1
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Samara A, Shapira S, Lubin I, Shpilberg O, Avigad S, Granot G, Raanani P. Deferasirox induces cyclin D1 degradation and apoptosis in mantle cell lymphoma in a reactive oxygen species- and GSK3β-dependent mechanism. Br J Haematol 2021; 192:747-760. [PMID: 33521925 DOI: 10.1111/bjh.17284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023]
Abstract
Mantle cell lymphoma (MCL) is a difficult-to-treat B-cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be of therapeutic significance. However, treatment of MCL remains challenging since patients are still subject to early and frequent relapse of the disease. To ensure their high proliferation rate, tumour cells have increased iron needs, making them more susceptible to iron deprivation. Indeed, several iron chelators proved to be effective anti-cancer agents. In this study, we demonstrate that the clinically approved iron chelator deferasirox (DFX) exerts an anti-tumoural effect in MCL cell lines and patient cells. The exposure of MCL cells to clinically feasible concentrations of DFX resulted in growth inhibition, cell cycle arrest and induction of apoptosis. We show that DFX unfolds its cytotoxic effect by a rapid induction of reactive oxygen species (ROS) that leads to oxidative stress and severe DNA damage and by triggering CD1 proteolysis in a mechanism that requires its phosphorylation on T286 by glycogen synthase kinase-3β (GSK3β). Moreover, we demonstrate that DFX mediates CD1 proteolysis by repressing the phosphatidylinositol 3-kinase (PI3K)/AKT/GSK3β pathway via ROS generation. Our data suggest DFX as a potential therapeutic option for MCL and paves the way for more treatment options for these patients.
Collapse
Affiliation(s)
- Aladin Samara
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Saar Shapira
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Ido Lubin
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Ofer Shpilberg
- Institute of Hematology, Assuta Medical Center, and School of Medicine, Ariel University, Ariel, Israel
| | - Smadar Avigad
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Granot
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Pia Raanani
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
3
|
Nanoparticle-facilitated delivery of BAFF-R siRNA for B cell intervention and rheumatoid arthritis therapy. Int Immunopharmacol 2020; 88:106933. [PMID: 32866781 DOI: 10.1016/j.intimp.2020.106933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
The present study was designed to explore the effects of B-cell activating factor receptor (BAFF-R) siRNA encapsulated nanoparticles on collagen-induced arthritis (CIA). BAFF-R siRNA encapsulated nanoparticles (NP-siBAFF-R) were constructed using a double emulsion method and was characterized by dynamic light scattering and transmission electron microscopy. Cellular uptake of nanoparticles was determined using flow cytometry. The CIA mouse model was established and the mice were intravenously injected with nanoparticles. NP-siBAFF-R effectively decreased the expression of BAFF-R in B cells and facilitated the delivery of siRNA into B cells. Treatment of NPsiBAFF-R ameliorated rheumatoid arthritis (RA) symptoms in the CIA mouse model via decreasing the arthritis score, mean ankle diameter, the levels of anti-collagen IgG in serum and increasing the expression of collagen type II and osteocalcin in dissected joint tissues. Additionally, treatment of NPsiBAFF-R decreased the percentage and number of B cells and inhibited the production of pro-inflammatory cytokines in RA mice. These results demonstrate that NP-siBAFF-R may provide an effective strategy for RA treatment.
Collapse
|
4
|
Nguyen BT, Pyun JC, Lee SG, Kang MJ. Identification of new binding proteins of focal adhesion kinase using immunoprecipitation and mass spectrometry. Sci Rep 2019; 9:12908. [PMID: 31501460 PMCID: PMC6733923 DOI: 10.1038/s41598-019-49145-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) is a 125 kDa protein recruited as a participant in focal adhesion dynamics and serves as a signaling scaffold for the assembly and subsequent maturation of focal contact. Identification of new FAK binding proteins could reveal potential signaling targets and contribute to further development of therapeutic drugs in the treatment of colon cancer. Here, we applied a functional proteomic strategy to identify proteins that interact with FAK in human colon cancer cell line HCT-116. Proteins were targeted by coimmunoprecipitation with an anti-FAK antibody and resolved on 1D-SDS-PAGE. The gel was excised, reduced, alkylated, and trypsin digested. Tryptic peptides were separated by nano-LC-MS/MS by an LTQ-Orbitrap-Velos spectrometer. We identified 101 proteins in the immunocomplex under epithelial growth factor (EGF) stimulation. Three proteins, zyxin, nesprin-1, and desmoplakin, were discovered and validated using reciprocal immunoprecipitation and Western blot analysis. Then, we sought to study the biological relevance of these proteins by siRNA transfection of HCT-116 cells. According to the results, zyxin might play a central role as an upstream regulator to mediate critical cancer-related signaling pathways. Zyxin and nesprin-1 depletion significantly impaired cell migration and invasion capabilities. Additionally, we performed ELISA assays on serum samples from patients with colon cancer instead of cell models to quantify the protein levels of zyxin and nesprin-1. Our results suggested that zyxin and nesprin-1 are not only promising therapeutic targets but also potential diagnostic biomarkers for colon cancer.
