1
|
Wu J, Wen M, Wang Z, Yu K, Jin X, Liu C, Song Q, Zhang G, Wu B, Li Y. Network pharmacological analysis and experimental verification of Zisheng Tongmai decoction in the treatment of premature ovarian failure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3667-3680. [PMID: 39352532 DOI: 10.1007/s00210-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/19/2024] [Indexed: 04/10/2025]
Abstract
Premature ovarian failure (POF) is a disease that seriously jeopardizes women's physical and mental health worldwide. Zisheng Tongmai decoction (ZSTMD), a famous Traditional Chinese Medicine (TCM) formula, has a marked effect on the clinical treatment of POF. This study investigated the potential mechanism of ZSTMD to improve POF through network pharmacology and experimental validation. The active components, key targets and potential mechanisms of ZSTMD against POF were predicted by network pharmacology and molecular docking. The POF model was induced in rats by cyclophosphamide (CTX) and subsequently gavaged with different doses of ZSTMD. KGN cells were treated with different concentrations of quercetin and CTX. Histopathological were observed via hematoxylin and eosin (H&E) staining and immunofluorescence staining. Serum estrogen levels were detected via ELISA. Protein expression was detected via Western blot. We identified quercetin as the main active ingredients targeting VEGFA. Molecular docking showed that VEGFA interacted well with the main active components of ZSTMD. In vivo experiments, ZSTMD significantly increased body weight and the ovarian index, significantly increased E2 and AMH, and decreased FSH and LH in POF rats. Histologic results showed that ZSTMD increased the number of follicles and vascular density in the ovary. It also increased VEGFA and CD31 protein expression. In vitro experiments, quercetin suppressed CTX-induced apoptosis in KGN cells and increased VEGFA protein expression. Our study demonstrated that ZSTMD improves POF by promoting angiogenesis through VEGFA target.
Collapse
Affiliation(s)
- Jiaru Wu
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Mengjie Wen
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Zecheng Wang
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Kun Yu
- School of Experimental Center, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Xinyue Jin
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Chenxu Liu
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Qiuhang Song
- School of Basic Medical Sciences, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Guohong Zhang
- School of Basic Medical Sciences, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Beibei Wu
- Department of Dermatology, Hebei Province Chinese Medicine Hospital. Shijiazhuang, Hebei, China
| | - Yunfeng Li
- School of Basic Medical Sciences, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Ma Y, Li Y, Yao Y, Huang T, Lan C, Li L. Mechanistic studies on protective effects of total flavonoids from Ilex latifolia Thunb. on UVB-radiated human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Photochem Photobiol 2025; 101:70-82. [PMID: 38644599 DOI: 10.1111/php.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
The aim of the present research is to investigate anti-UVB radiation activity of total flavonoids from Ilex latifolia Thunb. (namely large-leaved Kuding tea) on human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Network pharmacology was used to screen target genes of active ingredients from Ilex latifolia Thunb. associated with UVB irradiation. The possible signaling pathways were analyzed by KEGG enrichment and verified by cellular experiments. Molecular docking was used to assess the affinity between the active ingredients and the core targets. The prediction of network pharmacology and molecular docking was identified by series experiment in UVB-irradiated HaCaT cells. Network pharmacology results showed that the active ingredients of Ilex latifolia Thunb. for anti-UVB irradiation were mainly flavonoids, and the possible signaling pathways were involved in PI3K-AKT, apoptosis, MAPKs, NF-κB, and JAK-STAT3. Molecular docking indicated key binding activity between AKT1-Glycitein, STAT3-Formononetin, CASP3-Formononetin, TNF-Kaempferol, CASP3-Luteolin, and AKT1-Quercetin. The total flavonoid pretreatment (0.25-1.0 mg/mL) down-regulated the expression of IL-6, IL-1β, and TNF-α in the cells determined by ELISA. The expression of phosphor PI3K, phosphor AKT, phosphor JAK, phosphor STAT3, phosphor JNK, and phosphor p38 MAPKs and COX-2 proteins in cytosolic and NF-κB p65 protein in nucleus were down-regulated and determined by western blot. It also protected UVB-irradiated cells from apoptosis by reducing apoptosis rate and down-regulating active-caspase 3. In a word, the total flavonoid treatment protected HaCaT cells from UVB injuries effectively, and the potential mechanism involves PI3K-AKT, JAK-STAT3, MAPK, and NF-κB pathway by anti-inflammatory and apoptosis action in cells. The mechanism in vivo experiment needs to be further confirmed in future.
