1
|
Ciuffreda P, Xynomilakis O, Casati S, Ottria R. Fluorescence-Based Enzyme Activity Assay: Ascertaining the Activity and Inhibition of Endocannabinoid Hydrolytic Enzymes. Int J Mol Sci 2024; 25:7693. [PMID: 39062935 PMCID: PMC11276806 DOI: 10.3390/ijms25147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.
Collapse
Affiliation(s)
| | | | | | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (P.C.); (O.X.); (S.C.)
| |
Collapse
|
2
|
Jia W, He X, Jin W, Gu J, Yu S, He J, Yi Z, Cai B, Gao H, Yang L. Ramulus Cinnamomi essential oil exerts an anti-inflammatory effect on RAW264.7 cells through N-acylethanolamine acid amidase inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116747. [PMID: 37311500 DOI: 10.1016/j.jep.2023.116747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ramulus Cinnamomi, the dried twig of Cinnamomum cassia (L.) J.Presl., is a traditional Chinese medicine (TCM) with anti-inflammatory effects. The medicinal functions of Ramulus Cinnamomi essential oil (RCEO) have been confirmed, although the potential mechanisms by which RCEO exerts its anti-inflammatory effects have not been fully elucidated. AIM OF THE STUDY To investigate whether N-acylethanolamine acid amidase (NAAA) mediates the anti-inflammatory effects of RCEO. MATERIALS AND METHODS RCEO was extracted by steam distillation of Ramulus Cinnamomi, and NAAA activity was detected using HEK293 cells overexpressing NAAA. N-Palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), both of which are NAAA endogenous substrates, were detected by liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The anti-inflammatory effects of RCEO were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the cell viability was measured with a Cell Counting Kit-8 (CCK-8) kit. The nitric oxide (NO) in the cell supernatant was measured using the Griess method. The level of tumor necrosis factor-α (TNF-α) in the RAW264.7 cell supernatant was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The chemical composition of RCEO was assessed by gas chromatography-mass spectroscopy (GC-MS). The molecular docking study for (E)-cinnamaldehyde and NAAA was performed by using Discovery Studio 2019 software (DS2019). RESULTS We established a cell model for evaluating NAAA activity, and we found that RCEO inhibited the NAAA activity with an IC50 of 5.64 ± 0.62 μg/mL. RCEO significantly elevated PEA and OEA levels in NAAA-overexpressing HEK293 cells, suggesting that RCEO might prevent the degradation of cellular PEA and OEA by inhibiting the NAAA activity in NAAA-overexpressing HEK293 cells. In addition, RCEO also decreased NO and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, the GC-MS assay revealed that more than 93 components were identified in RCEO, of which (E)-cinnamaldehyde accounted for 64.88%. Further experiments showed that (E)-cinnamaldehyde and O-methoxycinnamaldehyde inhibited NAAA activity with an IC50 of 3.21 ± 0.03 and 9.62 ± 0.30 μg/mL, respectively, which may represent key components of RCEO that inhibit NAAA activity. Meanwhile, docking assays revealed that (E)-cinnamaldehyde occupies the catalytic cavity of NAAA and engages in a hydrogen bond interaction with the TRP181 and hydrophobic-related interactions with LEU152 of human NAAA. CONCLUSIONS RCEO showed anti-inflammatory effects by inhibiting NAAA activity and elevating cellular PEA and OEA levels in NAAA-overexpressing HEK293 cells. (E)-cinnamaldehyde and O-methoxycinnamaldehyde, two components in RCEO, were identified as the main contributors of the anti-inflammatory effects of RCEO by modulating cellular PEA levels through NAAA inhibition.