Collapse
Affiliation(s)
- Binh Thanh Nguyen
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jae-Chul Pyun
- Department of Materials and Sciences, Yonsei University, Seoul, 120-749, South Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Severance Hospital, Seoul, 120-752, South Korea. .,Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea. .,Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
5
|
Ramishetti S, Peer D. Engineering lymphocytes with RNAi. Adv Drug Deliv Rev 2019; 141:55-66. [PMID: 30529305 DOI: 10.1016/j.addr.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Lymphocytes are the gatekeepers of the body's immune system and are involved in pathogenesis if their surveillance is stalled by inhibitory molecules or when they act as mediators for viral entry. Engineering lymphocytes in order to restore their functions is an unmet need in immunological disorders, cancer and in lymphotropic viral infections. Recently, the FDA approved several therapeutic antibodies for blocking inhibitory signals on T cells. This has revolutionized the field of solid tumor care, together with chimeric antigen receptor T cell (CAR-T) therapy that did the same for hematological malignancies. RNA interference (RNAi) is a promising approach where gene function can be inhibited in almost all types of cells. However, manipulation of genes in lymphocyte subsets are difficult due to their hard-to-transfect nature and in vivo targeting remains challenging as they are dispersed throughout the body. The ability of RNAi molecules to gain entry into cells is almost impossible without delivery strategy. Nanotechnology approaches are rapidly growing and their impact in the field of drug and gene delivery applications to transport payloads inside cells have been extensively studied. Here we discuss various technologies available for RNAi delivery to lymphocytes. We shed light on the importance of targeting molecules in order to target lymphocytes in vivo. In addition, we discuss recent developments of RNAi delivery to lymphocyte subsets, and detail the potential implication for the future of molecular medicine in leukocytes implicated diseases.
Collapse
|
6
|
Hazan-Halevy I, Rosenblum D, Ramishetti S, Peer D. Systemic Modulation of Lymphocyte Subsets Using siRNAs Delivered via Targeted Lipid Nanoparticles. Methods Mol Biol 2019; 1974:151-159. [PMID: 31099001 DOI: 10.1007/978-1-4939-9220-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic delivery of RNA interference (RNAi) payloads for manipulation of gene expression in lymphocytes holds a great potential as a novel therapeutic modality for hematological malignancies and autoimmune disorders. However, lymphocytes are among the most difficult cells to transfect with RNAi, as they are resistant to conventional transfection reagents and are dispersed throughout the body, making it a challenge to successfully deliver these payloads via systemic administration route. We have developed a strategy to target lymphocytes and deliver RNAi payloads in a cell-specific manner to induce therapeutic gene silencing. This approach utilizes antibodies that decorate lipid nanoparticle surfaces to home into lymphocyte subsets. This approach opens new avenues for discovery of new drug targets and potentially for therapeutics.
