our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72, a PP2A regulatory subunit with an unknown impact on cardiac function. Further, we have shown that cardiomyocyte-expressed EGFR is required for the promotion of cardiac hypertrophy under conditions of chronic catecholamine stress. Altogether, our study provides new insight into the dynamic nature of cardiomyocyte-specific EGFR.
Collapse
Affiliation(s)
- Shuchi Guo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joshua L Strong
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rhonda L Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Viren C Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Toby P Thomas
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Melissa Landy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ana Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Thomas G Martin
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jonathan A Kirk
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
15
|
Sharma S, Sharma M, Rana AK, Joshi R, Swarnkar MK, Acharya V, Singh D. Deciphering key regulators involved in epilepsy-induced cardiac damage through whole transcriptome and proteome analysis in a rat model. Epilepsia 2020; 62:504-516. [PMID: 33341939 DOI: 10.1111/epi.16794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is a major outcome of cardiac dysfunction in patients with epilepsy. In continuation of our previous work, the present study was envisaged to explore the key regulators responsible for cardiac damage associated with chronic seizures using whole transcriptome and proteome analysis in a rat model of temporal lobe epilepsy. METHODS A standard lithium-pilocarpine protocol was used to induce recurrent seizures in rats. The isolated rat heart tissue was subjected to transcriptomic and proteomic analysis. An integrated approach of RNA-Seq, proteomics, and system biology analysis was used to identify key regulators involved in seizure-linked cardiac changes. The analyzed differential expression patterns and network interactions were supported by gene and protein expression studies. RESULTS Altogether, 1157 differentially expressed genes and 1264 proteins were identified in the cardiac tissue of epileptic animals through RNA-Seq and liquid chromatography with tandem mass spectrometry-based proteomic analysis, respectively. The network analysis revealed seven critical genes-STAT3, Myc, Fos, Erbb2, Erbb3, Notch1, and Mapk8-that could play a role in seizure-mediated cardiac changes. The LC-MS/MS analysis supported the activation of the transforming growth factor β (TGF-β) pathway in the heart of epileptic animals. Furthermore, our gene and protein expression studies established a key role of STAT3, Erbb, and Mapk8 to develop cardiac changes linked with recurrent seizures. SIGNIFICANCE The present multi-omics study identified STAT3, Mapk8, and Erbb as key regulators involved in seizure-associated cardiac changes. It provided a deeper understanding of molecular, cellular, and network-level operations of the identified regulators that lead to cardiac changes in epilepsy.
Collapse
Affiliation(s)
- Supriya Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Meetal Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Functional Genomics and Complex System Laboratory, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Mohit Kumar Swarnkar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Functional Genomics and Complex System Laboratory, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Pecoraro M, Pinto A, Popolo A. Trastuzumab-induced cardiotoxicity and role of mitochondrial connexin43 in the adaptive response. Toxicol In Vitro 2020; 67:104926. [DOI: 10.1016/j.tiv.2020.104926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 01/16/2023]
|
17
|
ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20092164. [PMID: 31052420 PMCID: PMC6539093 DOI: 10.3390/ijms20092164] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is an adaptive and compensatory mechanism preserving cardiac output during detrimental stimuli. Nevertheless, long-term stimuli incite chronic hypertrophy and may lead to heart failure. In this review, we analyze the recent literature regarding the role of ERK (extracellular signal-regulated kinase) activity in cardiac hypertrophy. ERK signaling produces beneficial effects during the early phase of chronic pressure overload in response to G protein-coupled receptors (GPCRs) and integrin stimulation. These functions comprise (i) adaptive concentric hypertrophy and (ii) cell death prevention. On the other hand, ERK participates in maladaptive hypertrophy during hypertension and chemotherapy-mediated cardiac side effects. Specific ERK-associated scaffold proteins are implicated in either cardioprotective or detrimental hypertrophic functions. Interestingly, ERK phosphorylated at threonine 188 and activated ERK5 (the big MAPK 1) are associated with pathological forms of hypertrophy. Finally, we examine the connection between ERK activation and hypertrophy in (i) transgenic mice overexpressing constitutively activated RTKs (receptor tyrosine kinases), (ii) animal models with mutated sarcomeric proteins characteristic of inherited hypertrophic cardiomyopathies (HCMs), and (iii) mice reproducing syndromic genetic RASopathies. Overall, the scientific literature suggests that during cardiac hypertrophy, ERK could be a “good” player to be stimulated or a “bad” actor to be mitigated, depending on the pathophysiological context.
Collapse
|
18
|
Hashmi S, Ahmad HR. Molecular switch model for cardiomyocyte proliferation. CELL REGENERATION 2019; 8:12-20. [PMID: 31205684 PMCID: PMC6557755 DOI: 10.1016/j.cr.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
This review deals with the human adult cardiomyocyte proliferation as a potential source for heart repair after injury. The mechanism to regain the proliferative capacity of adult cardiomyocytes is a challenge. However, recent studies are promising in showing that the ‘locked’ cell cycle of adult cardiomyocytes could be released through modulation of cell cycle checkpoints. In support of this are the signaling pathways of Notch, Hippo, Wnt, Akt and Jak/Stat that facilitate or inhibit the transition at cell cycle checkpoints. Cyclins and cyclin dependant kinases (CDKs) facilitate this transition which in turn is regulated by inhibitory action of pocket protein e.g. p21, p27 and p57. Transcription factors e.g. E2F, GATA4, TBx20 up regulate Cyclin A, A2, D, E, and CDK4 as promoters of cell cycle and Meis-1 and HIF-1 alpha down regulate cyclin D and E to inhibit the cell cycle. Paracrine factors like Neuregulin-1, IGF-1 and Oncostatin M and Extracellular Matrix proteins like Agrin have been involved in cardiomyocyte proliferation and dedifferentiation processes. A molecular switch model is proposed that transforms the post mitotic cell into an actively dividing cell. This model shows how the cell cycle is regulated through on- and off switch mechanisms through interaction of transcription factors and signaling pathways with proteins of the cell cycle checkpoints. Signals triggered by injury may activate the right combination of the various pathways that can ‘switch on’ the proliferation signals leading to myocardial regeneration.
Collapse
Affiliation(s)
- Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi
| | - H R Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi
| |
Collapse
|
19
|
Gabrielson K, Maronpot R, Monette S, Mlynarczyk C, Ramot Y, Nyska A, Sysa-Shah P. In Vivo Imaging With Confirmation by Histopathology for Increased Rigor and Reproducibility in Translational Research: A Review of Examples, Options, and Resources. ILAR J 2018; 59:80-98. [PMID: 30541081 PMCID: PMC6645176 DOI: 10.1093/ilar/ily010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Preclinical noninvasive imaging can be an indispensable tool for studying animal models of disease. In vivo imaging to assess anatomical, functional, and molecular features requires verification by a comparison to the macroscopic and microscopic morphological features, since all noninvasive in vivo imaging methods have much lower resolution than standard histopathology. Comprehensive pathological evaluation of the animal model is underutilized; yet, many institutions have veterinary or human pathologists with necessary comparative pathology expertise. By performing a rigorous comparison to gross or histopathology for image interpretation, these trained individuals can assist scientists with the development of the animal model, experimental design, and evaluation of the in vivo imaging data. These imaging and pathology corroboration studies undoubtedly increase scientific rigor and reproducibility in descriptive and hypothesis-driven research. A review of case examples including ultrasound, nuclear, optical, and MRI is provided to illustrate how a wide range of imaging modalities data can be confirmed by gross or microscopic pathology. This image confirmation and authentication will improve characterization of the model and may contribute to decreasing costs and number of animals used and to more rapid translation from preclinical animal model to the clinic.