Collapse
Affiliation(s)
- Yunge Ma
- Pharmacy College, Henan University, Kaifeng, China
| | - Yingyan Li
- Pharmacy College, Henan University, Kaifeng, China
| | - Yike Yao
- Pharmacy College, Henan University, Kaifeng, China
| | - Tao Huang
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
| | - Chong Lan
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation, Huanghe Science & Technology University, Zhengzhou, China
| | - Liyan Li
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation, Huanghe Science & Technology University, Zhengzhou, China
| |
Collapse
|
3
|
Liu H, Wei G, Wang T, Hou Y, Hou B, Li X, Wang C, Sun M, Su M, Guo Z, Wang L, Kang N, Li M, Jia Z. Angelica keiskei water extract Mitigates Age-Associated Physiological Decline in Mice. Redox Rep 2024; 29:2305036. [PMID: 38390941 PMCID: PMC10896161 DOI: 10.1080/13510002.2024.2305036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
| | - Gang Wei
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Tongxing Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Yunlong Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Bin Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Xiaoyan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Chao Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Mingzhe Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Min Su
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhifang Guo
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Lu Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Ning Kang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Mengnan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhenhua Jia
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, People’s Republic of China
- High-Level TCM Key Disciplines of National Administration of Traditional Chinese, Shijiazhuang, People's Republic of China
| |
Collapse
|
4
|
Hu Y, Qi H, Yang J, Wang F, Peng X, Chen X, Zhu X. Wogonin mitigates microglia-mediated synaptic over-pruning and cognitive impairment following epilepsy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156222. [PMID: 39547095 DOI: 10.1016/j.phymed.2024.156222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Epilepsy, a neurological disorder characterized by recurrent abnormal neuronal discharges, leading to brain dysfunction and imposing significant psychological and economic burdens on patients. Microglia, the resident immune cells within the central nervous system (CNS), play a crucial role in maintaining CNS homeostasis. However, activated microglia can excessively prune synapses, exacerbating neuronal damage and cognitive dysfunction following epilepsy. Wogonin, a flavonoid from Scutellaria Baicalensis, has known neuroprotective effects via anti-inflammatory and antioxidative mechanisms, but its impact on microglial activation and synaptic pruning in neurons post-epilepsy remains unclear. METHODS Synaptic density was assessed using presynaptic marker Synaptophysin and postsynaptic marker Psd-95, and microglial phagocytosis was evaluated with fluorescent microspheres. Pilocarpine-induced mouse model of status epilepticus was used to evaluate synaptic density changes of mouse hippocampus following an intraperitoneal injection of wogonin (50 and 100 mg/kg). Memory and cognitive function in mice were subsequently evaluated using the Y-maze, object recognition, and Morris water maze tests. Single-cell sequencing was employed to investigate the underlying causes of microglial state alterations, followed by experimental validation. RESULTS Microglia were transitioned to an activated state post-epilepsy, exhibiting significantly enhanced phagocytic capacity. Correspondingly, levels of synaptophysin and Psd-95 were markedly reduced in neurons. Treatment with wogonin (100 mg/kg) significantly increased neuronal synaptic density and improved learning and memory deficits in epileptic mice. Further investigation revealed that wogonin inhibits the release of pro-inflammatory cytokines and synaptic phagocytosis of microglia by activating the AKT/FoxO1 pathway. CONCLUSIONS Wogonin could alleviate excessive synaptic pruning of epileptic neurons by microglia and improve cognitive dysfunction of epileptic mice via the AKT/FoxO1 pathway.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Feiyu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Xintao Peng
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xiang Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Zarenezhad E, Hadi AT, Nournia E, Rostamnia S, Ghasemian A. A Comprehensive Review on Potential In Silico Screened Herbal Bioactive Compounds and Host Targets in the Cardiovascular Disease Therapy. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2023620. [PMID: 39502274 PMCID: PMC11537750 DOI: 10.1155/2024/2023620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/15/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024]
Abstract
Herbal medicines (HMs) have deciphered indispensable therapeutic effects against cardiovascular disease (CVD) (the predominant cause of death worldwide). The conventional CVD therapy approaches have not been efficient and need alternative medicines. The objective of this study was a review of herbal bioactive compound efficacy for CVD therapy based on computational and in silico studies. HM bioactive compounds with potential anti-CVD traits include campesterol, naringenin, quercetin, stigmasterol, tanshinaldehyde, Bryophyllin A, Bryophyllin B, beta-sitosterol, punicalagin, butein, eriodyctiol, butin, luteolin, and kaempferol discovered using computational studies. Some of the bioactive compounds have exhibited therapeutic effects, as followed by in vitro (tanshinaldehyde, punicalagin, butein, eriodyctiol, and butin), in vivo (gallogen, luteolin, chebulic acid, butein, eriodyctiol, and butin), and clinical trials (quercetin, campesterol, and naringenin). The main mechanisms of action of bioactive compounds for CVD healing include cell signaling and inhibition of inflammation and oxidative stress, decrease of lipid accumulation, and regulation of metabolism and immune cells. Further experimental studies are required to verify the anti-CVD effects of herbal bioactive compounds and their pharmacokinetic/pharmacodynamic features.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Tareq Hadi
- Womens Obstetrics & Gynecology Hospital, Ministry of Health, Al Samawah, Iraq
| | - Ensieh Nournia
- Cardiology Department, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Du P, Xu L, Wang Y, Jiao T, Cheng J, Zhang C, Tapu MSR, Dai J, Li J. Astragaloside IV ameliorates pressure overload-induced heart failure by enhancing angiogenesis through HSF1/VEGF pathway. Heliyon 2024; 10:e37019. [PMID: 39296120 PMCID: PMC11408759 DOI: 10.1016/j.heliyon.2024.e37019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Astragaloside IV(AS-IV), the main active ingredient of Astragalus, has been used as a treatment for heart failure with favorable effects, but its molecular mechanism has not been fully elucidated. Network pharmacological analysis and molecular docking revealed that Heat shock transcription factor 1 (HSF1) is a potential target of AS-IV. We designed cellular and animal experiments to investigate the role and intrinsic molecular mechanisms of AS-IV in ameliorating pressure overload-induced heart failure. In cellular experiments, Myocardial microvascular endothelial cells (MMVECs) were cultured in isolation and stimulated by adding high and low concentrations of AS-IV, and a cell model with down-regulation of HSF1 expression was constructed by using siRNA technology. Changes in the expression of key molecules of HSF1/VEGF signaling pathway and differences in tube-forming ability were detected in different groups of cells using PCR, WB and tube-forming assay. In animal experiments, TAC technology was applied to establish a pressure overload-induced heart failure model in C57 mice, postoperative mice were ingested AS-IV by gavage, and adenoviral transfection technology was applied to construct a mouse model with down-regulation of HSF1 expression.Small animal ultrasound for cardiac function assessment, MASSON staining, CD31 immunohistochemistry, and Western blotting (WB) were performed on the mice. The results showed that AS-IV could promote the expression of key molecules of HSF1/VEGF signaling pathway, enhance the tube-forming ability of MMVECs, increase the density of myocardial capillaries, reduce myocardial fibrosis, and improve the cardiac function of mice with TAC.AS-IV could modulate the HSF1/VEGF signaling pathway to promote the angiogenesis and improve the pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Peizhao Du
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Linghao Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Cheng
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chunsheng Zhang
- Department of Cardiology, East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Md Sakibur Rahman Tapu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jian Dai
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Deng L, Bao W, Zhang B, Zhang S, Chen Z, Zhu X, He B, Wu L, Chen X, Deng T, Chen B, Yu Z, Wang Y, Chen G. AZGP1 activation by lenvatinib suppresses intrahepatic cholangiocarcinoma epithelial-mesenchymal transition through the TGF-β1/Smad3 pathway. Cell Death Dis 2023; 14:590. [PMID: 37669935 PMCID: PMC10480466 DOI: 10.1038/s41419-023-06092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary liver malignancy and is characterized by highly aggressive and malignant biological behavior. Currently, effective treatment strategies are limited. The effect of lenvatinib on ICC is unknown. In this study, we found that AZGP1 was the key target of lenvatinib in ICC, and its low expression in ICC cancer tissues was associated with a poor prognosis in patients. Lenvatinib is a novel AZGP1 agonist candidate for ICC that inhibits ICC-EMT by regulating the TGF-β1/Smad3 signaling pathway in an AZGP1-dependent manner. Furthermore, we found that lenvatinib could increase AZGP1 expression by increasing the acetylation level of H3K27Ac in the promoter region of the AZGP1 gene, thereby inhibiting EMT in ICC cells. In conclusion, lenvatinib activates AZGP1 by increasing the acetylation level of H3K27Ac on the AZGP1 promoter region and regulates the TGF-β1/Smad3 signaling pathway in an AZGP1-dependent manner to inhibit ICC-EMT. This study offers new insight into the mechanism of lenvatinib in the treatment of ICC and provides a theoretical basis for new treatment methods.