Collapse
Affiliation(s)
- Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel. .,Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel. .,Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel. .,Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Knapp CM, He J, Lister J, Whitehead KA. Lipid nanoparticle siRNA cocktails for the treatment of mantle cell lymphoma. Bioeng Transl Med 2018; 3:138-147. [PMID: 30065968 PMCID: PMC6063866 DOI: 10.1002/btm2.10088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022] Open
Abstract
Mantle cell lymphoma is an aggressive and incurable subtype of non‐Hodgkin B cell lymphoma. Patients typically present with advanced disease, and most patients succumb within a decade of diagnosis. There is a clear and urgent need for novel therapeutic approaches that will affect mantle cell lymphoma through a unique mechanism compared to current therapies. This study examined the use of RNA interference (RNAi) therapy to attack mantle cell lymphoma at the mRNA level, silencing genes associated with cancer cell proliferation. We identified a lipid nanoparticle formulated with the lipidoid 306O13 that delivered siRNA to JeKo‐1 and MAVER‐1 mantle cell lymphoma cell lines. Three therapeutic gene targets were examined for their effect on lymphoma growth. These included Cyclin D1, which is a cell cycle regulator, as well as Bcl‐2 and Mcl‐1, which prevent apoptosis. Gene knockdown with siRNA doses as low at 10 nM increased lymphoma cell apoptosis without carrier‐mediated toxicity. Silencing of Cyclin D1 induced apoptosis despite a twofold “compensation” upregulation of Cyclin D2. Upon simultaneous silencing of all three genes, nearly 75% of JeKo‐1 cells were apoptosing 3 days post‐transfection. Furthermore, cells proliferated at only 15% of their pretreatment rate. These data suggest that lipid nanoparticles‐formulated, multiplexed siRNA “cocktails” may serve as a beneficial addition to the treatment regimens for mantle cell lymphoma and other aggressive cancers.
Collapse
Affiliation(s)
| | - Jia He
- Dept. of Biomedical Engineering Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh PA 15213
| | - John Lister
- Div. of Hematology and Cellular Therapy Allegheny Health Network Cancer Institute Pittsburgh PA 15224
| | - Kathryn A Whitehead
- Dept. of Chemical Engineering.,Dept. of Biomedical Engineering Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh PA 15213
| |
Collapse
|
8
|
CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma. Oncotarget 2018; 7:73558-73572. [PMID: 27713153 PMCID: PMC5341999 DOI: 10.18632/oncotarget.12434] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/24/2016] [Indexed: 11/25/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by the t(11;14) translocation, which leads to deregulated expression of the cell cycle regulatory protein cyclin D1 (CCND1). Genomic studies of MCL have also identified recurrent mutations in the coding region of CCND1. However, the functional consequence of these mutations is not known. Here, we showed that, compared to wild type (WT), single E36K, Y44D or C47S CCND1 mutations increased CCND1 protein levels in MCL cell lines. Mechanistically, these mutations stabilized CCND1 protein through attenuation of threonine-286 phosphorylation, which is important for proteolysis through the ubiquitin-proteasome pathway. In addition, the mutant proteins preferentially localized to the nucleus. Interestingly, forced expression of WT or mutant CCND1 increased resistance of MCL cell lines to ibrutinib, an FDA-approved Bruton tyrosine kinase inhibitor for MCL treatment. The Y44D mutant sustained the resistance to ibrutinib even at supraphysiologic concentrations (5-10 μM). Furthermore, primary MCL tumors with CCND1 mutations also expressed stable CCND1 protein and were resistant to ibrutinib. These findings uncover a new mechanism that is critical for the regulation of CCND1 protein levels, and is directly relevant to primary ibrutinib resistance in MCL.
Collapse
|
9
|
Gong X, Litchfield LM, Webster Y, Chio LC, Wong SS, Stewart TR, Dowless M, Dempsey J, Zeng Y, Torres R, Boehnke K, Mur C, Marugán C, Baquero C, Yu C, Bray SM, Wulur IH, Bi C, Chu S, Qian HR, Iversen PW, Merzoug FF, Ye XS, Reinhard C, De Dios A, Du J, Caldwell CW, Lallena MJ, Beckmann RP, Buchanan SG. Genomic Aberrations that Activate D-type Cyclins Are Associated with Enhanced Sensitivity to the CDK4 and CDK6 Inhibitor Abemaciclib. Cancer Cell 2017; 32:761-776.e6. [PMID: 29232554 DOI: 10.1016/j.ccell.2017.11.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/10/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Most cancers preserve functional retinoblastoma (Rb) and may, therefore, respond to inhibition of D-cyclin-dependent Rb kinases, CDK4 and CDK6. To date, CDK4/6 inhibitors have shown promising clinical activity in breast cancer and lymphomas, but it is not clear which additional Rb-positive cancers might benefit from these agents. No systematic survey to compare relative sensitivities across tumor types and define molecular determinants of response has been described. We report a subset of cancers highly sensitive to CDK4/6 inhibition and characterized by various genomic aberrations known to elevate D-cyclin levels and describe a recurrent CCND1 3'UTR mutation associated with increased expression in endometrial cancer. The results suggest multiple additional classes of cancer that may benefit from CDK4/6-inhibiting drugs such as abemaciclib.