Collapse
Affiliation(s)
- Kathleen Gabrielson
- Departments of Molecular and Comparative Pathology and Pathology School of Medicine, Environmental Health Engineering Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Coraline Mlynarczyk
- Department of Medicine, Division of Hematology & Medical Oncology and the Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Yuval Ramot
- Department of Dermatology, Hadassah—Hebrew University Medical Center, Kiryat Hadassah, Jerusalem, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel and Toxicologic Pathology, Timrat, Israel
| | - Polina Sysa-Shah
- Department of Radiology, Miller Research Building Molecular Imaging Service Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Frank DU, Sutcliffe MD, Saucerman JJ. Network-based predictions of in vivo cardiac hypertrophy. J Mol Cell Cardiol 2018; 121:180-189. [PMID: 30030017 DOI: 10.1016/j.yjmcc.2018.07.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Cardiac hypertrophy is a common response of cardiac myocytes to stress and a predictor of heart failure. While in vitro cell culture studies have identified numerous molecular mechanisms driving hypertrophy, it is unclear to what extent these mechanisms can be integrated into a consistent framework predictive of in vivo phenotypes. To address this question, we investigate the degree to which an in vitro-based, manually curated computational model of the hypertrophy signaling network is able to predict in vivo hypertrophy of 52 cardiac-specific transgenic mice. After minor revisions motivated by in vivo literature, the model concordantly predicts the qualitative responses of 78% of output species and 69% of signaling intermediates within the network model. Analysis of four double-transgenic mouse models reveals that the computational model robustly predicts hypertrophic responses in mice subjected to multiple, simultaneous perturbations. Thus the model provides a framework with which to mechanistically integrate data from multiple laboratories and experimental systems to predict molecular regulation of cardiac hypertrophy.
Collapse
Affiliation(s)
- Deborah U Frank
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States; Department of Pediatrics, University of Virginia, HSC Box 800386, Charlottesville 22908-0386, VA, United States.
| | - Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States; Department of Pediatrics, University of Virginia, HSC Box 800386, Charlottesville 22908-0386, VA, United States.
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville 22908, VA, United States.
| |
Collapse
|
21
|
Abstract
Death of adult cardiac myocytes and supportive tissues resulting from cardiovascular diseases such as myocardial infarction is the proximal driver of pathological ventricular remodeling that often culminates in heart failure. Unfortunately, no currently available therapeutic barring heart transplantation can directly replenish myocytes lost from the injured heart. For decades, the field has struggled to define the intrinsic capacity and cellular sources for endogenous myocyte turnover in pursuing more innovative therapeutic strategies aimed at regenerating the injured heart. Although controversy persists to this day as to the best therapeutic regenerative strategy to use, a growing consensus has been reached that the very limited capacity for new myocyte formation in the adult mammalian heart is because of proliferation of existing cardiac myocytes but not because of the activity of an endogenous progenitor cell source of some sort. Hence, future therapeutic approaches should take into consideration the fundamental biology of myocyte renewal in designing strategies to potentially replenish these cells in the injured heart.
Collapse
Affiliation(s)
| | - Jeffery D Molkentin
- From the Department of Pediatrics (R.J.V., J.D.M.)
- Howard Hughes Medical Institute (J.D.M.)
| | - Steven R Houser
- Cincinnati Children's Hospital Medical Center, OH; and the Lewis Katz School of Medicine, Cardiovascular Research Center, Temple University, Philadelphia, PA (S.R.H.)
| |
Collapse
|
22
|
Maronpot RR, Nyska A, Troth SP, Gabrielson K, Sysa-Shah P, Kalchenko V, Kuznetsov Y, Harmelin A, Schiffenbauer YS, Bonnel D, Stauber J, Ramot Y. Regulatory Forum Opinion Piece*: Imaging Applications in Toxicologic Pathology-Recommendations for Use in Regulated Nonclinical Toxicity Studies. Toxicol Pathol 2018. [PMID: 28641506 DOI: 10.1177/0192623317710014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Available imaging systems for use in preclinical toxicology studies increasingly show utility as important tools in the toxicologic pathologist's armamentarium, permit longitudinal evaluation of functional and morphological changes in tissues, and provide important information such as organ and lesion volume not obtained by conventional toxicology study parameters. Representative examples of practical imaging applications in toxicology research and preclinical studies are presented for ultrasound, positron emission tomography/single-photon emission computed tomography, optical, magnetic resonance imaging, and matrix-assisted laser desorption ionization-imaging mass spectrometry imaging. Some of the challenges for making imaging systems good laboratory practice-compliant for regulatory submission are presented. Use of imaging data on a case-by-case basis as part of safety evaluation in regulatory submissions is encouraged.
Collapse
Affiliation(s)
| | - Abraham Nyska
- 2 Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, Israel
| | - Sean P Troth
- 3 Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kathleen Gabrielson
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vyacheslav Kalchenko
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Yuval Ramot
- 8 Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
23
|
Wang J, Zhang J, Ding X, Wang Y, Li Z, Zhao W, Jia J, Zhou J, Ge J. Differential microRNA expression profiles and bioinformatics analysis between young and aging spontaneously hypertensive rats. Int J Mol Med 2018; 41:1584-1594. [PMID: 29328372 PMCID: PMC5819922 DOI: 10.3892/ijmm.2018.3370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve a role as important regulators in cardiac hypertrophy. The present study aimed to reveal the differential expression profile of miRNAs between young and aging spontaneously hypertensive rats (SHRs) and studied the functional annotation of predicted targets. Briefly, 3-month-old and 12-month-old SHRs (n=3/group) were subjected to echocardiography, histopathological analysis and dihydroethidium staining. Subsequently, small RNA sequencing and data processing was conducted to identify the differentially expressed miRNAs between these two groups. Eight significantly upregulated miRNAs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), followed by in silico target gene prediction. Functional annotation analysis of the predicted targets was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. As a result, significantly impaired left ventricular diastolic function was detected in the 12-month-old SHRs, alongside increased myocyte cross-sectional area and percentage area of fibrosis, elevated reactive oxygen species production and reduced microvessel density (P<0.05). Compared with the 3-month-old SHRs, 21 miRNAs were significantly upregulated and five miRNAs were downregulated in 12-month-old rats (P<0.05). Eight upregulated, remodeling-associated miRNAs, including rno-miR-132-3p, rno-miR-182, rno-miR-208b-3p, rno-miR-212-3p, rno-miR-214-3p, rno-miR-218a-5p, rno-miR-221-3p and rno-miR-222-3p, underwent bioinformatics analysis. The target genes were significantly enriched in 688 GO terms and 39 KEGG pathways, including regulation of peptidyl-tyrosine phosphorylation, regulation of protein serine/threonine kinase activity, adrenergic signaling in cardiomyocytes, ErbB signaling pathway, mTOR signaling pathway, FoxO signaling pathway, Ras signaling pathway, insulin secretion, adipocytokine signaling pathway, HIF-1 signaling pathway, Rap1 signaling pathway, VEGF signaling pathway and TNF signaling pathway. Collectively, the present study identified a dysregulated miRNA profile in aging SHRs, which targeted numerous signaling pathways associated with cardiac hypertrophy, autophagy, insulin metabolism, angiogenesis and inflammatory response.