Collapse
Affiliation(s)
- Wei Jia
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiwen He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wenhui Jin
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Jinping Gu
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310006, China
| | - Siyu Yu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Zhiwei Yi
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Bing Cai
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| |
Collapse
|
3
|
Romano B, Pagano E, Iannotti FA, Piscitelli F, Brancaleone V, Lucariello G, Nanì MF, Fiorino F, Sparaco R, Vanacore G, Di Tella F, Cicia D, Lionetti R, Makriyannis A, Malamas M, De Luca M, Aprea G, D'Armiento M, Capasso R, Sbarro B, Venneri T, Di Marzo V, Borrelli F, Izzo AA. NAAA is dysregulated in colorectal cancer patients and its inhibition reduces experimental cancer growth. Br J Pharmacol 2021; 179:1679-1694. [PMID: 34791641 PMCID: PMC9303321 DOI: 10.1111/bph.15737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose N‐Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme accountable for the breakdown of N‐acylethanolamines (NAEs) and its pharmacological inhibition has beneficial effects in inflammatory conditions. The knowledge of NAAA in cancer is fragmentary with an unclarified mechanism, whereas its contribution to colorectal cancer (CRC) is unknown to date. Experimental Approach CRC xenograft and azoxymethane models were used to assess the in vivo effect of NAAA inhibition. Further, the tumour secretome was evaluated by an oncogenic array, CRC cell lines were used for in vitro studies, cell cycle was analysed by cytofluorimetry, NAAA was knocked down with siRNA, human biopsies were obtained from surgically resected CRC patients, gene expression was measured by RT‐PCR and NAEs were measured by LC–MS. Key Results The NAAA inhibitor AM9053 reduced CRC xenograft tumour growth and counteracted tumour development in the azoxymethane model. NAAA inhibition affected the composition of the tumour secretome inhibiting the expression of EGF family members. In CRC cells, AM9053 reduced proliferation with a mechanism mediated by PPAR‐α and TRPV1. AM9053 induced cell cycle arrest in the S phase associated with cyclin A2/CDK2 down‐regulation. NAAA knock‐down mirrored the effects of NAAA inhibition with AM9053. NAAA expression was down‐regulated in human CRC tissues, with a consequential augmentation of NAE levels and dysregulation of some of their targets. Conclusion and Implications Our results show novel data on the functional importance of NAAA in CRC progression and the mechanism involved. We propose that this enzyme is a valid drug target for the treatment of CRC growth and development.
Collapse
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Fabio A Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group
| | | | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Francesca Nanì
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giovanna Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Federica Di Tella
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ruggero Lionetti
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, United States
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, United States
| | - Marcello De Luca
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, Interuniversity Center for Technological Innovation Interdepartmental Center for Robotic Surgery, University of Naples Federico II, Naples, Italy
| | - Maria D'Armiento
- Department of Biomorphological and Functional Science, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Endocannabinoid Research Group
| | - Bernardo Sbarro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quèbec, Québec City, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Canada.,Endocannabinoid Research Group
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| |
Collapse
|
4
|
Malamas MS, Pavlopoulos S, Alapafuja SO, Farah SI, Zvonok A, Mohammad KA, West J, Perry NT, Pelekoudas DN, Rajarshi G, Shields C, Chandrashekhar H, Wood J, Makriyannis A. Design and Structure-Activity Relationships of Isothiocyanates as Potent and Selective N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibitors. J Med Chem 2021; 64:5956-5972. [PMID: 33900772 DOI: 10.1021/acs.jmedchem.1c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.