Collapse
Affiliation(s)
- Xueqian Gong
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | - Yue Webster
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Li-Chun Chio
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | - Jack Dempsey
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yi Zeng
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | - Cecilia Mur
- Eli Lilly and Company, Alcobendas, Madrid, Spain
| | | | | | | | | | | | - Chen Bi
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shaoyou Chu
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | - Jian Du
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | |
Collapse
|
10
|
Wang Y, Kong QJ, Sun JC, Xu XM, Yang Y, Liu N, Shi JG. Protective effect of epigenetic silencing of CyclinD1 against spinal cord injury using bone marrow-derived mesenchymal stem cells in rats. J Cell Physiol 2017; 233:5361-5369. [PMID: 29215736 DOI: 10.1002/jcp.26354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
This study focuses on the protective effect of epigenetic silencing of CyclinD1 against spinal cord injury (SCI) using bone marrow-derived mesenchymal stem cells (BMSCs) in rats. Eighty-eight adult female Wistar rats were randomly assigned into the sham group, the control group, the si-CyclinD1 + BMSCs group and the BMSCs group. CyclinD1 protein and mRNA expressions after siRNA transfection were detected by Western blotting and qRT-PCR. The siRNA-CyclinD1 BMSCs were transplanted into rats in the si-CyclinD1 + BMSCs group using stereotaxic method 6 hr after SCI. Hindlimb locomotor performance was determined using inclined plane test and Basso-Beattie-Bresnahan (BBB) locomotor rating scale. Expressions of glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were detected by immunohistochemistry. Inclined plane and BBB scores in the control, si-CyclinD1 + BMSCs, and BMSCs groups were significantly lower than the sham group, but these scores were evidently decreased in the control group and increased in the si-CyclinD1 + BMSCs group compared with the BMSCs group. The repair degree of spinal cord tissues of rats in the si-CyclinD1 + BMSCs group was obvious than the BMSCs group. GFAP and NGF protein expressions were markedly decreased in the control, si-CyclinD1 + BMSCs and BMSCs groups when compared with the sham group. GFAP- and NGF-positive cells were significantly increased in the si-CyclinD1 + BMSCs group while decreased in the control group. Our study provides evidence that epigenetic silencing of CyclinD1 using BMSCs might accelerate the repair of SCI in rats.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Qing-Jie Kong
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jin-Chuan Sun
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Xi-Ming Xu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Yong Yang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Ning Liu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jian-Gang Shi
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| |
Collapse
|
11
|
MicroRNA profile for health risk assessment: Environmental exposure to persistent organic pollutants strongly affects the human blood microRNA machinery. Sci Rep 2017; 7:9262. [PMID: 28835693 PMCID: PMC5569060 DOI: 10.1038/s41598-017-10167-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Persistent organic pollutants (POPs) are synthetic chemical substances that accumulate in our environment. POPs such as polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane (DDT) have been classified as carcinogenic to humans and animals. Due to their resistance to biodegradation humans are still exposed to these compounds worldwide. We aim to evaluate the miRNA and transcriptomic response of a human population exposed to POPs. The miRNA and transcriptomic response was measured in blood of healthy subjects by microarray technology and associated with the serum concentrations of six PCB congeners, DDE (a common DDT metabolite), and HCB. A total of 93 miRNA levels appeared significantly associated with the POP-exposure (FDR < 0.05). The miRNA profile includes four tumor suppressor miRNAs, namely miR-193a-3p, miR-152, miR-31-5p and miR-34a-5p. Integration of the miRNA profile with the transcriptome profile suggests an interaction with oncogenes such as MYC, CCND1, BCL2 and VEGFA. We have shown that exposure to POPs is associated with human miRNA and transcriptomic responses. The identified miRNAs and target genes are related to various types of cancer and involved in relevant signaling pathways like wnt and p53. Therefore, these miRNAs may have great potential to contribute to biomarker-based environmental health risk assessment.