Collapse
Affiliation(s)
- Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jingjing Zhang
- Department of Cardiology, Zoucheng Hospital, Affiliated Hospital of Jining Medical University, Jining, Shandong 273500, P.R. China
| | - Xuefeng Ding
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637300, P.R. China
| | - Yanyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhiming Li
- Department of Cardiology, People's Hospital of Nanbu County, Nanchong, Sichuan 637300, P.R. China
| | - Weipeng Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jingmin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
24
|
Zou C, Li W, Pan Y, Khan ZA, Li J, Wu X, Wang Y, Deng L, Liang G, Zhao Y. 11β-HSD1 inhibition ameliorates diabetes-induced cardiomyocyte hypertrophy and cardiac fibrosis through modulation of EGFR activity. Oncotarget 2017; 8:96263-96275. [PMID: 29221204 PMCID: PMC5707098 DOI: 10.18632/oncotarget.22015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
11β-HSD1 has been recognized as a potential therapeutic target for type 2 diabetes. Recent studies have shown that hyperglycemia leads to activation of 11β-HSD1, increasing the intracellular glucocorticoid levels. Excess glucocorticoids may lead to the clinical manifestations of cardiac injury. Therefore, the aim of this study is to investigate whether 11β-HSD1 activation contributes to the development of diabetic cardiomyopathy. To investigate the role of 11β-HSD1, we administered a selective 11β-HSD1 inhibitor in type 1 and type 2 murine models of diabetes and in cultured cardiomyocytes. Our results show that diabetes increases cortisone levels in heart tissues. 11β-HSD1 inhibitor decreased cortisone levels and ameliorated all structural and functional features of diabetic cardiomyopathy including fibrosis and hypertrophy. We also show that high levels of glucose caused cardiomyocyte hypertrophy and increased matrix protein deposition in culture. Importantly, inhibition of 11β-HSD1 attenuated these changes. Moreover, we show that 11β-HSD1 activation mediates these changes through modulating EGFR phosphorylation and activity. Our findings demonstrate that 11β-HSD1 contributes to the development of diabetic cardiomyopathy through activation of glucocorticoid and EGFR signaling pathway. These results suggest that inhibition of 11β-HSD1 might be a therapeutic strategy for diabetic cardiomyopathy, which is independent of its effects on glucose homeostasis.
Collapse
Affiliation(s)
- Chunpeng Zou
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Ultrasonography, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Pan
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xixi Wu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liancheng Deng
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Naga Prasad SV, Gupta MK, Duan ZH, Surampudi VSK, Liu CG, Kotwal A, Moravec CS, Starling RC, Perez DM, Sen S, Wu Q, Plow EF, Karnik S. A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. PLoS One 2017; 12:e0170456. [PMID: 28329018 PMCID: PMC5362047 DOI: 10.1371/journal.pone.0170456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
It is well established that the gene expression patterns are substantially altered in cardiac hypertrophy and heart failure, however, less is known about the reasons behind such global differences. MicroRNAs (miRNAs) are short non-coding RNAs that can target multiple molecules to regulate wide array of proteins in diverse pathways. The goal of the study was to profile alterations in miRNA expression using end-stage human heart failure samples with an aim to build signaling network pathways using predicted targets for the altered miRNA and to determine nodal molecules regulating individual networks. Profiling of miRNAs using custom designed microarray and validation with an independent set of samples identified eight miRNAs that are altered in human heart failure including one novel miRNA yet to be implicated in cardiac pathology. To gain an unbiased perspective on global regulation by top eight altered miRNAs, functional relationship of predicted targets for these eight miRNAs were examined by network analysis. Ingenuity Pathways Analysis network algorithm was used to build global signaling networks based on the targets of altered miRNAs which allowed us to identify participating networks and nodal molecules that could contribute to cardiac pathophysiology. Majority of the nodal molecules identified in our analysis are targets of altered miRNAs and known regulators of cardiovascular signaling. Cardio-genomics heart failure gene expression public data base was used to analyze trends in expression pattern for target nodal molecules and indeed changes in expression of nodal molecules inversely correlated to miRNA alterations. We have used NF kappa B network as an example to show that targeting other molecules in the network could alter the nodal NF kappa B despite not being a miRNA target suggesting an integrated network response. Thus, using network analysis we show that altering key functional target proteins may regulate expression of the myriad signaling pathways underlying the cardiac pathology.
Collapse
Affiliation(s)
- Sathyamangla V. Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Manveen K. Gupta
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Zhong-Hui Duan
- Department of Computer Sciences, University of Akron, Akron, Ohio, United States of America
| | - Venkata Suresh K. Surampudi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Chang-Gong Liu
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Ashwin Kotwal
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Christine S. Moravec
- Department of Cardiovascular Medicine, Heart and Vascular Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Randall C. Starling
- Department of Cardiovascular Medicine, Heart and Vascular Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Dianne M. Perez
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Subha Sen
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Qingyu Wu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Edward F. Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sadashiva Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
26
|
Transactivation of the epidermal growth factor receptor in responses to myocardial stress and cardioprotection. Int J Biochem Cell Biol 2017; 83:97-110. [PMID: 28049018 DOI: 10.1016/j.biocel.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022]
|
27
|
Dang R, Guo Y, Zhang L, Chen L, Yang R, Jiang P. Chronic stress and excessive glucocorticoid exposure both lead to altered Neuregulin-1/ErbB signaling in rat myocardium. Steroids 2016; 112:47-53. [PMID: 27133902 DOI: 10.1016/j.steroids.2016.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022]
Abstract
Exposure to chronic stress or excess glucocorticoids is associated with the development of depression and heart disease, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in cardiac function, much is still unknown concerning the biological link between NRG1/ErbB pathway and the stress-induced comorbidity of depression and cardiac dysfunction. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the myocardium of rats following chronic unpredictable mild stress (CUMS) or rats treated with two different doses (0.2 and 2mg/kg/day, respectively) of dexamethasone (Dex). The stressed rats showed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the myocardium, whereas ErbB2 and pErbB2 were inhibited. The lower dose of Dex enhanced myocardial NRG1/ErbB signaling, but as the dose is increased, while ErbB4 remained activated, the expression of ErbB2 and pErbB2 became compromised. Both CUMS and 2mg/kg of Dex suppressed the downstream Akt and ERK phosphorylation. Although the lower dose of Dex increased myocardial antiapoptotic Bcl-xl expression, a significant decrease of Bcl-xl expression was found in rats treated with the higher dose. Meanwhile, both CUMS and two different doses of Dex induced proapoptotic Bax level. Combined, our data firstly showed (mal)adaptive responses of NRG1/ErbB system in the stressed heart, indicating the potential involvement of NRG1/ErbB pathway in the stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Ling Zhang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Lei Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Ranyao Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
28
|
Cadeddu C, Mercurio V, Spallarossa P, Nodari S, Triggiani M, Monte I, Piras R, Madonna R, Pagliaro P, Tocchetti CG, Mercuro G. Preventing antiblastic drug-related cardiomyopathy: old and new therapeutic strategies. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e64-e75. [PMID: 27183527 DOI: 10.2459/jcm.0000000000000382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of the recent advances in chemotherapeutic protocols, cancer survival has improved significantly, although cardiovascular disease has become a major cause of morbidity and mortality among cancer survivors: in addition to the well-known cardiotoxicity (CTX) from anthracyclines, biologic drugs that target molecules that are active in cancer biology also interfere with cardiovascular homeostasis.Pharmacological and non-pharmacological strategies to protect the cardiovascular structure and function are the best approaches to reducing the prevalence of cardiomyopathy linked to anticancer drugs. Extensive efforts have been devoted to identifying and testing strategies to achieve this end, but little consensus has been reached on a common and shared operability.Timing, dose and mode of chemotherapy administration play a crucial role in the development of acute or late myocardial dysfunction. Primary prevention initiatives cover a wide area that ranges from conventional heart failure drugs, such as β-blockers and renin-angiotensin-aldosterone system antagonists to nutritional supplementation and physical training. Additional studies on the pathophysiology and cellular mechanisms of anticancer-drug-related CTX will enable the introduction of novel therapies.We present various typologies of prevention strategies, describing the approaches that have already been used and those that could be effective on the basis of a better understanding of pharmacokinetic and pharmacodynamic CTX mechanisms.