Collapse
Affiliation(s)
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shakiru O Alapafuja
- MAK Scientific LLC, 151 South Bedford Street, Burlington, Massachusetts 01803, United States
| | - Shrouq I Farah
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexander Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A Mohammad
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jay West
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Shields
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jodi Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Kokona D, Spyridakos D, Tzatzarakis M, Papadogkonaki S, Filidou E, Arvanitidis KI, Kolios G, Lamani M, Makriyannis A, Malamas MS, Thermos K. The endocannabinoid 2-arachidonoylglycerol and dual ABHD6/MAGL enzyme inhibitors display neuroprotective and anti-inflammatory actions in the in vivo retinal model of AMPA excitotoxicity. Neuropharmacology 2021; 185:108450. [PMID: 33450278 DOI: 10.1016/j.neuropharm.2021.108450] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The endocannabinoid system has been shown to be a putative therapeutic target for retinal disease. Here, we aimed to investigate the ability of the endocannabinoid 2-arachidonoylglycerol (2-AG) and novel inhibitors of its metabolic enzymes, α/β-hydrolase domain-containing 6 (ABHD6) and monoacylglycerol lipase (MAGL), a) to protect the retina against excitotoxicity and b) the mechanisms involved in the neuroprotection. Sprague-Dawley rats, wild type and Akt2-/- C57BL/6 mice were intravitreally administered with phosphate-buffered saline or (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA). 2-AG was intravitreally co-administered with AMPA in the absence and presence of AM251 or AM630 (cannabinoid 1 and 2 receptor antagonists, respectively) or Wortmannin [Phosphoinositide 3-Kinase (PI3K)/Akt inhibitor]. Inhibitors of ABHD6 and dual ABHD6/MAGL (AM12100 and AM11920, respectively) were co-administered with AMPA intravitreally in rats. Immunohistochemistry was performed using antibodies raised against retinal neuronal markers (bNOS), microglia (Iba1) and macroglia (GFAP). TUNEL assay and real-time PCR were also employed. The CB2 receptor was expressed in rat retina (approx. 62% of CB1 expression). 2-AG attenuated the AMPA-induced increase in TUNEL+ cells. 2-AG activation of both CB1 and CB2 receptors and the PI3K/Akt downstream signaling pathway, as substantiated by the use of Akt2-/- mice, afforded neuroprotection against AMPA excitotoxicity. AM12100 and AM11920 attenuated the AMPA-induced glia activation and produced a dose-dependent partial neuroprotection, with the dual inhibitor AM11920 being more efficacious. These results show that 2-AG has the pharmacological profile of a putative therapeutic for retinal diseases characterized by neurodegeneration and neuroinflammation, when administered exogenously or by the inhibition of its metabolic enzymes.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Manolis Tzatzarakis
- Department of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| | - Konstantinos I Arvanitidis
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece.
| |
Collapse
|
6
|
Yang L, Ji C, Li Y, Hu F, Zhang F, Zhang H, Li L, Ren J, Wang Z, Qiu Y. Natural Potent NAAA Inhibitor Atractylodin Counteracts LPS-Induced Microglial Activation. Front Pharmacol 2020; 11:577319. [PMID: 33117168 PMCID: PMC7565389 DOI: 10.3389/fphar.2020.577319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that inhibits the degradation of palmitoylethanolamide (PEA), an endogenous lipid that induces analgesic, anti-inflammation, and anti-multiple sclerosis through PPARα activation. Only a few potent NAAA inhibitors have been reported to date, which is mainly due to the restricted substrate-binding site of NAAA. Here, we established a high-throughput fluorescence-based assay for NAAA inhibitor screening. Several new classes of NAAA inhibitors were discovered from a small library of natural products. One of these is atractylodin, a polyethylene alkyne compound from the root of Atractylodes lancea (Thunb) DC., which significantly inhibits NAAA activity and has an IC50 of 2.81 µM. Kinetic analyses and dialysis assays suggested that atractylodin engages in competitive inhibition via reversible reaction to the enzyme. Docking assays revealed that atractylodin occupies the catalytic cavity of NAAA, where the atractylodin furan head group has a hydrophobic-related interaction with the backbone of the Trp181 and Leu152 residues of human NAAA. Further investigation indicated that atractylodin significantly increases PEA and OEA levels and dose-dependently inhibits LPS-induced nitrate, TNF-α, IL-1β, and IL-6 pro-inflammatory cytokine release in BV-2 microglia. Our results show that atractylodin elevates cellular PEA levels and inhibits microglial activation by inhibiting NAAA activity, which in turn could contribute to NAAA functional research.
Collapse
Affiliation(s)
- Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chunyan Ji
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yitian Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Hu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Fang Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Haiping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. J Med Chem 2020; 63:7475-7490. [PMID: 32191459 DOI: 10.1021/acs.jmedchem.0c00191] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
8
|
Malamas MS, Farah SI, Lamani M, Pelekoudas DN, Perry NT, Rajarshi G, Miyabe CY, Chandrashekhar H, West J, Pavlopoulos S, Makriyannis A. Design and synthesis of cyanamides as potent and selective N-acylethanolamine acid amidase inhibitors. Bioorg Med Chem 2019; 28:115195. [PMID: 31761726 DOI: 10.1016/j.bmc.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.