Collapse
|
12
|
Mizrahy S, Hazan-Halevy I, Dammes N, Landesman-Milo D, Peer D. Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes. Mol Ther 2017; 25:1491-1500. [PMID: 28392163 DOI: 10.1016/j.ymthe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
RNAi-based therapy holds great promise, as it can be utilized for the treatment of multiple conditions in an accurate manner via sequence-specific manipulation of gene expression. To date, RNAi therapeutics have advanced into clinical trials for liver diseases and solid tumors; however, delivery of RNAi to leukocytes in general and to lymphocytes in particular remains a challenge. Lymphocytes are notoriously hard to transduce with RNAi payloads and are disseminated throughout the body, often located in deep tissues; therefore, developing an efficient systemic delivery system directed to lymphocytes is not a trivial task. Successful manipulation of lymphocyte function with RNAi possesses immense therapeutic potential, as it will enable researchers to resolve lymphocyte-implicated diseases such as inflammation, autoimmunity, transplant rejection, viral infections, and blood cancers. This potential has propelled the development of novel targeted delivery systems relying on the accumulating research knowledge from multiple disciplines, including materials science and engineering, immunology, and genetics. Here, we will discuss the recent progress in non-viral delivery strategies of RNAi payloads to lymphocytes. Special emphasis will be made on the challenges and potential opportunities in manipulating lymphocyte function with RNAi. These approaches might ultimately become a novel therapeutic modality to treat leukocyte-related diseases.
Collapse
Affiliation(s)
- Shoshy Mizrahy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niels Dammes
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
13
|
Simonsen JB. Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform – a detailed survey of rHDL particles ranging from biophysical properties to clinical implications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2161-2179. [DOI: 10.1016/j.nano.2016.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
|
14
|
Mohanty S, Mohanty A, Sandoval N, Tran T, Bedell V, Wu J, Scuto A, Murata-Collins J, Weisenburger DD, Ngo VN. Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines. Leuk Lymphoma 2016; 58:676-688. [PMID: 27338091 DOI: 10.1080/10428194.2016.1198958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elevated cyclin D1 (CCND1) expression levels in mantle cell lymphoma (MCL) are associated with aggressive clinical manifestations related to chemoresistance, but little is known about how this important proto-oncogene contributes to the resistance of MCL. Here, we showed that RNA interference-mediated depletion of CCND1 increased caspase-3 activities and induced apoptosis in the human MCL lines UPN-1 and JEKO-1. In vitro and xenotransplant studies revealed that the toxic effect of CCND1 depletion in MCL cells was likely due to increase in histone H2AX phosphorylation, a DNA damage marker. DNA fiber analysis suggested deregulated replication initiation after CCND1 depletion as a potential cause of DNA damage. Finally, in contrast to depletion or inhibition of cyclin-dependent kinase 4, CCND1 depletion increased chemosensitivity of MCL cells to replication inhibitors hydroxyurea and cytarabine. Our findings have an important implication for CCND1 as a potential therapeutic target in MCL patients who are refractory to standard chemotherapy.
Collapse
Affiliation(s)
- Suchismita Mohanty
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| | - Atish Mohanty
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| | - Natalie Sandoval
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| | - Thai Tran
- b Irell & Manella Graduate School of Biological Sciences , Duarte , CA , USA
| | - Victoria Bedell
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Jun Wu
- d Animal Resource Center , Beckman Research Institute of City of Hope , Duarte , CA , USA
| | - Anna Scuto
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Joyce Murata-Collins
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Dennis D Weisenburger
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Vu N Ngo
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| |
Collapse
|
15
|
Ramishetti S, Landesman-Milo D, Peer D. Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles. J Drug Target 2016; 24:780-786. [PMID: 27030014 DOI: 10.3109/1061186x.2016.1172587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small interfering RNAs (siRNAs) therapeutics has advanced into clinical trials for liver diseases and solid tumors, but remain a challenge for manipulating leukocytes fate due to lack of specificity and safety issues. Leukocytes ingest pathogens and defend the body through a complex network. They are also involved in the pathogeneses of inflammation, viral infection, autoimmunity and cancers. Modulating gene expression in leukocytes using siRNAs holds great promise to treat leukocyte-mediated diseases. Leukocytes are notoriously hard to transduce with siRNAs and are spread throughout the body often located deep in tissues, therefore developing an efficient systemic delivery strategy is still a challenge. Here, we discuss recent advances in siRNA delivery to leukocyte subsets such as macrophages, monocytes, dendritic cells and lymphocytes. We focus mainly on lipid-based nanoparticles (LNPs) comprised of new generation of ionizable lipids and their ability to deliver siRNA to primary or malignant leukocytes in a targeted manner. Special emphasis is made on LNPs targeted to subsets of leukocytes and we detail a novel microfluidic mixing technology that could aid in changing the landscape of process development of LNPs from a lab tool to a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Srinivas Ramishetti