Collapse
Affiliation(s)
- Christian Cadeddu
- aDepartment of Medical Sciences 'Mario Aresu', University of Cagliari, Cagliari bDepartment of Translational Medical Sciences, Division of Internal Medicine, Federico II University, Naples cClinic of Cardiovascular Diseases, IRCCS San Martino IST, Genoa dDepartment of Clinical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia eDepartment of General Surgery and Medical-Surgery Specialities, University of Catania, Catania fInstitute of Cardiology, Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti gDepartment of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Honda Y, Shishido T, Takahashi T, Watanabe T, Netsu S, Kinoshita D, Narumi T, Kadowaki S, Nishiyama S, Takahashi H, Arimoto T, Miyamoto T, Kishida S, Kadomatsu K, Takeishi Y, Kubota I. Midkine Deteriorates Cardiac Remodeling via Epidermal Growth Factor Receptor Signaling in Chronic Kidney Disease. Hypertension 2016; 67:857-65. [PMID: 26975703 DOI: 10.1161/hypertensionaha.115.06922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/12/2016] [Indexed: 01/13/2023]
Abstract
In chronic kidney disease, activation of the epidermal growth factor receptor (EGFR) leads to cardiac hypertrophy, which affects morbidity and mortality. In patients with renal insufficiency and heart failure, the expression of midkine, a heparin-binding growth factor, is increased. Therefore, we investigated the association between midkine and EGFR in the induction of cardiac hypertrophy and dysfunction in chronic kidney disease. We performed subtotal nephrectomies in midkine-knockout mice and wild-type mice. We found that subtotal nephrectomy-induced cardiac hypertrophy and phosphorylation of extracellular signal-regulated kinase 1/2 and AKT were attenuated in midkine-knockout mice compared with wild-type mice. An antiphosphotyrosine receptor antibody array was used to demonstrate that EGFR phosphorylation in the heart was also lower in midkine-knockout mice than in wild-type mice. Midkine induced EGFR, extracellular signal-regulated kinase 1/2, and AKT phosphorylation and led to hypertrophy in neonatal rat cardiomyocytes. Pretreatment with EGFR inhibitors or EGFR silencing suppressed midkine-stimulated phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, induction of fetal cardiac gene expression, and hypertrophy in cardiomyocytes. To confirm the association between midkine and EGFR in vivo, mice subjected to subtotal nephrectomy were treated with the EGFR inhibitor gefitinib. Gefitinib treatment attenuated subtotal nephrectomy-induced cardiac hypertrophy. These results indicate that midkine might be a key mediator of cardiorenal interactions through EGFR activation, which plays a crucial role in cardiac hypertrophy in chronic kidney disease.
Collapse
Affiliation(s)
- Yuki Honda
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Tetsuro Shishido
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.).
| | - Tetsuya Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Tetsu Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Shunsuke Netsu
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Daisuke Kinoshita
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Taro Narumi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Shinpei Kadowaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Satoshi Nishiyama
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Hiroki Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Takanori Arimoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Takuya Miyamoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Satoshi Kishida
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Kenji Kadomatsu
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Yasuchika Takeishi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| | - Isao Kubota
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.H., T.S., T.T., T.W., S.N., D.K., T.N., S.K., S.N., H.T., T.A., T.M., I.K.); Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi, Japan (S.K., K.K.); and Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan (Y.T.)
| |
Collapse
|
30
|
Riccio G, Coppola C, Piscopo G, Capasso I, Maurea C, Esposito E, De Lorenzo C, Maurea N. Trastuzumab and target-therapy side effects: Is still valid to differentiate anthracycline Type I from Type II cardiomyopathies? Hum Vaccin Immunother 2016; 12:1124-31. [PMID: 26836985 PMCID: PMC4963071 DOI: 10.1080/21645515.2015.1125056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The improvement in cancer therapy and the increasing number of long term survivors unearth the issue of cardiovascular side effects of anticancer treatments. As a paradox in cancer survivors, delayed cardiotoxicity has emerged as a significant problem. Two categories of cardiotoxic side effects of antineoplastic drugs have been previously proposed: Type I cardiotoxicity, defined as permanent cardiotoxicity, is usually caused by anthracyclines; Type II cardiotoxicity, considered as reversible cardiotoxicity, has been mainly related to monoclonal antibodies. The cardiotoxicity of antibodies has been associated to trastuzumab, a humanized anti-ErbB2 monoclonal antibody currently in clinical use for the therapy of breast carcinomas, which induces cardiac dysfunction when used in monotherapy, or in combination with anthracyclines. Furthermore, recent retrospective studies have shown an increased incidence of heart failure and/or cardiomyopathy in patients treated with trastuzumab, that can persist many years after the conclusion of the therapy, thus suggesting that the side toxic effects are not always reversible as it was initially proposed. On the other hand, early detection and prompt therapy of anthracycline associated cardiotoxicity can lead to substantial recovery of cardiac function. On the basis of these observations, we propose to find a new different classification for cardiotoxic side effects of drugs used in cancer therapy.