Collapse
Affiliation(s)
- Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States.
| | - Shrouq I Farah
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Jay West
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Spiro Pavlopoulos
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
9
|
Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci U S A 2018; 115:E10032-E10040. [PMID: 30301806 DOI: 10.1073/pnas.1811759115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.
Collapse
|
10
|
Cisar JS, Weber OD, Clapper JR, Blankman JL, Henry CL, Simon GM, Alexander JP, Jones TK, Ezekowitz RAB, O’Neill GP, Grice CA. Identification of ABX-1431, a Selective Inhibitor of Monoacylglycerol Lipase and Clinical Candidate for Treatment of Neurological Disorders. J Med Chem 2018; 61:9062-9084. [DOI: 10.1021/acs.jmedchem.8b00951] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Justin S. Cisar
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Olivia D. Weber
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Jason R. Clapper
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Jacqueline L. Blankman
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Cassandra L. Henry
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Gabriel M. Simon
- Vividion Therapeutics, 3565 General Atomics Court, Suite 100, San Diego, California 92121, United States
| | - Jessica P. Alexander
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Todd K. Jones
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - R. Alan B. Ezekowitz
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Gary P. O’Neill
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Cheryl A. Grice
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| |
Collapse
|
11
|
Bottemanne P, Muccioli GG, Alhouayek M. N-acylethanolamine hydrolyzing acid amidase inhibition: tools and potential therapeutic opportunities. Drug Discov Today 2018; 23:1520-1529. [PMID: 29567427 DOI: 10.1016/j.drudis.2018.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 01/12/2023]
Abstract
N-acylethanolamines (NAEs) (e.g., N-palmitoylethanolamine, N-arachidonoylethanolamine, N-oleoylethanolamine) are bioactive lipids involved in many physiological processes including pain, inflammation, anxiety, cognition and food intake. Two enzymes are responsible for the hydrolysis of NAEs and therefore regulate their endogenous levels and effects: fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA). As discussed here, extensive biochemical characterization of NAAA was carried out over the years that contributed to a better understanding of NAAA enzymology. An increasing number of studies describe the synthesis and pharmacological characterization of NAAA inhibitors. Recent medicinal chemistry efforts have led to the development of potent and stable inhibitors that enable studying the effects of NAAA inhibition in preclinical disease models, notably in the context of pain and inflammation.
Collapse
Affiliation(s)
- Pauline Bottemanne
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium.
| |
Collapse
|
12
|
Pavlopoulos S, Pelekoudas DN, Benchama O, Rawlins CM, Agar JN, West JM, Malamas M, Zvonok N, Makriyannis A. Secretion, isotopic labeling and deglycosylation of N-acylethanolamine acid amidase for biophysical studies. Protein Expr Purif 2017; 145:108-117. [PMID: 29253688 DOI: 10.1016/j.pep.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/24/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) enzyme with a catalytic cysteine residue that has highest activity at acidic pH. The most prominent substrate hydrolyzed is palmitoylethanolamine (PEA), which regulates inflammation. Inhibitors of NAAA have been shown to increase endogenous levels of PEA, and are of interest as potential treatments for inflammatory disorders and other maladies. Currently, there are no X-ray or NMR structures of NAAA available to inform medicinal chemistry. Additionally, there are a limited number of enzyme structures available that are within the Ntn-hydrolase family, have a catalytic cysteine residue, and have a high sequence homology. For these reasons, we developed expression and purification methods for the production of enzyme samples amenable to structural characterization. Mammalian cells are necessary for post-translational processing, including signal sequence cleavage and glycosylation, that are required for a correctly folded zymogen before conversion to active, and mature enzyme. We have identified an expression construct, mammalian cell line, specific media and additives to express and secrete hNAAA zymogen and we further optimized propagation conditions and show this secretion method is suitable for isotopic labeling of the protein. We refined purification methods to achieve a high degree of protein purity potentially suited to crystallography. Glycosylated proteins can present challenges to biophysical methods. Therefore we deglycosylate the enzyme and show that the activity of the mature enzyme is not affected by deglycosylation.