Collapse
Affiliation(s)
- Liming Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- The Second Affiliated Hospital, Department of General Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Baofu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Sina Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuewen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bangjie He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaohu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Hepatobiliary Pancreatic Tumor Bioengineering Cross International Joint Laboratory of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Xu J, Shen Y, Luan P, Wang H, Xu Y, Jiang L, Li R, Wang F, Zhu Y, Zhang J. Pro‑angiogenic activity of salvianolate and its potential therapeutic effect against acute cerebral ischemia. Exp Ther Med 2023; 26:409. [PMID: 37522065 PMCID: PMC10375442 DOI: 10.3892/etm.2023.12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Salvianolate (Sal) is a medicinal composition that is widely used in China for the treatment of coronary heart disease and angina pectoris. The aim of the present study was to investigate the potential macrophage-mediated pro-angiogenic effects of Sal in vitro. In addition, another aim was to explore the effects of Sal in a rat model of transient middle cerebral artery occlusion (tMCAO) along with the potential mechanism by which it promotes angiogenesis. In this study, human umbilical vein endothelial cells (HUVECs) and Raw264.7 macrophages in vitro, and a rat tMCAO model in vivo were used to detect the pro-angiogenic effect and mechanism of Sal. The results of in vitro experiments showed that the viability, migration and tube formation of HUVECs were promoted by the supernatant of Sal-treated Raw264.7 macrophages (s-Sal) but not by Sal alone. s-Sal also increased the levels of phosphorylated (p-)VEGFR-2, p-AKT and p-p38 MAPK in HUVECs while Sal alone did not. In vivo, treatment with Sal significantly reduced the cerebral infarction volume and neurological deficit scores in the rat tMCAO model. Similar to the mechanism observed in the in vitro experiments, Sal treatment upregulated the protein expression of VEGF and VEGFR-2, in addition to the phosphorylation of VEGFR-2, AKT and p38, in the brain tissues of the tMCAO model rats. In summary, the results of the present study suggest that the mechanism of Sal-mediated angiogenesis is associated with stimulation of the VEGF/VEGFR-2 signaling pathway by macrophages. This suggests the potential of Sal as a therapeutic option for the treatment of acute cerebral ischemic injury, which may act via the promotion of angiogenesis.
Collapse
Affiliation(s)
- Jiazhen Xu
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, P.R. China
| | - Yue Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Pengwei Luan
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Haiying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yulan Xu
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lixian Jiang
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ruixiang Li
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Feiyun Wang
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yuying Zhu
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jiange Zhang
- Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
9
|
Zhang J, Gai J, Ma H, Tang J, Yang C, Zu G. Understanding the molecular mechanism of Ginkgo Folium-Forsythiae Fructus for cerebral atherosclerosis treatment using network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e32823. [PMID: 36800633 PMCID: PMC9936039 DOI: 10.1097/md.0000000000032823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Cerebral atherosclerosis (CA) is a chronic disease caused by multiple infarcts and atrophy causing nerve degenerative syndrome. Ginkgo Folium (GF) and Forsythiae Fructus (FF) have shown positive effects on vascular protection, but their relationship with CA is unclear. This study aimed to identify the potential CA targets and mechanisms of action of GF-FF, using network pharmacology. OBJECTIVE This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of GF-FF on CA. METHODS Using the traditional Chinese medicine systems pharmacology database and analysis platform, components were screened and corresponding targets were predicted using boundary values and Swiss Target Prediction. Using Cytoscape 3.8.0, a network was established between GF-FF components and CA targets. We extracted disease genes and constructed a network of targets based on the protein-protein interaction networks functional enrichment analysis database. Using Metascape, the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes of the enriched targets were determined. AutoDock Vina was used to perform molecular docking. RESULTS Twenty-three active ingredients of GF-FF were confirmed to treat CA, covering 109 targets, of which 48 were CA-related. Luteolin, bicuculline, sesamin, kaempferol, quercetin, and ginkgolide B were the vital active compounds, and EGFR, CYP2E1, CREB1, CYP19A1, PTGS2, PPARG, PPARA, ESR1, MMP9, MAPK14, MAPK8, and PLG were the major targets. The molecular docking showed that these compounds and targets exhibited good intercalation. These 48 protein targets produced effects on CA by modulating pathways such as "apoptosis-multiple species," "IL-17 signaling pathway," and "relaxin signaling pathway." CONCLUSIONS As predicted by network pharmacology, GF-FF exerts anti-tumor effects through multiple components and targets for treatment of CA, providing new clinical ideas for CA treatment.
Collapse
Affiliation(s)
- Jinfei Zhang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialin Gai
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hengqin Ma
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiqin Tang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuntao Yang
- Hospital Management Office, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoxiu Zu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Zhang JX, Chen ZY, Huang XZ, Qi LY, Zhou W. Systems pharmacology dissection of the mechanisms and therapeutic potential of Cassiae semen for hepatoprotection and brightening eyes. J Food Drug Anal 2022; 30:417-426. [PMID: 39666297 PMCID: PMC9635915 DOI: 10.38212/2224-6614.3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2024] Open
Abstract
Cassiae semen has been shown to play significant roles in reversing "liver fire" to improve vision. The systems mechanism of Cassiae semen for hepatoprotection and brightening eyes has not been fully explored. The systems pharmacology approach is proposed to dissect the potential pharmacological mechanism of Cassiae semen for hepatoprotection and brightening eyes. The results showed that 26 active components of Cassiae semen that connected with 230 targets were obtained. Gene ontology enrichment, network and pathway analysis explored that Cassiae semen is responsible for hepatoprotection and brightening eyes. The current study will contribute to the research and development of functional foods.