Collapse
Affiliation(s)
- Gennaro Riccio
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Carmela Coppola
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Giovanna Piscopo
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Immacolata Capasso
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Carlo Maurea
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Emanuela Esposito
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| | - Claudia De Lorenzo
- b CEINGE Biotecnologie Avanzate , Naples , Italy.,c Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Naples , Italy
| | - Nicola Maurea
- a Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS - Naples , Italy
| |
Collapse
|
31
|
Sørensen LL, Bedja D, Sysa-Shah P, Liu H, Maxwell A, Yi X, Pozios I, Olsen NT, Abraham TP, Abraham R, Gabrielson K. Echocardiographic Characterization of a Murine Model of Hypertrophic Obstructive Cardiomyopathy Induced by Cardiac-specific Overexpression of Epidermal Growth Factor Receptor 2. Comp Med 2016; 66:268-277. [PMID: 27538857 PMCID: PMC4983168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 06/06/2023]
Abstract
Although rare, hypertrophic cardiomyopathy (HCM) with midventricular obstruction is often associated with severe symptoms and complications. None of the existing HCM animal models display this particular phenotype. Our group developed a mouse line that overexpresses the ErbB2 receptor (ErbB2(tg)) in cardiomyocytes; we previously showed that the ErbB2 receptor induces cardiomyocyte hypertrophy, myocyte disarray, and fibrosis compatible with HCM. In the current study, we sought to further echocardiographically characterize the ErbB2(tg) mouse line as a model of HCM. Compared with their wild-type littermates, ErbB2(tg) mice show increased left ventricular (LV) mass, concentric LV hypertrophy, and papillary muscle hypertrophy. This hypertrophy was accompanied by diastolic dysfunction, expressed as reduced E:A ratio, prolonged deceleration time, and elevated E:e' ratio. In addition, ErbB2(tg) mice consistently showed midcavity obstruction with elevated LV gradients, and the flow profile revealed a prolonged pressure increase and a delayed peak, indicating dynamic obstruction. The ejection fraction was increased in ErbB2(tg) mice, due to reduced end-diastolic and end-systolic LV volumes. Furthermore, systolic radial strain and systolic radial strain rate but not systolic circumferential strain and longitudinal strain were decreased in ErbB2(tg) compared with wild-type mice. In conclusion, the phenotype of the ErbB2(tg) mouse model is consistent with midventricular HCM in many important aspects, including massive LV hypertrophy, diastolic dysfunction, and midcavity obstruction. This pattern is unique for a small animal model, suggesting that ErbB2(tg) mice may be well suited for research into the hemodynamics and treatment of this rare form of HCM.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Hypertrophic/diagnostic imaging
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/physiopathology
- Diastole
- Disease Models, Animal
- Echocardiography, Doppler, Color
- Echocardiography, Doppler, Pulsed
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Myocytes, Cardiac/metabolism
- Papillary Muscles/diagnostic imaging
- Papillary Muscles/pathology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Systole
Collapse
Affiliation(s)
- Lars L Sørensen
- Department of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Cardiology, Gentofte Hospital, Copenhagen, Denmark
| | - Djahida Bedja
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongyun Liu
- Department of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amanda Maxwell
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xu Yi
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Iraklis Pozios
- Department of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Niels T Olsen
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Theodore P Abraham
- Department of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roselle Abraham
- Department of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
32
|
Sysa-Shah P, Tocchetti CG, Gupta M, Rainer PP, Shen X, Kang BH, Belmonte F, Li J, Xu Y, Guo X, Bedja D, Gao WD, Paolocci N, Rath R, Sawyer DB, Naga Prasad SV, Gabrielson K. Bidirectional cross-regulation between ErbB2 and β-adrenergic signalling pathways. Cardiovasc Res 2015; 109:358-73. [PMID: 26692570 DOI: 10.1093/cvr/cvv274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
AIMS Despite the observation that ErbB2 regulates sensitivity of the heart to doxorubicin or ErbB2-targeted cancer therapies, mechanisms that regulate ErbB2 expression and activity have not been studied. Since isoproterenol up-regulates ErbB2 in kidney and salivary glands and β2AR and ErbB2 complex in brain and heart, we hypothesized that β-adrenergic receptors (AR) modulate ErbB2 signalling status. METHODS AND RESULTS ErbB2 transfection of HEK293 cells up-regulates β2AR, and β2AR transfection of HEK293 up-regulates ErbB2. Interestingly, cardiomyocytes isolated from myocyte-specific ErbB2-overexpressing (ErbB2(tg)) mice have amplified response to selective β2-agonist zinterol, and right ventricular trabeculae baseline force generation is markedly reduced with β2-antagonist ICI-118 551. Consistently, receptor binding assays and western blotting demonstrate that β2ARs levels are markedly increased in ErbB2(tg) myocardium and reduced by EGFR/ErbB2 inhibitor, lapatinib. Intriguingly, acute treatment of mice with β1- and β2-AR agonist isoproterenol resulted in myocardial ErbB2 increase, while inhibition with either β1- or β2-AR antagonist did not completely prevent isoproterenol-induced ErbB2 expression. Furthermore, inhibition of ErbB2 kinase predisposed mice hearts to injury from chronic isoproterenol treatment while significantly reducing isoproterenol-induced pAKT and pERK levels, suggesting ErbB2's role in transactivation in the heart. CONCLUSION Our studies show that myocardial ErbB2 and βAR signalling are linked in a feedback loop with βAR activation leading to increased ErbB2 expression and activity, and increased ErbB2 activity regulating β2AR expression. Most importantly, ErbB2 kinase activity is crucial for cardioprotection in the setting of β-adrenergic stress, suggesting that this mechanism is important in the pathophysiology and treatment of cardiomyopathy induced by ErbB2-targeting antineoplastic drugs.
Collapse
Affiliation(s)
- Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Carlo G Tocchetti
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Manveen Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Peter P Rainer
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Byung-Hak Kang
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Frances Belmonte
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jian Li
- Clinical Laboratory, Chinese PLA General Hospital, Beijing, China
| | - Yi Xu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rutwik Rath
- Cardiovascular Services, Maine Medical Center, Portland, ME, USA
| | - Douglas B Sawyer
- Cardiovascular Services, Maine Medical Center, Portland, ME, USA
| | | | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Merentie M, Lipponen JA, Hedman M, Hedman A, Hartikainen J, Huusko J, Lottonen-Raikaslehto L, Parviainen V, Laidinen S, Karjalainen PA, Ylä-Herttuala S. Mouse ECG findings in aging, with conduction system affecting drugs and in cardiac pathologies: Development and validation of ECG analysis algorithm in mice. Physiol Rep 2015; 3:3/12/e12639. [PMID: 26660552 PMCID: PMC4760442 DOI: 10.14814/phy2.12639] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mouse models are extremely important in studying cardiac pathologies and related electrophysiology, but very few mouse ECG analysis programs are readily available. Therefore, a mouse ECG analysis algorithm was developed and validated. Surface ECG (lead II) was acquired during transthoracic echocardiography from C57Bl/6J mice under isoflurane anesthesia. The effect of aging was studied in young (2–3 months), middle‐aged (14 months) and old (20–24 months) mice. The ECG changes associated with pharmacological interventions and common cardiac pathologies, that is, acute myocardial infarction (AMI) and progressive left ventricular hypertrophy (LVH), were studied. The ECG raw data were analyzed with an in‐house ECG analysis program, modified specially for mouse ECG. Aging led to increases in P‐wave duration, atrioventricular conduction time (PQ interval), and intraventricular conduction time (QRS complex width), while the R‐wave amplitude decreased. In addition, the prevalence of arrhythmias increased during aging. Anticholinergic atropine shortened PQ time, and beta blocker metoprolol and calcium‐channel blocker verapamil increased PQ interval and decreased heart rate. The ECG changes after AMI included early JT elevation, development of Q waves, decreased R‐wave amplitude, and later changes in JT/T segment. In progressive LVH model, QRS complex width was increased at 2 and especially 4 weeks timepoint, and also repolarization abnormalities were seen. Aging, drugs, AMI, and LVH led to similar ECG changes in mice as seen in humans, which could be reliably detected with this new algorithm. The developed method will be very useful for studies on cardiovascular diseases in mice.