Collapse
Affiliation(s)
- Spiro Pavlopoulos
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States.
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Othman Benchama
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Catherine M Rawlins
- Barnett Institute of Chemical and Biological Analysis Northeastern University, Boston, MA, 02115-5000, United States
| | - Jeffrey N Agar
- Barnett Institute of Chemical and Biological Analysis Northeastern University, Boston, MA, 02115-5000, United States; Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Jay M West
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Michael Malamas
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Nikolai Zvonok
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry, Chemical Biology, Northeastern University, Boston, MA, 02115-5000, United States; King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| |
Collapse
|
13
|
Petracca R, Ponzano S, Bertozzi S, Sasso O, Piomelli D, Bandiera T, Bertozzi F. Progress in the development of β-lactams as N-Acylethanolamine Acid Amidase (NAAA) inhibitors: Synthesis and SAR study of new, potent N-O-substituted derivatives. Eur J Med Chem 2017; 126:561-575. [DOI: 10.1016/j.ejmech.2016.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
14
|
Ren J, Li Y, Ke H, Li Y, Yang L, Yu H, Huang R, Lu C, Qiu Y. Design, synthesis, and biological evaluation of oxazolidone derivatives as highly potent N-acylethanolamine acid amidase (NAAA) inhibitors. RSC Adv 2017. [DOI: 10.1039/c6ra28734d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preventing PEA degradation by inhibition of NAAA is a novel strategy for the treatment of inflammation and pain. We reported the discovery of oxazolidone derivative as highly potent NAAA inhibitors, including 2f, 3h, 3i and 3j.
Collapse
Affiliation(s)
- Jie Ren
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Yuhang Li
- Medical College
- Xiamen University
- Xiamen
- P. R. China
- Xiamen Institute of Rare-earth Materials
| | - Hongwei Ke
- College of Ocean and Earth Science
- Xiamen University
- Xiamen
- P. R. China
| | - Yanting Li
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Longhe Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization
- Third Institute of Oceanography
- State Oceanic Administration
- Xiamen 361005
- P. R. China
| | - Helin Yu
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Rui Huang
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Canzhong Lu
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
- Chinese Academy of Sciences
- P. R. China
| | - Yan Qiu
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|
15
|
Petracca R, Romeo E, Baggelaar MP, Artola M, Pontis S, Ponzano S, Overkleeft HS, van der Stelt M, Piomelli D. Novel activity-based probes for N-acylethanolamine acid amidase. Chem Commun (Camb) 2017; 53:11810-11813. [DOI: 10.1039/c7cc06838g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two NAAA activity-based probes were generated as tool for the identification of new inhibitors and the investigation of NAAA physiology.
Collapse
Affiliation(s)
- Rita Petracca
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Elisa Romeo
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Marc P. Baggelaar
- Department of Molecular Physiology
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Marta Artola
- Department of Bio-organic Synthesis
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Silvia Pontis
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Stefano Ponzano
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Pharmacology and Biological Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
16
|
Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors. J Med Chem 2016; 60:4-46. [DOI: 10.1021/acs.jmedchem.6b00538] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Tuo
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Régis Millet
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Philippe Chavatte
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| |
Collapse
|
17
|
Ferraz MJ, Marques ARA, Appelman MD, Verhoek M, Strijland A, Mirzaian M, Scheij S, Ouairy CM, Lahav D, Wisse P, Overkleeft HS, Boot RG, Aerts JM. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases. FEBS Lett 2016; 590:716-25. [PMID: 26898341 DOI: 10.1002/1873-3468.12104] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 12/19/2022]
Abstract
Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.