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dalit Landesman-Milo
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dan Peer
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
16
|
Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci U S A 2015; 113:E16-22. [PMID: 26699502 DOI: 10.1073/pnas.1519273113] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite progress in systemic small interfering RNA (siRNA) delivery to the liver and to solid tumors, systemic siRNA delivery to leukocytes remains challenging. The ability to silence gene expression in leukocytes has great potential for identifying drug targets and for RNAi-based therapy for leukocyte diseases. However, both normal and malignant leukocytes are among the most difficult targets for siRNA delivery as they are resistant to conventional transfection reagents and are dispersed in the body. We used mantle cell lymphoma (MCL) as a prototypic blood cancer for validating a novel siRNA delivery strategy. MCL is an aggressive B-cell lymphoma that overexpresses cyclin D1 with relatively poor prognosis. Down-regulation of cyclin D1 using RNA interference (RNAi) is a potential therapeutic approach to this malignancy. Here, we designed lipid-based nanoparticles (LNPs) coated with anti-CD38 monoclonal antibodies that are specifically taken up by human MCL cells in the bone marrow of xenografted mice. When loaded with siRNAs against cyclin D1, CD38-targeted LNPs induced gene silencing in MCL cells and prolonged survival of tumor-bearing mice with no observed adverse effects. These results highlight the therapeutic potential of cyclin D1 therapy in MCL and present a novel RNAi delivery system that opens new therapeutic opportunities for treating MCL and other B-cell malignancies.
Collapse
|
17
|
Landesman-Milo D, Peer D. Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Deliv Transl Res 2015; 4:96-103. [PMID: 25786620 DOI: 10.1007/s13346-013-0158-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNAi-based nanomedicine platforms (RNPs) have progressed from tools to study gene expression in vitro into clinical trials. Numerous RNPs strategies have been documented with an efficient ability to condense RNAi payloads and induce potent gene silencing. Moreover, some of these RNPs have been explored in various animal models, and some have even made it to the clinic. Still, there is lack of a clinically approved RNAi-based delivery strategy most probably due to unpredicted clinical toxicity. In this study, we prepared common RNPs such as cationic liposomes, polyamines, and hyaluronan-coated lipid-based nanoparticles and tested these strategies for global toxicity parameters such as changes in bodyweight, liver enzyme release, and hematological profiling. We found that polyamines such as polyethyleneimine and Poly-L-lysine released high levels of liver enzymes into the serum and reduced C57BL/6 mice bodyweight upon three intravenous injections. In addition, these polyamines dramatically reduced the total number of leukocytes, suggesting an immune suppression mechanism, while cationic liposomes, which also increased liver enzymes levels in the serum, elevated the total number of leukocytes probably by activation of Toll-like receptors 2 and 4. Coating the liposomes with hyaluronan, a hydrophilic glycosaminoglycan, provided a protective layer and did not induce adverse effects upon multiple intravenous injections. These findings suggest that there is an urgent need to develop gold standards for nanotoxicity in the field of RNAi that will be embraced by the RNAi community.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
18
|
Hazan-Halevy I, Rosenblum D, Weinstein S, Bairey O, Raanani P, Peer D. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Lett 2015; 364:59-69. [PMID: 25933830 DOI: 10.1016/j.canlet.2015.04.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive and incurable mature B cell neoplasm. The current treatments are based on chemotherapeutics and new class of drugs (e.g. Ibrutinib(®)), which in most cases ends with tumor resistance and relapse. Therefore, further development of novel therapeutic modalities is needed. Exosomes are natural extracellular vesicles, which play an important role in intercellular communication. The specificity of exosome uptake by different target cells remains unknown. In this study, we observed that MCL exosomes are taken up rapidly and preferentially by MCL cells. Only a minor fraction of exosomes was internalized into T-cell leukemia and bone marrow stroma cell lines, when these cells were co-cultured with MCL cells. Moreover, MCL patients' exosomes were taken up by both healthy and patients' B-lymphocytes with no apparent internalization to T lymphocytes and NK cells. Exosome internalization was not inhibited by specific siRNA against caveolin1 and clathrin but was found to be mediated by a cholesterol-dependent pathway. These findings demonstrate natural specificity of exosomes to B-lymphocytes and ultimately might be used for therapeutic intervention in B cells malignancies.
