1
|
Electrostatic Forces Mediate the Specificity of RHO GTPase-GDI Interactions. Int J Mol Sci 2021; 22:ijms222212493. [PMID: 34830380 PMCID: PMC8622166 DOI: 10.3390/ijms222212493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.
Collapse
|
2
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
3
|
A Non-Canonical Calmodulin Target Motif Comprising a Polybasic Region and Lipidated Terminal Residue Regulates Localization. Int J Mol Sci 2020; 21:ijms21082751. [PMID: 32326637 PMCID: PMC7216078 DOI: 10.3390/ijms21082751] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic ‘anchor’ residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding motifs that form a Ca2+-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets. Several reported CaM interactors lack these anchors but contain Lys/Arg-rich polybasic sequences adjacent to a lipidated N- or C-terminus. Ca2+-CaM binds the myristoylated N-terminus of CAP23/NAP22 with intimate interactions between the lipid and a surface comprised of the hydrophobic pockets of both lobes, while the basic residues make electrostatic interactions with the negatively charged surface of CaM. Ca2+-CaM binds farnesylcysteine, derived from the farnesylated polybasic C-terminus of KRAS4b, with the lipid inserted into the C-terminal lobe hydrophobic pocket. CaM sequestration of the KRAS4b farnesyl moiety disrupts KRAS4b membrane association and downstream signaling. Phosphorylation of basic regions of N-/C-terminal lipidated CaM targets can reduce affinity for both CaM and the membrane. Since both N-terminal myristoylated and C-terminal prenylated proteins use a Singly Lipidated Polybasic Terminus (SLIPT) for CaM binding, we propose these polybasic lipopeptide elements comprise a non-canonical CaM-binding motif.
Collapse
|
4
|
Grant BMM, Enomoto M, Back SI, Lee KY, Gebregiworgis T, Ishiyama N, Ikura M, Marshall CB. Calmodulin disrupts plasma membrane localization of farnesylated KRAS4b by sequestering its lipid moiety. Sci Signal 2020; 13:13/625/eaaz0344. [PMID: 32234958 DOI: 10.1126/scisignal.aaz0344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
KRAS4b is a small guanosine triphosphatase (GTPase) protein that regulates several signal transduction pathways that underlie cell proliferation, differentiation, and survival. KRAS4b function requires prenylation of its C terminus and recruitment to the plasma membrane, where KRAS4b activates effector proteins including the RAF family of kinases. The Ca2+-sensing protein calmodulin (CaM) has been suggested to regulate the localization of KRAS4b through direct, Ca2+-dependent interaction, but how CaM and KRAS4b functionally interact is controversial. Here, we determined a crystal structure, which was supported by solution nuclear magnetic resonance (NMR), that revealed the sequestration of the prenyl moiety of KRAS4b in the hydrophobic pocket of the C-terminal lobe of Ca2+-bound CaM. Our engineered fluorescence resonance energy transfer (FRET)-based biosensor probes (CaMeRAS) showed that, upon stimulation of Ca2+ influx by extracellular ligands, KRAS4b reversibly translocated in a Ca2+-CaM-dependent manner from the plasma membrane to the cytoplasm in live HeLa and HEK293 cells. These results reveal a mechanism underlying the inhibition of KRAS4b activity by Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Benjamin M M Grant
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sung-In Back
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Noboru Ishiyama
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
5
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
6
|
Brereton AE, Karplus PA. Ensemblator v3: Robust atom-level comparative analyses and classification of protein structure ensembles. Protein Sci 2017; 27:41-50. [PMID: 28762605 DOI: 10.1002/pro.3249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Ensembles of protein structures are increasingly used to represent the conformational variation of a protein as determined by experiment and/or by molecular simulations, as well as uncertainties that may be associated with structure determinations or predictions. Making the best use of such information requires the ability to quantitatively compare entire ensembles. For this reason, we recently introduced the Ensemblator (Clark et al., Protein Sci 2015; 24:1528), a novel approach to compare user-defined groups of models, in residue level detail. Here we describe Ensemblator v3, an open-source program that employs the same basic ensemble comparison strategy but includes major advances that make it more robust, powerful, and user-friendly. Ensemblator v3 carries out multiple sequence alignments to facilitate the generation of ensembles from non-identical input structures, automatically optimizes the key global overlay parameter, optionally performs "ensemble clustering" to classify the models into subgroups, and calculates a novel "discrimination index" that quantifies similarities and differences, at residue or atom level, between each pair of subgroups. The clustering and automatic options mean that no pre-knowledge about an ensemble is required for its analysis. After describing the novel features of Ensemblator v3, we demonstrate its utility using three case studies that illustrate the ease with which complex analyses are accomplished, and the kinds of insights derived from clustering into subgroups and from the detailed information that locates significant differences. The Ensemblator v3 enhances the structural biology toolbox by greatly expanding the kinds of problems to which this ensemble comparison strategy can be applied.