Collapse
Affiliation(s)
- Jing-Xiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934,
China
| | - Zi-Yi Chen
- Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518060,
China
| | - Xue-Zhen Huang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934,
China
| | - Lin-Yue Qi
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934,
China
| | - Wei Zhou
- Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518060,
China
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen 518020,
China
| |
Collapse
|
11
|
Ruchawapol C, Fu WW, Xu HX. A review on computational approaches that support the researches on traditional Chinese medicines (TCM) against COVID-19. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154324. [PMID: 35841663 PMCID: PMC9259013 DOI: 10.1016/j.phymed.2022.154324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND COVID-19 highly caused contagious infections and massive deaths worldwide as well as unprecedentedly disrupting global economies and societies, and the urgent development of new antiviral medications are required. Medicinal herbs are promising resources for the discovery of prophylactic candidate against COVID-19. Considerable amounts of experimental efforts have been made on vaccines and direct-acting antiviral agents (DAAs), but neither of them was fast and fully developed. PURPOSE This study examined the computational approaches that have played a significant role in drug discovery and development against COVID-19, and these computational methods and tools will be helpful for the discovery of lead compounds from phytochemicals and understanding the molecular mechanism of action of TCM in the prevention and control of the other diseases. METHODS A search conducting in scientific databases (PubMed, Science Direct, ResearchGate, Google Scholar, and Web of Science) found a total of 2172 articles, which were retrieved via web interface of the following websites. After applying some inclusion and exclusion criteria and full-text screening, only 292 articles were collected as eligible articles. RESULTS In this review, we highlight three main categories of computational approaches including structure-based, knowledge-mining (artificial intelligence) and network-based approaches. The most commonly used database, molecular docking tool, and MD simulation software include TCMSP, AutoDock Vina, and GROMACS, respectively. Network-based approaches were mainly provided to help readers understanding the complex mechanisms of multiple TCM ingredients, targets, diseases, and networks. CONCLUSION Computational approaches have been broadly applied to the research of phytochemicals and TCM against COVID-19, and played a significant role in drug discovery and development in terms of the financial and time saving.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China.
| |
Collapse
|
12
|
Ding J, Wu J, Wei H, Li S, Huang M, Wang Y, Fang Q. Exploring the Mechanism of Hawthorn Leaves Against Coronary Heart Disease Using Network Pharmacology and Molecular Docking. Front Cardiovasc Med 2022; 9:804801. [PMID: 35783840 PMCID: PMC9243333 DOI: 10.3389/fcvm.2022.804801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/24/2022] [Indexed: 01/09/2023] Open
Abstract
Hawthorn leaves, which is a traditional Chinese medicine (TCM), has been used for treating coronary heart disease (CHD) for a long time in China. But the limited understanding of the main active components and molecular mechanisms of this traditional medicine has restricted its application and further research. The active compounds of hawthorn leaves were obtained from TCMSP database and SymMap database. The targets of it were predicted based on TCMSP, PubChem, Swiss Target Prediction, and SymMap database. The putative targets of CHD were gathered from multi-sources databases including the Online Mendelian Inheritance in Man (OMIM) database, the DrugBank database, the GeneCards database and the DisGeNet database. Network topology analysis, GO and KEGG pathway enrichment analyses were performed to select the key targets and pathways. Molecular docking was performed to demonstrate the binding capacity of the key compounds to the predicted targets. Furthermore, RAW264.7 cells stimulated by lipopolysaccharides (LPS) were treated with three effective compounds of hawthorn leaves to assess reliability of prediction. Quercetin, isorhamnetin and kaempferol were main active compounds in hawthorn leaves. Forty four candidate therapeutic targets were identified to be involved in protection of hawthorn leaves against CHD. Additionally, the effective compounds of it had good binding affinities to PTGS2, EGFR, and MMP2. Enrichment analyses suggested that immune inflammation related biological processes and pathways were possibly the potential mechanism. Besides, we found that three predicted effective compounds of hawthorn leaves decreased protein expression of PTGS2, MMP2, MMP9, IL6, IL1B, TNFα and inhibited activation of macrophage. In summary, the present study demonstrates that quercetin, kaempferol and isorhamnetin are proved to be the main effective compounds of hawthorn leaves in treatment of CHD, possibly by suppressing expression of PTGS2, MMP2, MMP9, inflammatory cytokines and macrophages viability. This study provides a new understanding of the active components and mechanisms of hawthorn leaves treating CHD from the perspective of network pharmacology.
Collapse
Affiliation(s)
- Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Tan X, He Y, Ou Y, Xiong X, Deng Y. Exploring the Mechanisms and Molecular Targets of Taohong Siwu Decoction for the Treatment of Androgenetic Alopecia Based on Network Analysis and Molecular Docking. Clin Cosmet Investig Dermatol 2022; 15:1225-1236. [PMID: 35800455 PMCID: PMC9255905 DOI: 10.2147/ccid.s361820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Purpose Taohong Siwu decoction (THSWD) is traditionally used to treat androgenic alopecia (AGA) in clinical practice of traditional Chinese medicine. This study used a network pharmacology approach to elucidate the molecular mechanism governing the effect of THSWD on AGA. Materials and Methods The major active components and their corresponding targets of THSWD were screened. AGA-related targets were obtained by analyzing the differentially expressed genes between AGA patients and healthy individuals. The protein–protein interaction networks of putative targets of THSWD and AGA-related targets were visualized and merged to identify the candidate targets for THSWD against AGA. Gene ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for core targets were performed. Finally, the key effective components and core targets screened were verified by molecular docking. Results In this study, 69 compounds and 202 compound targets of THSWD, as well as 1158 disease targets, were screened. Forty-five interactive targets were identified for constructing the “ingredient-targets” network. The functional annotations of target genes were found to be related to oxidative stress, reactive oxygen species, and hydrogen peroxide. Pathways involved in the treatment of AGA included apoptosis and PI3K-AKT signaling pathways. The luteolin, quercetin, kaempferol, baicalein, and beta-carotene were identified as the vital active compounds, and AKT1, TP53, JUN, CASP3 and MYC were considered as the core targets. Assessment of molecular docking revealed that these active compounds and targets had good-binding interactions. Conclusion The results indicated that the effects of THSWD against AGA may be related to anti-inflammation and anti-oxidation properties of the compounds through the specific biological processes and the related pathways.