Collapse
Affiliation(s)
- Maria J Ferraz
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - André R A Marques
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Monique D Appelman
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Marri Verhoek
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Anneke Strijland
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Cécile M Ouairy
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Daniel Lahav
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Patrick Wisse
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Johannes M Aerts
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| |
Collapse
|
18
|
Nuzzi A, Fiasella A, Ortega JA, Pagliuca C, Ponzano S, Pizzirani D, Bertozzi SM, Ottonello G, Tarozzo G, Reggiani A, Bandiera T, Bertozzi F, Piomelli D. Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure–activity relationship (SAR) studies. Eur J Med Chem 2016; 111:138-59. [DOI: 10.1016/j.ejmech.2016.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
|
19
|
Bhattacherjee D, Bhabak KP. Atom based 3D-QSAR studies on 2,4-dioxopyrimidine-1-carboxamide analogs: Validation of experimental inhibitory potencies towards acid ceramidase. Eur J Pharm Sci 2016; 83:8-18. [DOI: 10.1016/j.ejps.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022]
|
20
|
Romeo E, Ponzano S, Armirotti A, Summa M, Bertozzi F, Garau G, Bandiera T, Piomelli D. Activity-Based Probe for N-Acylethanolamine Acid Amidase. ACS Chem Biol 2015; 10:2057-2064. [PMID: 26102511 DOI: 10.1021/acschembio.5b00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme.
Collapse
Affiliation(s)
- Elisa Romeo
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Stefano Ponzano
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Andrea Armirotti
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Maria Summa
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Fabio Bertozzi
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Gianpiero Garau
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Tiziano Bandiera
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
- Departments
of Anatomy and Neurobiology, Pharmacology, and Biological Chemistry, University of California, 3216 Gillespie Neuroscience Facility, Irvine, California 92697-4621, United States
| |
Collapse
|
21
|
Ogawa S, Kunugi H. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants. Curr Neuropharmacol 2015; 13:760-75. [PMID: 26630956 PMCID: PMC4759315 DOI: 10.2174/1570159x13666150612225212] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/27/2022] Open
Abstract
Cannabis and analogs of Δ<sup>9</sup>-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.
Collapse
Affiliation(s)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
22
|
Kleberg K, Hassing HA, Hansen HS. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 2014; 40:363-72. [PMID: 24677570 DOI: 10.1002/biof.1158] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/08/2022]
Abstract
Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols, and their structural resemblance to the endocannabinoids makes them players in the endocannabinoid system, where they can interfere with the actions of the true endocannabinoids, because they in several cases engage the same synthesizing and degrading enzymes. In addition they have pharmacological actions of their own, which are particularly interesting in a nutritional and metabolic context. Exogenously supplied oleoylethanolamide, palmitoylethanolamide, and linoleoylethanolamide have anorexic effects, and the endogenous formation of these N-acylethanolamines in the small intestine may serve an important role in regulating food intake, through signaling via PPARα and the vagus nerve to the brain appetite center. A chronic high-fat diet will decrease intestinal levels of these anorectic N-acylethanolamines and this may contribute to the hyperphagic effect of high-fat diet; 2-monoacylglycerols mediate endocrine responses in the small intestine; probably trough activation of GPR119 on enteroendocrine cells, and diet-derived 2-monoacylglycerols, for example, 2-oleoylglycerol and 2-palmitoylglycerol might be important for intestinal fat sensing. Whether these 2-monoacylglycerols have signaling functions in other tissues is unclear at present.
Collapse
Affiliation(s)
- Karen Kleberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
23
|
Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today 2014; 19:1632-9. [PMID: 24952959 DOI: 10.1016/j.drudis.2014.06.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023]
Abstract
Palmitoylethanolamide (PEA) is a peroxisome proliferator-activated receptor alpha (PPAR-α) ligand that exerts anti-inflammatory, analgesic and neuroprotective actions. PEA is synthetized from phospholipids through the sequential actions of N-acyltransferase and N-acylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD), and its actions are terminated by its hydrolysis by two enzymes, fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolysing acid amidase (NAAA). Here, we review the impact of PEA administration in inflammatory and neurodegenerative settings and the differential role of FAAH and NAAA in controlling PEA levels. Recent studies with NAAA inhibitors put forth this enzyme as capable of increasing PEA levels in vivo in inflammatory processes, and identified it as an interesting target for drug discovery research. Thus, PEA hydrolysis inhibitors could constitute potential therapeutic alternatives in chronic inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium.