Collapse
Affiliation(s)
- Mari Merentie
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka A Lipponen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Marja Hedman
- Heart Center, Kuopio University Hospital, Kuopio, Finland Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Hedman
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Line Lottonen-Raikaslehto
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Viktor Parviainen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi A Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland Science Service Center, Kuopio University Hospital, Kuopio, Finland Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
34
|
Molinaro M, Ameri P, Marone G, Petretta M, Abete P, Di Lisa F, De Placido S, Bonaduce D, Tocchetti CG. Recent Advances on Pathophysiology, Diagnostic and Therapeutic Insights in Cardiac Dysfunction Induced by Antineoplastic Drugs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:138148. [PMID: 26583088 PMCID: PMC4637019 DOI: 10.1155/2015/138148] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
Abstract
Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically relevant problem. Potential cardiovascular toxicities due to anticancer agents include QT prolongation and arrhythmias, myocardial ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV) dysfunction, and heart failure (HF). The latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form of cardiomyopathy before ejection fraction (EF) is reduced are becoming increasingly important, along with novel therapeutic and cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure.
Collapse
Affiliation(s)
- Marilisa Molinaro
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | - Mario Petretta
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- National Researches Council, Neuroscience Institute, University of Padova, 35121 Padova, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| |
Collapse
|
35
|
Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, Paolocci N, Aon MA, Nagane M, Kuppusamy P, Steenbergen C, Gabrielson K. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1271-80. [PMID: 26254336 DOI: 10.1152/ajpheart.00517.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.
Collapse
Affiliation(s)
- Frances Belmonte
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Vidhya Sivakumaran
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Brian Stanley
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Masaki Nagane
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Periannan Kuppusamy
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland;
| |
Collapse
|
36
|
Sysa-Shah P, Sørensen LL, Abraham MR, Gabrielson KL. Electrocardiographic Characterization of Cardiac Hypertrophy in Mice that Overexpress the ErbB2 Receptor Tyrosine Kinase. Comp Med 2015; 65:295-307. [PMID: 26310459 PMCID: PMC4549675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/23/2014] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
Electrocardiography is an important method for evaluation and risk stratification of patients with cardiac hypertrophy. We hypothesized that the recently developed transgenic mouse model of cardiac hypertrophy (ErbB2(tg)) will display distinct ECG features, enabling WT (wild type) mice to be distinguished from transgenic mice without using conventional PCR genotyping. We evaluated more than 2000 mice and developed specific criteria for genotype determination by using cageside ECG, during which unanesthetized mice were manually restrained for less than 1 min. Compared with those from WT counterparts, the ECG recordings of ErbB2(tg) mice were characterized by higher P- and R-wave amplitudes, broader QRS complexes, inverted T waves, and ST interval depression. Pearson's correlation matrix analysis of combined WT and ErbB2(tg) data revealed significant correlation between heart weight and the ECG parameters of QT interval (corrected for heart rate), QRS interval, ST height, R amplitude, P amplitude, and PR interval. In addition, the left ventricular posterior wall thickness as determined by echocardiography correlated with ECG-determined ST height, R amplitude, QRS interval; echocardiographic left ventricular mass correlated with ECG-determined ST height and PR interval. In summary, we have determined phenotypic ECG criteria to differentiate ErbB2(tg) from WT genotypes in 98.8% of mice. This inexpensive and time-efficient ECG-based phenotypic method might be applied to differentiate between genotypes in other rodent models of cardiac hypertrophy. Furthermore, with appropriate modifications, this method might be translated for use in other species.
Collapse
Affiliation(s)
- Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Lars L Sørensen
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, Department of Cardiology, Gentofte Hospital, Copenhagen, Denmark
| | - M Roselle Abraham
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| |
Collapse
|
37
|
Chen YY, Li Q, Pan CS, Yan L, Fan JY, He K, Sun K, Liu YY, Chen QF, Bai Y, Wang CS, He B, Lv AP, Han JY. QiShenYiQi Pills, a compound in Chinese medicine, protects against pressure overload-induced cardiac hypertrophy through a multi-component and multi-target mode. Sci Rep 2015; 5:11802. [PMID: 26136154 PMCID: PMC4488877 DOI: 10.1038/srep11802] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to explore the holistic mechanism for the antihypertrophic effect of a compound in Chinese medicine, QiShenYiQi Pills (QSYQ) and the contributions of its components to the effect in rats with cardiac hypertrophy (CH). After induction of CH by ascending aortic stenosis, rats were treated with QSYQ, each identified active ingredient (astragaloside IV, 3, 4-dihydroxy-phenyl lactic acid or notoginsenoside R1) from its 3 major herb components or dalbergia odorifera, either alone or combinations, for 1 month. QSYQ markedly attenuated CH, as evidenced by echocardiography, morphology and biochemistry. Proteomic analysis and western blot showed that the majority of differentially expressed proteins in the heart of QSYQ-treated rats were associated with energy metabolism or oxidative stress. Each ingredient alone or their combinations exhibited similar effects as QSYQ but to a lesser extent and differently with astragaloside IV and notoginsenoside R1 being more effective for enhancing energy metabolism, 3, 4-dihydroxy-phenyl lactic acid more effective for counteracting oxidative stress while dalbergia odorifera having little effect on the variables evaluated. In conclusion, QSYQ exerts a more potent antihypertrophic effect than any of its ingredients or their combinations, due to the interaction of its active components through a multi-component and multi-target mode.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Quan Li
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Chun-Shui Pan
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Li Yan
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Jing-Yu Fan
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Ke He
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Kai Sun
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Yu-Ying Liu
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Qing-Fang Chen
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Yan Bai
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, Beijing, China
| | - Chuan-She Wang
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Bing He
- The School of Chinese Medicine of Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ai-Ping Lv
- The School of Chinese Medicine of Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jing-Yan Han
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| |
Collapse
|
38
|
Lauritzen KH, Kleppa L, Aronsen JM, Eide L, Carlsen H, Haugen ØP, Sjaastad I, Klungland A, Rasmussen LJ, Attramadal H, Storm-Mathisen J, Bergersen LH. Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H434-49. [PMID: 26055793 DOI: 10.1152/ajpheart.00253.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022]
Abstract
Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after ∼2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1α, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Liv Kleppa
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Norway, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo, Oslo, Norway
| | - Harald Carlsen
- Department of Nutrition Research, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Øyvind P Haugen
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Norway, Oslo, Norway
| | - Arne Klungland
- Department of Nutrition Research, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Medical Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lene Juel Rasmussen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway; and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- Department of Anatomy, Institute of Basic Medical Sciences, and Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Department of Oral Biology, Brain and Muscle Energy Group, University of Oslo, Oslo, Norway; Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
39
|
Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis 2015; 6:e1765. [PMID: 25996292 PMCID: PMC4669719 DOI: 10.1038/cddis.2015.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has achieved only modest success in the treatment of ischemic heart disease owing to poor cell viability in the diseased microenvironment. Activation of the NRG1 (neuregulin1)-ERBB4 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) signaling pathway has been shown to stimulate mature cardiomyocyte cell cycle re-entry and cell division. In this connection, we aimed to determine whether overexpression of ERBB4 in MSCs can enhance their cardio-protective effects following myocardial infarction. NRG1, MSCs or MSC-ERBB4 (MSC with ERBB4 overexpression), were transplanted into mice following myocardial infarction. Superior to that of MSCs and solely NRG1, MSC-ERBB4 transplantation significantly preserved heart functions accompanied with reduced infarct size, enhanced cardiomyocyte division and less apoptosis during early phase of infarction. The transduction of ERBB4 into MSCs indeed increased cell mobility and apoptotic resistance under hypoxic and glucose-deprived conditions via a PI3K/Akt signaling pathway in the presence of NRG1. Unexpectedly, introduction of ERBB4 into MSC in turn potentiates NRG1 synthesis and secretion, thus forming a novel NRG1-ERBB4-NRG1 autocrine loop. Conditioned medium of MSC-ERBB4 containing elevated NRG1, promoted cardiomyocyte growth and division, whereas neutralization of NRG1 blunted this proliferation. These findings collectively suggest that ERBB4 overexpression potentiates MSC survival in the infarcted heart, enhances NRG1 generation to restore declining NRG1 in the infarcted region and stimulates cardiomyocyte division. ERBB4 has an important role in MSC-mediated myocardial repairs.