Collapse
Affiliation(s)
- Xiaoqi Tan
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yuxin He
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongliang Ou
- Health Management Center, Luzhou People’s Hospital, Luzhou, People’s Republic of China
| | - Xia Xiong
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongqiong Deng
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Yongqiong Deng; Xia Xiong, Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, 646000, Sichuan Province, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Identification of Bioactive Components of Stephania epigaea Lo and Their Potential Therapeutic Targets by UPLC-MS/MS and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3641586. [PMID: 35529936 PMCID: PMC9068296 DOI: 10.1155/2022/3641586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Stephania epigaea, an important traditional folk medicinal plant, elucidating its bioactive compound profiles and their molecular mechanisms of action on human health, would better understand its traditional therapies and guide their use in preclinical and clinical. This study aims to detect the critical therapeutic compounds, predict their targets, and explore potential therapeutic molecular mechanisms. This work first determined metabolites from roots, stems, and flowering twigs of S. epigaea by a widely targeted metabolomic analysis assay. Then, the drug likeness of the compounds and their pharmacokinetic profiles were screened by the ADMETlab server. The target proteins of active compounds were further analyzed by PPI combing with GO and KEGG cluster enrichment analysis. Finally, the interaction networks between essential compounds, targets, and disease-associated pathways were constructed, and the essential compounds binding to their possible target proteins were verified by molecular docking. Five key target proteins (EGFR, HSP90AA1, SRC, TNF, and CASP3) and twelve correlated metabolites, including aknadinine, cephakicine, homostephanoline, and N-methylliriodendronine associated with medical applications of S. epigaea, were identified, and the compounds and protein interactions were verified. The key active ingredients are mainly accumulated in the root, which indicates that the root is the main medicinal tissue. This study demonstrated that S. epigaea might exert the desired disease efficacy mainly through twelve components interacting via five essential target proteins. EGFR is the most critical one, which deserves further verification by biological studies.
Collapse
|
15
|
Wu Z, Xu D, Wu Z, Chen A, Liu L, Ling L, Zhou Y, Liu D, Liu Y, Dong Y, Chen Y. Efficacy of INtensive Treatment vs. Standard Treatment of COmpound DanshEn Dripping Pills in Refractory Angina Patients With Incomplete Revascularization (INCODER Study): Study Protocol for a Multicenter, Double-Blind, Randomized Controlled, Superiority Trial. Front Cardiovasc Med 2022; 9:860059. [PMID: 35557513 PMCID: PMC9088738 DOI: 10.3389/fcvm.2022.860059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Patients with incomplete revascularization (ICR) tend to develop refractory angina despite optimal medical therapy. The Compound Danshen Dripping Pills (CDDP) is a widely used antianginal drug in China and is shown to significantly alleviate myocardial ischemia. Previous studies showed dose-efficacy tendency when increasing doses of CDDP. This study aims to investigate the efficacy and safety of intensive doses of CDDP in patients with refractory angina with ICR. Methods and Analysis The INCODER study is a multicenter, double-blind, randomized controlled, superiority trial. We plan to recruit 250 patients aged 18–85 years with a diagnosis of refractory angina with ICR. Patients will be randomized (1:1) to intensive treatment group (CDDP 20 pills three times per day) or standard treatment group (10 pills CDDP and 10 pills placebo three times per day). Patients will have a 6-week medication period and be followed up every 2 weeks. The primary endpoint is the change of total exercise time from baseline to week 6 as assessed by cardiopulmonary exercise testing (CPET). Secondary endpoints include changes in the frequency of angina, Canadian Cardiovascular Society angina class, nitroglycerin use, Seattle Angina Questionnaire scores, peak oxygen uptake (VO2 peak) and other parameters as measured by CPET, and the levels of plasma C-reactive protein, homocysteine, and N-terminal pro-B-type natriuretic peptide. Safety events related to CDDP use will be monitored. Ethics and Dissemination The research had been approved by the Clinical research and laboratory animal ethics committee of the First Affiliated Hospital, Sun Yat-sen University ([2019]65). The results will be reported through peer-reviewed journals, seminars, and conference presentations. Trial Registration Number www.chictr.org.cn (ChiCTR2000032384). Registered on 27 April 2020.
Collapse
Affiliation(s)
- Zexuan Wu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commision (NHC) Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Danping Xu
- Department of Chinese Traditional Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhen Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ailan Chen
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijuan Liu
- Department of Cardiology, The East Division of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhou
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Duoduo Liu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commision (NHC) Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yin Liu
- Department of Cancer Epidemiology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yugang Dong
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commision (NHC) Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
- *Correspondence: Yugang Dong
| | - Yili Chen
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- National Health Commision (NHC) Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
- Yili Chen
| |
Collapse
|
16
|
Network-Based Pharmacology Study Reveals Protein Targets for Medical Benefits and Harms of Cannabinoids in Humans. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This network-based pharmacology study intends to uncover the underlying mechanisms of cannabis leading to a therapeutic benefit and the pathogenesis for a wide range of diseases claimed to benefit from or be caused by the use of the cannabis plant. Cannabis contains more than 600 chemical components. Among these components, cannabinoids are well-known to have multifarious pharmacological activities. In this work, twelve cannabinoids were selected as active compounds through text mining and drug-like properties screening and used for initial protein-target prediction. The disease-associated biological functions and pathways were enriched through GO and KEGG databases. Various biological networks [i.e., protein-protein interaction, target-pathway, pathway-disease, and target-(pathway)-target interaction] were constructed, and the functional modules and essential protein targets were elucidated through the topological analyses of the networks. Our study revealed that eighteen proteins (CAT, COMT, CYP17A1, GSTA2, GSTM3, GSTP1, HMOX1, AKT1, CASP9, PLCG1, PRKCA, PRKCB, CYCS, TNF, CNR1, CNR2, CREB1, GRIN2B) are essential targets of eight cannabinoids (CBD, CBDA, Δ9-THC, CBN, CBC, CBGA, CBG, Δ8-THC), which involve in a variety of pathways resulting in beneficial and adverse effects on the human body. The molecular docking simulation confirmed that these eight cannabinoids bind to their corresponding protein targets with high binding affinities. This study generates a verifiable hypothesis of medical benefits and harms of key cannabinoids with a model which consists of multiple components, multiple targets, and multiple pathways, which provides an important foundation for further deployment of preclinical and clinical studies of cannabis.