Collapse
Affiliation(s)
- Inbal Hazan-Halevy
- Laboratory of NanoMedicine, Department of Cell Research & Immunology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rosenblum
- Laboratory of NanoMedicine, Department of Cell Research & Immunology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiri Weinstein
- Laboratory of NanoMedicine, Department of Cell Research & Immunology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Osnat Bairey
- Institute of Hematology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Pia Raanani
- Institute of Hematology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research & Immunology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
19
|
Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibly Z, Peer D. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS NANO 2015; 9:1581-91. [PMID: 25558928 DOI: 10.1021/nn506248s] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most infiltrating, aggressive, and poorly treated brain tumors. Progress in genomics and proteomics has paved the way for identifying potential therapeutic targets for treating GBM, yet the vast majority of these leading drug candidates for the treatment of GBM are ineffective, mainly due to restricted passages across the blood-brain barrier. Nanoparticles have been emerged as a promising platform to treat different types of tumors due to their ability to transport drugs to target sites while minimizing adverse effects. Herein, we devised a localized strategy to deliver RNA interference (RNAi) directly to the GBM site using hyaluronan (HA)-grafted lipid-based nanoparticles (LNPs). These LNPs having an ionized lipid were previously shown to be highly effective in delivering small interfering RNAs (siRNAs) into various cell types. LNP's surface was functionalized with hyaluronan (HA), a naturally occurring glycosaminoglycan that specifically binds the CD44 receptor expressed on GBM cells. We found that HA-LNPs can successfully bind to GBM cell lines and primary neurosphers of GBM patients. HA-LNPs loaded with Polo-Like Kinase 1 (PLK1) siRNAs (siPLK1) dramatically reduced the expression of PLK1 mRNA and cumulated in cell death even under shear flow that simulate the flow of the cerebrospinal fluid compared with control groups. Next, a human GBM U87MG orthotopic xenograft model was established by intracranial injection of U87MG cells into nude mice. Convection of Cy3-siRNA entrapped in HA-LNPs was performed, and specific Cy3 uptake was observed in U87MG cells. Moreover, convection of siPLK1 entrapped in HA-LNPs reduced mRNA levels by more than 80% and significantly prolonged survival of treated mice in the orthotopic model. Taken together, our results suggest that RNAi therapeutics could effectively be delivered in a localized manner with HA-coated LNPs and ultimately may become a therapeutic modality for GBM.
Collapse
Affiliation(s)
- Zvi R Cohen
- Department of Neurosurgery, Sheba Medical Center , Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Vogt N, Abramov D, Koch K, Masqué-Soler N, Szczepanowski M, Klapper W. No evidence of cell cycle dysregulation in mantle cell lymphoma in vivo. Leuk Lymphoma 2014; 56:2134-40. [PMID: 25315075 DOI: 10.3109/10428194.2014.975700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mantle cell lymphoma (MCL) is characterized by the translocation t(11;14)(q13;q32) leading to an overexpression of cyclin D1, a mediator of G1-S phase transition. Thus MCL is regarded as a paradigm of lymphoma with a dysregulated cell cycle. The proliferation rate of MCL is in fact a strong predictor of outcome. We analyzed proteins that are expressed at defined cell cycle phases, such as Ki67, survivin and phosphorylated histone H3 as well as cyclin D1, p53 and p27, on the cellular level by immunofluorescence double stainings in MCL biopsy specimens. Unexpectedly, we did not detect a shortening of early phases in MCL in vivo. Despite the control of the immunoglobulin enhancer, cyclin D1 was expressed in a cell cycle-dependent manner. However, the proliferating Ki67-positive tumor cells expressed low amounts of cyclin D1. Therefore, the expression of cyclin D1 appears not to be the driving factor behind the total proliferation rate of MCL.