| |
Collapse
|
24
|
Bandiera T, Ponzano S, Piomelli D. Advances in the discovery of N-acylethanolamine acid amidase inhibitors. Pharmacol Res 2014; 86:11-7. [PMID: 24798679 DOI: 10.1016/j.phrs.2014.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that hydrolyzes saturated or monounsaturated fatty acid ethanolamides, such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA has been shown to exert analgesic and anti-inflammatory effects by engaging peroxisome proliferator-activated receptor-α. Like other fatty acid ethanolamides, PEA is not stored in cells, but produced on demand from cell membrane precursors, and its actions are terminated by intracellular hydrolysis by either fatty acid amide hydrolase or NAAA. Endogenous levels of PEA and OEA have been shown to decrease during inflammation. Modulation of the tissue levels of PEA by inhibition of enzymes responsible for the breakdown of this lipid mediator may represent therefore a new therapeutic strategy for the treatment of pain and inflammation. While a large number of inhibitors of fatty acid amide hydrolase have been discovered, few compounds have been reported to inhibit NAAA activity. Here, we describe the most representative NAAA inhibitors and briefly highlight their pharmacological profile. A recent study has shown that a NAAA inhibitor attenuated heat hyperalgesia and mechanical allodynia caused by local inflammation or nerve damage in animal models of pain and inflammation. This finding encourages further exploration of the pharmacology of NAAA inhibitors.
Collapse
Affiliation(s)
- Tiziano Bandiera
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.
| | - Stefano Ponzano
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy; Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine 92697-4625, USA.
| |
Collapse
|
25
|
Makriyannis A. 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J Med Chem 2014; 57:3891-911. [PMID: 24707904 DOI: 10.1021/jm500220s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
My involvement with the field of cannabinoids spans close to 3 decades and covers a major part of my scientific career. It also reflects the robust progress in this initially largely unexplored area of biology. During this period of time, I have witnessed the growth of modern cannabinoid biology, starting from the discovery of its two receptors and followed by the characterization of its endogenous ligands and the identification of the enzyme systems involved in their biosynthesis and biotransformation. I was fortunate enough to start at the beginning of this new era and participate in a number of the new discoveries. It has been a very exciting journey. With coverage of some key aspects of my work during this period of "modern cannabinoid research," this Award Address, in part historical, intends to give an account of how the field grew, the key discoveries, and the most promising directions for the future.
Collapse
Affiliation(s)
- Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Rahman IAS, Tsuboi K, Uyama T, Ueda N. New players in the fatty acyl ethanolamide metabolism. Pharmacol Res 2014; 86:1-10. [PMID: 24747663 DOI: 10.1016/j.phrs.2014.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022]
Abstract
Fatty acyl ethanolamides represent a class of endogenous bioactive lipid molecules and are generally referred to as N-acylethanolamines (NAEs). NAEs include palmitoylethanolamide (anti-inflammatory and analgesic substance), oleoylethanolamide (anorexic substance), and anandamide (endocannabinoid). The endogenous levels of NAEs are mainly regulated by enzymes responsible for their biosynthesis and degradation. In mammalian tissues, the major biosynthetic pathway starts from glycerophospholipids and is composed of two enzyme reactions. The first step is N-acylation of ethanolamine phospholipids catalyzed by Ca(2+)-dependent N-acyltransferase and the second step is the release of NAEs from N-acylated ethanolamine phospholipids by N-acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD). As for the degradation of NAEs, fatty acid amide hydrolase plays the central role. However, recent studies strongly suggest the involvement of other enzymes in the NAE metabolism. These enzymes include members of the HRAS-like suppressor family (also called phospholipase A/acyltransferase family), which were originally discovered as tumor suppressors but can function as Ca(2+)-independent NAPE-forming N-acyltransferases; multiple enzymes involved in the NAPE-PLD-independent multi-step pathways to generate NAE from NAPE, which came to light by the analysis of NAPE-PLD-deficient mice; and a lysosomal NAE-hydrolyzing acid amidase as a second NAE hydrolase. These newly recognized enzymes may become the targets for the development of new therapeutic drugs. Here, we focus on recent enzymological findings in this area.