Collapse
|
17
|
Zhang Z, Li JW, Zeng PH, Gao WH, Tian XF. Data Mining and Systems Pharmacology to Elucidate Effectiveness and Mechanisms of Chinese Medicine in Treating Primary Liver Cancer. Chin J Integr Med 2021; 28:636-643. [PMID: 34432201 DOI: 10.1007/s11655-021-3449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify specific Chinese medicines (CM) that may benefit patients with primary liver cancer (PLC), and to explore the mechanism of action of these medicines. METHODS In this retrospective, singlecenter study, prescription information from PLC patients was used in combination with Traditional Chinese Medicine Inheritance Supports System to identify the specific core drugs. A system pharmacology approach was employed to explore the mechanism of action of these medicines. RESULTS Taking CM more than 6 months was significantly associated with improved survival outcomes. In total, 77 putative targets and 116 bioactive ingredients of the core drugs were identified and included in the analysis (P<0.05). A total of 1,036 gene ontology terms were found to be enriched in PLC. A total of 75 pathways identified from Kyoto Encyclopedia of Genes and Genomes were also enriched in this disease, including fluid shear stress, interleukin-17 signaling, signaling between advanced glycan end products and their receptors, cellular senescence, tumor necrosis factor signaling, p53 signaling, cell cycle signaling, steroid hormone biosynthesis, T-helper 17 cell differentiation, and metabolism of xenobiotics by cytochrome. Docking studies suggested that the ingredients in the core drugs exert therapeutic effects in PLC by modulating c-Jun and interleukin-6. CONCLUSIONS Receiving CM for 6 months or more improves survival for the patients with PLC. The core drugs that really benefit for PLC patients likely regulates the tumor microenvironment and tumor itself.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun-Wei Li
- Department of Pharmacy, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province, 518020, China
| | - Pu-Hua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, China
| | - Wen-Hui Gao
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xue-Fei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
18
|
Zhao J, Wang Y, Chen W, Fu J, Liu Y, Di T, Qi C, Chen Z, Li P. Systems Pharmacology Approach and Experiment Evaluation Reveal Multidimensional Treatment Strategy of LiangXueJieDu Formula for Psoriasis. Front Pharmacol 2021; 12:626267. [PMID: 34168554 PMCID: PMC8217833 DOI: 10.3389/fphar.2021.626267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical studies have demonstrated the anti-psoriatic effect of the LiangXueJieDu (LXJD) herbal formula. However, the systemic mechanism and the targets of the LXJD formula have not yet been elucidated. In the present study, a systems pharmacology approach, metabolomics, and experimental evaluation were employed. First, by systematic absorption-distribution-metabolism-excretion (ADME) analysis, 144 active compounds with satisfactory pharmacokinetic properties were identified from 12 herbs of LXJD formula using the TCMSP database. These active compounds could be linked to 125 target proteins involved in the pathological processes underlying psoriasis. Then, the networks constituting the active compounds, targets, and diseases were constructed to decipher the pharmacological actions of this formula, indicating its curative effects in psoriasis treatment and related complications. The psoriasis-related pathway comprising several regulatory modules demonstrated the synergistic mechanisms of LXJD formula. Furthermore, the therapeutic effect of LXJD formula was validated in a psoriasis-like mouse model. Consistent with the systems pharmacology analysis, LXJD formula ameliorated IMQ-induced psoriasis-like lesions in mice, inhibited keratinocyte proliferation, improved keratinocyte differentiation, and suppressed the infiltration of CD3+ T cells. Compared to the model group, LXJD formula treatment remarkably reduced the expression of inflammatory cytokines and factors, such as IL-1β, IL-6, TNF-α, Cox2, and inhibited the phosphorylation of p-P65, p-IқB, p-ERK, p-P38, p-PI3K, p-AKT, indicating that LXJD formula exerts its therapeutic effect by inhibiting the MAPK, PI3K/AKT, and NF-қB signaling pathways. The metabolic changes in the serum of psoriasis patients were evaluated by liquid chromatography coupled with orbitrap mass spectrometry (LC-MS). The LXJD formula improved two perturbed metabolic pathways of glycerophospholipid metabolism and steroid hormone biosynthesis. Overall, this study revealed the complicated anti-psoriatic mechanism of LXJD formula and also offered a reliable strategy to elucidate the complex therapeutic mechanism of this Chinese herbal formula in psoriasis from a holistic perspective.