Collapse
Affiliation(s)
- Andrew E Brereton
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331
| |
Collapse
|
7
|
Abstract
The specific and rapid formation of protein complexes, involving IQGAP family proteins, is essential for diverse cellular processes, such as adhesion, polarization, and directional migration. Although CDC42 and RAC1, prominent members of the RHO GTPase family, have been implicated in binding to and activating IQGAP1, the exact nature of this protein-protein recognition process has remained obscure. Here, we propose a mechanistic framework model that is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of cellular pathways.
Collapse
Affiliation(s)
- Kazem Nouri
- Institute of Biochemistry and Molecular Biology II, Medical faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Regulation of Rac1 GTPase activity by quinine through G-protein and bitter taste receptor T2R4. Mol Cell Biochem 2016; 426:129-136. [DOI: 10.1007/s11010-016-2886-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 01/02/2023]
|
9
|
Nouri K, Fansa EK, Amin E, Dvorsky R, Gremer L, Willbold D, Schmitt L, Timson DJ, Ahmadian MR. IQGAP1 Interaction with RHO Family Proteins Revisited: KINETIC AND EQUILIBRIUM EVIDENCE FOR MULTIPLE DISTINCT BINDING SITES. J Biol Chem 2016; 291:26364-26376. [PMID: 27815503 PMCID: PMC5159498 DOI: 10.1074/jbc.m116.752121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/27/2016] [Indexed: 11/16/2022] Open
Abstract
IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity, and transmigration. The RHO family proteins CDC42 and RAC1 have been shown to mainly interact with the GAP-related domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underlie a multiple-step binding mechanism: (i) a high affinity, GTP-dependent binding of RGCT to the switch regions of CDC42 or RAC1 and (ii) a very low affinity binding of GRD and a C terminus adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses.
Collapse
Affiliation(s)
- Kazem Nouri
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Eyad K Fansa
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ehsan Amin
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Radovan Dvorsky
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Lothar Gremer
- the Institute of Physical Biology, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Forschungszentrum Jülich, ICS-6, 52428 Jülich, Germany
| | - Dieter Willbold
- the Institute of Physical Biology, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Forschungszentrum Jülich, ICS-6, 52428 Jülich, Germany
| | - Lutz Schmitt
- the Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany, and
| | - David J Timson
- the School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Mohammad R Ahmadian
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, 40225 Düsseldorf, Germany,
| |
Collapse
|
10
|
Szabo M, Dulka K, Gulya K. Calmodulin inhibition regulates morphological and functional changes related to the actin cytoskeleton in pure microglial cells. Brain Res Bull 2015; 120:41-57. [PMID: 26551061 DOI: 10.1016/j.brainresbull.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023]
Abstract
The roles of calmodulin (CaM), a multifunctional intracellular calcium receptor protein, as concerns selected morphological and functional characteristics of pure microglial cells derived from mixed primary cultures from embryonal forebrains of rats, were investigated through use of the CaM antagonists calmidazolium (CALMID) and trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, a bicyclic heptapeptide that binds only to filamentous actin, and the ionized calcium-binding adaptor molecule 1 (Iba1), a microglia-specific actin-binding protein, was determined by immunocytochemistry, with quantitative analysis by immunoblotting. In unchallenged and untreated (control) microglia, high concentrations of CaM protein were found mainly perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM content that diminished progressively deeper into the branches in the ramified microglia. The amounts and intracellular distributions of both Iba1 and CaM proteins were altered after lipopolysaccharide (LPS) challenge in activated microglia. CALMID and TFP exerted different, sometimes opposing, effects on many morphological, cytoskeletal and functional characteristics of the microglial cells. They affected the CaM and Iba1 protein expressions and their intracellular localizations differently, inhibited cell proliferation, viability and fluid-phase phagocytosis to different degrees both in unchallenged and in LPS-treated (immunologically challenged) cells, and differentially affected the reorganization of the actin cytoskeleton in the microglial cell cortex, influencing lamellipodia, filopodia and podosome formation. In summary, these CaM antagonists altered different aspects of filamentous actin-based cell morphology and related functions with variable efficacy, which could be important in deciphering the roles of CaM in regulating microglial functions in health and disease.
Collapse
Affiliation(s)
- Melinda Szabo
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
11
|
Sengprasert P, Amparyup P, Tassanakajorn A, Wongpanya R. Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:87-97. [PMID: 25681078 DOI: 10.1016/j.dci.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Calmodulin (CaM), a ubiquitous intracellular calcium (Ca(2+)) sensor in all eukaryotic cells, is one of the well-known signaling proteins. Previously, CaM gene has shown a high transcriptional level in hemocyte of the pathogen infected shrimp, suggesting that shrimp CaM does not only regulate Ca(2+) metabolism, but is also involved in immune response cascade. In the present study, the CaM gene of shrimp Penaeus monodon was identified and the recombinant P.monodon CaM (rPmCaM) was produced and biochemically characterized. The identification of CaM-binding proteins was also performed. The PmCaM cDNA consisted of an open reading frame of 447 bp encoding for 149 amino acid residues with a calculated mass of 16,810 Da and an isoelectric point of 4.09. Tissue distribution showed that the PmCaM transcript was expressed in all examined tissues. The results of gel mobility shift assay, circular dichroism spectroscopy and fluorescence spectroscopy all confirmed that the conformational changes of the rPmCaM were observed after the calcium binding. According to the gene silencing of PmCaM transcript levels, the shrimp's susceptibility to pathogenic Vibrio harveyi infection increased in comparison with that of the control groups. Protein pull-down assay and LC-MS/MS analysis were performed to identify rPmCaM-binding proteins involved in shrimp immune responses and transglutaminase, elongation factor 1-alpha, elongation factor 2 and actin were found. However, by computational analysis, only the first three proteins contained CaM-binding domain. These findings suggested that PmCaM may play an important role in regulation of shrimp immune system.