Collapse
Affiliation(s)
- Iffat Ara Sonia Rahman
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
27
|
Vitale R, Ottonello G, Petracca R, Bertozzi SM, Ponzano S, Armirotti A, Berteotti A, Dionisi M, Cavalli A, Piomelli D, Bandiera T, Bertozzi F. Synthesis, Structure-Activity, and Structure-Stability Relationships of 2-Substituted-N-(4-oxo-3-oxetanyl)N-Acylethanolamine Acid Amidase (NAAA) Inhibitors. ChemMedChem 2014; 9:323-36. [DOI: 10.1002/cmdc.201300416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Indexed: 12/23/2022]
|
28
|
Lodola A, Rivara S, Mor M. Insights in the Mechanism of Action and Inhibition of N-Acylethanolamine Acid Amidase by Means of Computational Methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:219-34. [DOI: 10.1016/bs.apcsb.2014.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Ponzano S, Bertozzi F, Mengatto L, Dionisi M, Armirotti A, Romeo E, Berteotti A, Fiorelli C, Tarozzo G, Reggiani A, Duranti A, Tarzia G, Mor M, Cavalli A, Piomelli D, Bandiera T. Synthesis and structure-activity relationship (SAR) of 2-methyl-4-oxo-3-oxetanylcarbamic acid esters, a class of potent N-acylethanolamine acid amidase (NAAA) inhibitors. J Med Chem 2013; 56:6917-34. [PMID: 23991897 DOI: 10.1021/jm400739u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid agonists of peroxisome proliferator-activated receptor-α, which include oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). The β-lactone derivatives (S)-N-(2-oxo-3-oxetanyl)-3-phenylpropionamide (2) and (S)-N-(2-oxo-3-oxetanyl)-biphenyl-4-carboxamide (3) inhibit NAAA, prevent FAE hydrolysis in activated inflammatory cells, and reduce tissue reactions to pro-inflammatory stimuli. Recently, our group disclosed ARN077 (4), a potent NAAA inhibitor that is active in vivo by topical administration in rodent models of hyperalgesia and allodynia. In the present study, we investigated the structure-activity relationship (SAR) of threonine-derived β-lactone analogues of compound 4. The main results of this work were an enhancement of the inhibitory potency of β-lactone carbamate derivatives for NAAA and the identification of (4-phenylphenyl)-methyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate (14q) as the first single-digit nanomolar inhibitor of intracellular NAAA activity (IC50 = 7 nM on both rat NAAA and human NAAA).
Collapse
Affiliation(s)
- Stefano Ponzano
- Drug Discovery and Development, Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 2013; 280:1874-94. [PMID: 23425575 DOI: 10.1111/febs.12152] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 12/31/2022]
Abstract
Endocannabinoids are endogenous ligands of the cannabinoid receptors CB1 and CB2. Two arachidonic acid derivatives, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, are considered to be physiologically important endocannabinoids. In the known metabolic pathway in mammals, anandamide and other bioactive N-acylethanolamines, such as palmitoylethanolamide and oleoylethanolamide, are biosynthesized from glycerophospholipids by a combination of Ca(2+)-dependent N-acyltransferase and N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D, and are degraded by fatty acid amide hydrolase. However, recent studies have shown the involvement of other enzymes and pathways, which include the members of the tumor suppressor HRASLS family (the phospholipase A/acyltransferase family) functioning as Ca(2+)-independent N-acyltransferases, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipaseD-independent multistep pathways via N-acylated lysophospholipid, and N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme that preferentially hydrolyzes palmitoylethanolamide. Although their physiological significance is poorly understood, these new enzymes/pathways may serve as novel targets for the development of therapeutic drugs. For example, selective N-acylethanolamine-hydrolyzing acid amidase inhibitors are expected to be new anti-inflammatory and analgesic drugs. In this minireview, we focus on advances in the understanding of these enzymes/pathways. In addition, recent findings on 2-arachidonoylglycerol metabolism are described.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan.
| | | | | |
Collapse
|