Collapse
Affiliation(s)
- Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Weiwen Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jing Fu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Zhaoxia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Raoufi A, Ebrahimi M, Bozorgmehr MR. Determination of Thermodynamics Constant of Interaction among of Atenolol and Metoprolol with Human Serum Albumin: Spectroscopic and Molecular Modeling Approaches. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421140181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Cai T, Wang X, Li B, Xiong F, Wu H, Yang X. Deciphering the synergistic network regulation of active components from SiNiSan against irritable bowel syndrome via a comprehensive strategy: Combined effects of synephrine, paeoniflorin and naringin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153527. [PMID: 33845366 DOI: 10.1016/j.phymed.2021.153527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND SiNiSan (SNS) is an ancient Chinese herbal prescription, and the current clinical treatment of irritable bowel syndrome (IBS) is effective. In the previous study of the research team, the multi-functional co-synergism of SNS against IBS was presented. Some potential drug targets and candidate ligands were predicted. PURPOSE This study attempts to explore the crucial ingredient combinations from SNS formula and reveal their synergistic mechanism for IBS therapy. MATERIALS AND METHODS In present study, a comprehensive strategy was performed to reveal IBS related pathways and biological modules, and explore synergistic effects of the ingredients, including ADME (absorption, distribution, metabolism, excretion) screening, Text mining, Venn analysis, Gene ontology (GO) analysis, Pathway cluster analysis, Molecular docking, Network construction and Experimental verification in visceral hypersensitivity (VHS) rats. RESULTS Three compressed IBS signal pathways were derived from ClueGO KEGG analysis of 63 IBS genes, including Neuroactive ligand-receptor interaction, Inflammatory mediator regulation of TRP (transient receptor potential) channels and Serotonergic synapse. A multi-module network, composed of four IBS therapeutic modules (psychological, inflammation, neuroendocrine and cross-talk modules), was revealed by Target-Pathway network. Nine kernel targets were considered closely associated with the IBS pathways, including ADRA2A, HTR2A, F2RL1, F2RL3, TRPV1, PKC, PKA, IL-1Β and NGF. In silico analysis revealed that three crucial ingredients (synephrine, paeoniflorin and naringin) were assumed to coordinate the network of those IBS therapeutic modules by acting on these kernel targets in the important pathways. In vivo experimental results showed that the crucial ingredient combinations synergistically affected the expressions of the kernel biological molecules, and improved the minimum capacity threshold of AWR in VHS rats. CONCLUSION The study proposes the important IBS associated pathways and the network regulation mechanisms of the crucial ingredients. It reveals the multi-target synergistic effect of the crucial ingredient combinations for the novel therapy on IBS.
Collapse
Affiliation(s)
- Tingting Cai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiang Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bangjie Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fei Xiong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Hao Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xinghao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
21
|
Wang ZZ, Jia Y, Srivastava KD, Huang W, Tiwari R, Nowak-Wegrzyn A, Geliebter J, Miao M, Li XM. Systems Pharmacology and In Silico Docking Analysis Uncover Association of CA2, PPARG, RXRA, and VDR with the Mechanisms Underlying the Shi Zhen Tea Formula Effect on Eczema. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8406127. [PMID: 34055023 PMCID: PMC8143894 DOI: 10.1155/2021/8406127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
Eczema is a complex chronic inflammatory skin disease impacted by environmental factors, infections, immune disorders, and deficiencies in skin barrier function. Shi Zhen Tea (SZT), derived from traditional Chinese medicine Xiao-Feng-San, has shown to be an effective integrative therapy for treating skin lesions, itching, and sleeping loss, and it facilitates reduction of topical steroid and antihistamine use in pediatric and adult patients with severe eczema. Yet, its active compounds and therapeutic mechanisms have not been elucidated. In this study, we sought to investigate the active compounds and molecular mechanisms of SZT in treating eczema using systems pharmacology and in silico docking analysis. SZT is composed of 4 medicinal herbs, Baizhu (Atractylodis macrocephalae rhizome), Jingjie (Schizonepetae herba), Kushen (Sophorae flavescentis radix), and Niubangzi (Arctii fructus). We first identified 51 active compounds from SZT and their 81 potential molecular targets by high-throughput computational analysis, from which we identified 4 major pathways including Th17 cell differentiation, metabolic pathways, pathways in cancer, and the PI3K-Akt signaling pathway. Through network analysis of the compound-target pathway, we identified hub molecular targets within these pathways including carbonic anhydrase II (CA2), peroxisome proliferator activated receptor γ (PPAR γ), retinoid X receptor α (RXRA), and vitamin D receptor (VDR). We further identified top 5 compounds including cynarine, stigmasterin, kushenol, β-sitosterol, and (24S)-24-propylcholesta-5-ene-3β-ol as putative key active compounds on the basis of their molecular docking scores with identified hub target proteins. Our study provides an insight into the therapeutic mechanism underlying multiscale benefits of SZT for eczema and paves the way for developing new and potentially more effective eczema therapies.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Department of Microbiology & Immunology, New York Medical College, New York 10595, USA
| | - Yuan Jia
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kamal D. Srivastava
- Department of Microbiology & Immunology, New York Medical College, New York 10595, USA
- General Nutraceutical Technology LLC, Elmsford, New York 10523, USA
| | - Weihua Huang
- Department of Pathology, New York Medical College, New York 10595, USA
| | - Raj Tiwari
- Department of Microbiology & Immunology, New York Medical College, New York 10595, USA
- Department of Otolaryngology, School of Medicine, New York Medical College, New York 10595, USA
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, New York University Langone Health, New York, NY 10029, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn 10-561, Poland
| | - Jan Geliebter
- Department of Microbiology & Immunology, New York Medical College, New York 10595, USA
- Department of Otolaryngology, School of Medicine, New York Medical College, New York 10595, USA
| | - Mingsan Miao
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiu-Min Li
- Department of Microbiology & Immunology, New York Medical College, New York 10595, USA
- Department of Otolaryngology, School of Medicine, New York Medical College, New York 10595, USA
| |
Collapse
|
22
|
Exploring the mechanism of aidi injection for lung cancer by network pharmacology approach and molecular docking validation. Biosci Rep 2021; 41:227696. [PMID: 33506873 PMCID: PMC7881165 DOI: 10.1042/bsr20204062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background. Aidi injection (ADI) is an effective Traditional Chinese medicine preparation widely used for lung cancer. However, the pharmacological mechanisms of ADI on lung cancer remain to be elucidated. Methods. A network pharmacology (NP)-based approach and the molecular docking validation were conducted to explore underlying mechanisms of ADI on lung cancer. The compounds and target genes were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (Batman-TCM) database. The STRING database was utilized for protein interaction network construction. The R package clusterProfiler was used for bioinformatics annotation of hub target genes. The gene expression analysis and survival analysis were performed based on The Cancer Genome Atlas (TCGA) database. The Autodock Vina was used for molecular docking validation. Results. A total of five key compounds with 324 putative target genes were screened out, and 14 hub target genes were identified for treating lung cancer. Six hub genes could influence the survival of non-small cell lung cancer (NSCLC) patients. Of these hub genes, the expression pattern of EGFR, MYC, PIK3CA, and SMAD3 were significantly higher in the LUSC, while PIK3CA and RELA expressed lower in the LUAD group and LUSC group, respectively. These six hub genes had good docking affinity with the key compounds of ADI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that ADI may exert therapeutic effects on lung cancer by regulating critical pathways including the thyroid hormone signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. Conclusions. The present study explored the potential pharmacological mechanisms of ADI on lung cancer, promoting the clinical application of ADI in treating lung cancer, and providing references for advanced researches.