Collapse
Affiliation(s)
- Panjana Sengprasert
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahonyothin, Bangkok 10900, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Anchalee Tassanakajorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahonyothin, Bangkok 10900, Thailand.
| |
Collapse
|
12
|
Luo S, He M, Cao Y, Xia Y. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Environ Microbiol 2013; 15:2966-79. [PMID: 23809263 DOI: 10.1111/1462-2920.12166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/25/2013] [Indexed: 01/19/2023]
Abstract
In most eukaryotes, tetraspanins regulate cellular activities by associating with other membrane components. In phytopathogenic fungi, the tetraspanin Pls1 controls appressorium-mediated penetration. However, regulation of Pls1 and its associated signalling pathways are not clear. In this study, the MaPls1 gene from the entomopathogenic fungus Metarhizium acridum was functionally characterized. MaPls1 was highly expressed in mycelium and appressorium, and accumulated on the plasma membrane or in the cytoplasm. Compared with a wild-type strain, the deletion mutant ΔMaPls1 had delayed germination and appressorium formation and impaired turgor pressure on locust wings, but normal germination on medium and non-host insect matrices. Bioassays showed that ΔMaPls1 had decreased virulence and hyphal body formation in haemolymph when topically inoculated, but was not different from wild type when the insect cuticle was bypassed. Moreover, the ability to grow out of the cuticle was impaired in ΔMaPls1. Digital gene expression profiling revealed that genes involved in hydrolysing host cuticle and cell wall synthesis and remodelling were downregulated in ΔMaPls1. MaPls1 participated in crosstalk with signalling pathways such as the cyclic adenosine monophosphate-dependent protein kinase A and calmodulin-dependent pathways. Taken together, these results demonstrated the important roles of MaPls1 at the early stage of infection-associated development in M. acridum.
Collapse
Affiliation(s)
- Sha Luo
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 400030, China
| | - Min He
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 400030, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 400030, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 400030, China
| |
Collapse
|
13
|
Comparative proteomic analysis reveals differentially expressed proteins correlated with fuzz fiber initiation in diploid cotton (Gossypium arboreum L.). J Proteomics 2013; 82:113-29. [PMID: 23474080 DOI: 10.1016/j.jprot.2013.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED In this study, a comparative proteomic analysis was employed to identify fuzz fiber initiation-related proteins in wild-type diploid cotton (Gossypium arboreum L.) and its fuzzless mutant. Temporal changes in global proteomes were examined using 2-DE at five developmental time points for fuzz fiber initiation, and 71 differentially expressed protein species were identified by MS, 45 of which were preferentially accumulated in the wild-type. These proteins were assigned to several functional categories, mainly in cell response/signal transduction, redox homeostasis, protein metabolism and energy/carbohydrate metabolism. It was remarkable that more than ten key proteins with high-abundance were involved in gibberellic acid (GA) signaling and ROS scavenging, and increasing concentrations of active GAs and H2O2 were also detected approximately 5dpa in wild type ovules. Furthermore, in vivo GA and H2O2 treatments of ovules inside young bolls showed that these compounds can synergistically promote fuzz fiber initiation. Our findings not only described a dynamic protein network supporting fuzz initiation in diploid cotton fiber ovules, but also deepened our understanding of the molecular basis of cotton fiber initiation. BIOLOGICAL SIGNIFICANCE Our study reported the identification of differentially expressed proteins in wild-type diploid cotton (G. arboreum L.) and its fuzzless mutant by comparative proteomic approach. In total, 71 protein species related to fuzz initiation were identified by MS. These proteins were assigned to several functional categories, mainly in energy/carbohydrate metabolism, protein metabolism, signal transduction, redox homeostasis etc. Importantly, a number of key proteins were found to be associated with GA signaling and ROS scavenging. In consistence with these findings, we detected the increase of GAs and H2O2 concentrations during fiber initiation, and our in vivo ovule experiments with GA and H2O2 injection and following microscopy observation of fuzz fiber initiation supported promoting effects of GA and H2O2 on cotton fiber initiation. These findings depicted a dynamic protein network supporting cotton fiber initiation in diploid cotton ovules. Our study is of major significance for understanding the molecular mechanisms controlling fuzz initiation and also provides a solid basis for further functional research of single nodes of this network in relation to cotton fiber initiation.
Collapse
|