Collapse
|
40
|
Hajj GP, Chu Y, Lund DD, Magida JA, Funk ND, Brooks RM, Baumbach GL, Zimmerman KA, Davis MK, El Accaoui RN, Hameed T, Doshi H, Chen B, Leinwand LA, Song LS, Heistad DD, Weiss RM. Spontaneous Aortic Regurgitation and Valvular Cardiomyopathy in Mice. Arterioscler Thromb Vasc Biol 2015; 35:1653-62. [PMID: 25997932 DOI: 10.1161/atvbaha.115.305729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/08/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We studied the mechanistic links between fibrocalcific changes in the aortic valve and aortic valve function in mice homozygous for a hypomorphic epidermal growth factor receptor mutation (Wave mice). We also studied myocardial responses to aortic valve dysfunction in Wave mice. APPROACH AND RESULTS At 1.5 months of age, before development of valve fibrosis and calcification, aortic regurgitation, but not aortic stenosis, was common in Wave mice. Aortic valve fibrosis, profibrotic signaling, calcification, osteogenic markers, lipid deposition, and apoptosis increased dramatically by 6 and 12 months of age in Wave mice. Aortic regurgitation remained prevalent, however, and aortic stenosis was rare, at all ages. Proteoglycan content was abnormally increased in aortic valves of Wave mice at all ages. Treatment with pioglitazone prevented abnormal valve calcification, but did not protect valve function. There was significant left ventricular volume overload, hypertrophy, and fetal gene expression, at all ages in Wave mice with aortic regurgitation. Left ventricular systolic function was normal until 6 months of age in Wave mice, but became impaired by 12 months of age. Myocardial transverse tubules were normal in the presence of left ventricular hypertrophy at 1.5 and 3 months of age, but became disrupted by 12 months of age. CONCLUSIONS We present the first comprehensive phenotypic and molecular characterization of spontaneous aortic regurgitation and volume-overload cardiomyopathy in an experimental model. In Wave mice, fibrocalcific changes are not linked to valve dysfunction and are epiphenomena arising from structurally incompetent myxomatous valves.
Collapse
Affiliation(s)
- Georges P Hajj
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Yi Chu
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Donald D Lund
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Jason A Magida
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Nathan D Funk
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Robert M Brooks
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Gary L Baumbach
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Kathy A Zimmerman
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Melissa K Davis
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Ramzi N El Accaoui
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Tariq Hameed
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Hardik Doshi
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - BiYi Chen
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Leslie A Leinwand
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Long-Sheng Song
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Donald D Heistad
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder.
| | - Robert M Weiss
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder.
| |
Collapse
|
41
|
ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 2015; 17:627-38. [PMID: 25848746 DOI: 10.1038/ncb3149] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/05/2015] [Indexed: 12/14/2022]
Abstract
The murine neonatal heart can regenerate after injury through cardiomyocyte (CM) proliferation, although this capacity markedly diminishes after the first week of life. Neuregulin-1 (NRG1) administration has been proposed as a strategy to promote cardiac regeneration. Here, using loss- and gain-of-function genetic tools, we explore the role of the NRG1 co-receptor ERBB2 in cardiac regeneration. NRG1-induced CM proliferation diminished one week after birth owing to a reduction in ERBB2 expression. CM-specific Erbb2 knockout revealed that ERBB2 is required for CM proliferation at embryonic/neonatal stages. Induction of a constitutively active ERBB2 (caERBB2) in neonatal, juvenile and adult CMs resulted in cardiomegaly, characterized by extensive CM hypertrophy, dedifferentiation and proliferation, differentially mediated by ERK, AKT and GSK3β/β-catenin signalling pathways. Transient induction of caERBB2 following myocardial infarction triggered CM dedifferentiation and proliferation followed by redifferentiation and regeneration. Thus, ERBB2 is both necessary for CM proliferation and sufficient to reactivate postnatal CM proliferative and regenerative potentials.
Collapse
|
42
|
Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Höke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sesaki H. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 2014; 33:2798-813. [PMID: 25349190 PMCID: PMC4282557 DOI: 10.15252/embj.201488658] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals.
Collapse
Affiliation(s)
- Yusuke Kageyama
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Masahiko Hoshijima
- Center for Research in Biological Systems and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kinya Seo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shaida A Andrabi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Weiran Chen
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmet Höke
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Qin A, Thompson CL, Silverman P. Predictors of late-onset heart failure in breast cancer patients treated with doxorubicin. J Cancer Surviv 2014; 9:252-9. [PMID: 25342090 DOI: 10.1007/s11764-014-0408-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/11/2014] [Indexed: 01/03/2023]
Abstract
PURPOSE Anthracyclines are an integral component of breast cancer chemotherapy. They exert many cardiotoxic effects, including heart failure. The onset of anthracycline-induced heart failure (AIHF) can occur years after completion of chemotherapy and incurs significant morbidity and mortality. Few studies have attempted to characterize risk factors for its development. Our purpose was to determine the incidence of early and late AIHF in breast cancer survivors and to identify factors that increase the risk for late-onset AIHF. METHODS Patients with invasive breast cancer who received doxorubicin-containing chemotherapy at University Hospitals Case Medical Center from 1998 to 2006 were included. Medical history and tumor and treatment characteristics were abstracted from medical records. Patients who developed heart failure were compared to those who did not and were also stratified based on timing of heart failure. RESULTS One thousand one hundred fifty-three patients received doxorubicin-based chemotherapy for invasive breast cancer with an average follow-up of 7.6 years (standard deviation (SD) = 3.4). The overall incidence of heart failure was 10.4, with a 2.9 and 7.6 % incidence of early- and late-onset heart failure, respectively. Human epidermal growth factor receptor 2 (HER2) status, hypertension, and coronary artery disease were significant predictors for both heart failure groups (p < 0.001). Type II diabetes was a risk factor for the late-onset AIHF group (p < 0.001). CONCLUSIONS HER2 status and cardiovascular risk factors increased the risk of heart failure among doxorubicin users. Patients with type II diabetes were at increased risk of late-onset AIHF. IMPLICATIONS FOR CANCER SURVIVORS We identified at risk survivors who may benefit from prolonged monitoring and/or early intervention.