Collapse
Affiliation(s)
- Niklas Vogt
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| | | | | | | | | | | |
Collapse
|
21
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054 DOI: 10.1186/2052-8426-2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel ; Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel ; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
22
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 11/21/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- />Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel
- />Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel
- />Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
23
|
The role of EGFR/PI3K/Akt/cyclinD1 signaling pathway in acquired middle ear cholesteatoma. Mediators Inflamm 2013; 2013:651207. [PMID: 24311896 PMCID: PMC3839121 DOI: 10.1155/2013/651207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/24/2013] [Indexed: 12/21/2022] Open
Abstract
Cholesteatoma is a benign keratinizing and hyper proliferative squamous epithelial lesion of the temporal bone. Epidermal growth factor (EGF) is one of the most important cytokines which has been shown to play a critical role in cholesteatoma. In this investigation, we studied the effects of EGF on the proliferation of keratinocytes and EGF-mediated signaling pathways underlying the pathogenesis of cholesteatoma. We examined the expressions of phosphorylated EGF receptor (p-EGFR), phosphorylated Akt (p-Akt), cyclinD1, and proliferating cell nuclear antigen (PCNA) in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium by immunohistochemical method. Furthermore, in vitro studies were performed to investigate EGF-induced downstream signaling pathways in primary external auditory canal keratinocytes (EACKs). The expressions of p-EGFR, p-Akt, cyclinD1, and PCNA in cholesteatoma epithelium were significantly increased when compared with those of control subjects. We also demonstrated that EGF led to the activation of the EGFR/PI3K/Akt/cyclinD1 signaling pathway, which played a critical role in EGF-induced cell proliferation and cell cycle progression of EACKs. Both EGFR inhibitor AG1478 and PI3K inhibitor wortmannin inhibited the EGF-induced EGFR/PI3K/Akt/cyclinD1 signaling pathway concomitantly with inhibition of cell proliferation and cell cycle progression of EACKs. Taken together, our data suggest that the EGFR/PI3K/Akt/cyclinD1 signaling pathway is active in cholesteatoma and may play a crucial role in cholesteatoma epithelial hyper-proliferation. This study will facilitate the development of potential therapeutic targets for intratympanic drug therapy for cholesteatoma.
Collapse
|
24
|
|
25
|
Li MM, Ewton AA, Smith JL. Using Cytogenetic Rearrangements for Cancer Prognosis and Treatment (Pharmacogenetics). CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-013-0011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Ferreira AK, Freitas VM, Levy D, Ruiz JLM, Bydlowski SP, Rici REG, Filho OMR, Chierice GO, Maria DA. Anti-angiogenic and anti-metastatic activity of synthetic phosphoethanolamine. PLoS One 2013; 8:e57937. [PMID: 23516420 PMCID: PMC3597720 DOI: 10.1371/journal.pone.0057937] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the most common type of kidney cancer, and represents the third most common urological malignancy. Despite the advent of targeted therapies for RCC and the improvement of the lifespan of patients, its cost-effectiveness restricted the therapeutic efficacy. In a recent report, we showed that synthetic phosphoethanolamine (Pho-s) has a broad antitumor activity on a variety of tumor cells and showed potent inhibitor effects on tumor progress in vivo. METHODOLOGY/PRINCIPAL FINDINGS We show that murine renal carcinoma (Renca) is more sensitive to Pho-s when compared to normal immortalized rat proximal tubule cells (IRPTC) and human umbilical vein endothelial cells (HUVEC). In vitro anti-angiogenic activity assays show that Pho-s inhibits endothelial cell proliferation, migration and tube formation. In addition, Pho-s has anti-proliferative effects on HUVEC by inducing a cell cycle arrest at the G2/M phase. It causes a decrease in cyclin D1 mRNA, VEGFR1 gene transcription and VEGFR1 receptor expression. Pho-s also induces nuclear fragmentation and affects the organization of the cytoskeleton through the disruption of actin filaments. Additionally, Pho-s induces apoptosis through the mitochondrial pathway. The putative therapeutic potential of Pho-s was validated in a renal carcinoma model, on which our remarkable in vivo results show that Pho-s potentially inhibits lung metastasis in nude mice, with a superior efficacy when compared to Sunitinib. CONCLUSIONS/SIGNIFICANCE Taken together, our findings provide evidence that Pho-s is a compound that potently inhibits lung metastasis, suggesting that it is a promising novel candidate drug for future developments.
Collapse
Affiliation(s)
- Adilson Kleber Ferreira
- Biochemistry and Biophysical Laboratory, Butantan Institute, Sao Paulo, Brazil
- Experimental Physiopathology, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, University of Sao Paulo, Sao Paulo, Brazil
| | - Débora Levy
- Laboratory of Genetics and Molecular Hematology (LIM-31), Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge Luiz Mária Ruiz
- Laboratory of Genetics and Molecular Hematology (LIM-31), Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM-31), Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rose Eli Grassi Rici
- Department of Surgery, Faculty of the Veterinary Medicine and Zootecny, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Durvanei Augusto Maria
- Biochemistry and Biophysical Laboratory, Butantan Institute, Sao Paulo, Brazil
- Experimental Physiopathology, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|