Collapse
Affiliation(s)
- Angel Qin
- Department of Medicine, University Hospitals Case Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA,
| | | | | |
Collapse
|
44
|
An analysis of the global expression of microRNAs in an experimental model of physiological left ventricular hypertrophy. PLoS One 2014; 9:e93271. [PMID: 24751578 PMCID: PMC3994002 DOI: 10.1371/journal.pone.0093271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Background MicroRNAs (miRs) are a class of small non-coding RNAs that regulate gene expression. Studies of transgenic mouse models have indicated that deregulation of a single miR can induce pathological cardiac hypertrophy and cardiac failure. The roles of miRs in the genesis of physiological left ventricular hypertrophy (LVH), however, are not well understood. Objective To evaluate the global miR expression in an experimental model of exercise-induced LVH. Methods Male Balb/c mice were divided into sedentary (SED) and exercise (EXE) groups. Voluntary exercise was performed on an odometer-monitored metal wheels for 35 days. Various tests were performed after 7 and 35 days of training, including a transthoracic echocardiography, a maximal exercise test, a miR microarray (miRBase v.16) and qRT-PCR analysis. Results The ratio between the left ventricular weight and body weight was increased by 7% in the EXE group at day 7 (p<0.01) and by 11% at day 35 of training (p<0.001). After 7 days of training, the microarray identified 35 miRs that were differentially expressed between the two groups: 20 were up-regulated and 15 were down-regulated in the EXE group compared with the SED group (p = 0.01). At day 35 of training, 25 miRs were differentially expressed: 15 were up-regulated and 10 were decreased in the EXE animals compared with the SED animals (p<0.01). The qRT-PCR analysis demonstrated an increase in miR-150 levels after 35 days and a decrease in miR-26b, miR-27a and miR-143 after 7 days of voluntary exercise. Conclusions We have identified new miRs that can modulate physiological cardiac hypertrophy, particularly miR-26b, -150, -27a and -143. Our data also indicate that previously established regulatory gene pathways involved in pathological LVH are not changed in physiological LVH.
Collapse
|
45
|
Kılıçaslan B, Özdoğan Ö, Demir Pişkin G, Kahya Eren N, Dursun H. Echocardiographic signs of right ventricle changes after Trastuzumab treatment in breast cancer patients with erb-2 overexpression. Anatol J Cardiol 2014; 15:143-8. [PMID: 25252299 PMCID: PMC5337000 DOI: 10.5152/akd.2014.5220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: Left ventricular (LV) dysfunction after trastuzumab treatment in erb-2 breast cancer cases has been fully investigated. However, there is not enough data about the effect of trastuzumab treatment on right ventricular (RV) functions. This study is designed to evaluate the right heart changes by performing echocardiography after trastuzumab treatment in patients with erb-2 breast cancer. Methods: Forty-two consecutive breast cancer patients with erb-2 overexpression mean age 50.4±11.6 years who were decided to receive trastuzumab treatment were enrolled. Echocardiographic examinations including 2-D, spectral, and tissue Doppler measurements were performed at the baseline (T1) and repeated after 6 months (T2). Results: Tricuspid annular plane systolic excursion (TAPSE) was decreased, RV myocardial performance index (RVMPI) and tricuspid E/e’ ratio was increased after trastuzumab treatment (1.84 vs. 2.14; p<0.01) (0.46 vs. 0.56, p<0.01) (4.4±1.07 vs. 5.08±1.46; p=0.04). Median serum NT-ProBNP levels, troponin I, and hs-CRP levels were similar between the groups. LVEF and TAPSE were negatively correlated with dosage of trastuzumab (r=-0.392, p=0.04; r=-0.522, p=0.006). There was a stepwise decrease in LVEF when trastuzumab used with anthracyclines however this not reached statically significant (62.4±2, 60±4.5; p=0.06). Conclusion: In our study; we observed a trend of RV deterioration after trastuzumab treatment. These preliminary RV changes were demonstrated by using TAPSE, RV tissue Doppler imaging derived MPI and E/e’ ratio parameters by echocardiography and these parameters could also use as markers of trastuzumab toxicity in this population.
Collapse
Affiliation(s)
- Barış Kılıçaslan
- Clinic of Cardiology, Tepecik Research and Training Hospital; İzmir-Turkey.
| | | | | | | | | |
Collapse
|
46
|
The epidermal growth factor receptor and its ligands in cardiovascular disease. Int J Mol Sci 2013; 14:20597-613. [PMID: 24132149 PMCID: PMC3821633 DOI: 10.3390/ijms141020597] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family and its ligands serve as a switchboard for the regulation of multiple cellular processes. While it is clear that EGFR activity is essential for normal cardiac development, its function in the vasculature and its role in cardiovascular disease are only beginning to be elucidated. In the blood vessel, endothelial cells and smooth muscle cells are both a source and a target of EGF-like ligands. Activation of EGFR has been implicated in blood pressure regulation, endothelial dysfunction, neointimal hyperplasia, atherogenesis, and cardiac remodeling. Furthermore, increased circulating EGF-like ligands may mediate accelerated vascular disease associated with chronic inflammation. Although EGFR inhibitors are currently being used clinically for the treatment of cancer, additional studies are necessary to determine whether abrogation of EGFR signaling is a potential strategy for the treatment of cardiovascular disease.
Collapse
|
47
|
Wan W, Xu X, Zhao W, Garza MA, Zhang JQ. Exercise training induced myosin heavy chain isoform alteration in the infarcted heart. Appl Physiol Nutr Metab 2013; 39:226-32. [PMID: 24476479 DOI: 10.1139/apnm-2013-0268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The myosin heavy chain isoform MHC-α has 3-fold higher ATPase activity than MHC-β. After myocardial infarction (MI), MHC-α expression is profoundly downregulated and MHC-β expression is reciprocally upregulated. This shift, which is attributed to low thyroid hormone (TH), contributes to myocardial systolic dysfunction. We investigated the effect of post-MI exercise training on MHC isoforms, TH, and cardiac function. MI was surgically induced in 7-week-old rats by ligation of the coronary artery. The survivors were assigned to 3 groups (n = 10/group): Sham (no MI, no exercise), MISed (MI, no exercise), and MIEx (MI, exercise). Treadmill exercise training began 1 week post-MI and lasted for 8 weeks. Echocardiogram measurements were taken on the day prior to initiation of exercise training and at the end of exercise training. Tissue and blood samples were collected at the end of the experiment. MHC isoform gene and protein expression and TH were measured. Our results illustrated that MHC-α gene expression was higher and MHC-β gene expression was lower in the MIEx group than in the MISed group. Resting serum TH concentrations (T3 and T4) were similar between the 2 MI groups. The MIEx group had higher fractional shortening than the MISed group. In conclusion, post-MI exercise training beneficially altered MHC isoforms and improved cardiac function without changing TH.
Collapse
Affiliation(s)
- Wenhan Wan
- a Laboratory of Cardiovascular Research, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|