Collapse
|
23
|
Li Y, Qiao L, Chen C, Wang Z, Fu X. Comparative study of Danshen and Siwu decoction based on the molecular structures of the components and predicted targets. BMC Complement Med Ther 2021; 21:42. [PMID: 33482800 PMCID: PMC7821527 DOI: 10.1186/s12906-021-03209-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The sentence of "Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Siwu decoction are similar in function" was first recorded in an ancient Chinese medical book "Fu Ren Ming Li Lun". This theory has far-reaching influence on the clinical practice of Chinese medicine and is highly respected by Chinese medical doctors. However, the theory has limitations and controversial part for there is no in-depth and system comparative study. METHODS We collected the molecular structures of 129 compounds of Danshen and 81 compounds of Siwu decoction from the literatures. MACCS fingerprints and Tanimoto similarity were calculated based on the molecular structures for comparing the structural feature. Molecular descriptors which represent physical and chemical properties were calculated by Discovery Studio. Principal component analysis (PCA) of was performed based on the descriptors. The ADMET properties were predicted by FAF-Drugs4. The effect targets for the compounds with good ADMET properties were confirmed from experimental data and predicted using the algorithm comprising Bernoulli Naive Bayes profiling. RESULTS Based on the molecular structures, the presented study compared the structural feature, physical and chemical properties, ADMET properties, and effect targets of compounds of Danshen and Siwu decoction. It is found that Danshen and Siwu decoction do not have the same main active components. Moreover, the 2D structure of compounds from Danshen and Siwu decoction is not similar. Some of the compounds of Danshen and Siwu decoction are similar in 3D structure. The compounds with good ADMET properties of Danshen and Siwu decoction have same predicted targets, but some have different targets. CONCLUSIONS It can be inferred from the result that Danshen and Siwu decoction have some similarities, but also present differences from each other in the structure of the compounds and predicted targets. This may be the material basis of the similar and different traditional efficacy of Danshen and Siwu decoction. The setence of " Danshen and Siwu decoction are similar in function. " which is used in clinical has its material basis and target connotation to some extent. However, the traditional effects of Danshen and Siwu decoction are not exactly the same.
Collapse
Affiliation(s)
- Yang Li
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, Shandong, China
| | - Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, Shandong, China
| | - Cong Chen
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, Shandong, China
| | - Zhenguo Wang
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, Shandong, China
| | - Xianjun Fu
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, Shandong, China.
- Center for Marine Traditional Chinese Medicine Research, Qingdao Academy of Chinese Medical Science, Qingdao, 260000, Shandong, China.
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, Shandong, China.
- Shandong Research Center of Engineering and Technology for omics of TCM, Ji'nan, 250355, Shandong, China.
| |
Collapse
|
24
|
Chen Z, Lin T, Liao X, Li Z, Lin R, Qi X, Chen G, Sun L, Lin L. Network pharmacology based research into the effect and mechanism of Yinchenhao Decoction against Cholangiocarcinoma. Chin Med 2021; 16:13. [PMID: 33478536 PMCID: PMC7818939 DOI: 10.1186/s13020-021-00423-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cholangiocarcinoma refers to an epithelial cell malignancy with poor prognosis. Yinchenhao decoction (YCHD) showed positive effects on cancers, and associations between YCHD and cholangiocarcinoma remain unclear. This study aimed to screen out the effective active components of Yinchenhao decoction (YCHD) using network pharmacology, estimate their potential targets, screen out the pathways, as well as delve into the potential mechanisms on treating cholangiocarcinoma. Methods By the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP) as well as literature review, the major active components and their corresponding targets were estimated and screened out. Using the software Cytoscape 3.6.0, a visual network was established using the active components of YCHD and the targets of cholangiocarcinoma. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways of the targets enrichment were performed. The AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The PyMOL software was utilized to visualize the docking results of active compounds and protein targets. In vivo experiment, the IC50 values and apoptosis rate in PI-A cells were detected using CCK-8 kit and Cell Cycle Detection Kit. The predicted targets were verified by the real-time PCR and western blot methods. Results 32 effective active components with anti-tumor effects of YCHD were sifted in total, covering 209 targets, 96 of which were associated with cancer. Quercetin, kaempferol, beta-sitosterol, isorhamnetin, and stigmasterol were identified as the vital active compounds, and AKT1, IL6, MAPK1, TP53 as well as VEGFA were considered as the major targets. The molecular docking revealed that these active compounds and targets showed good binding interactions. These 96 putative targets exerted therapeutic effects on cancer by regulating signaling pathways (e.g., hepatitis B, the MAPK signaling pathway, the PI3K-Akt signaling pathway, and MicroRNAs in cancer). Our in vivo experimental results confirmed that YCHD showed therapeutic effects on cholangiocarcinoma by decreasing IC50 values, down-regulating apoptosis rate of cholangiocarcinoma cells, and lowering protein expressions. Conclusions As predicted by network pharmacology strategy and validated by the experimental results, YCHD exerts anti-tumor effectsthrough multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhiqiang Chen
- The First School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Tong Lin
- The First School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Xiaozhong Liao
- The First School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Zeyun Li
- The First School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Ruiting Lin
- The First School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Xiangjun Qi
- The First School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Guoming Chen
- The First School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, 510405, Guangzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, 510405, Guangzhou, China.
| |
Collapse
|
25
|
Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants (Basel) 2020; 9:antiox9121309. [PMID: 33371338 PMCID: PMC7767362 DOI: 10.3390/antiox9121309] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.
Collapse
|
26
|
Monteiro ASEN, Campos DR, Albuquerque AAS, Evora PRB, Ferreira LG, Celotto AC. Effect of Diterpene Manool on the Arterial Blood Pressure and Vascular Reactivity in Normotensive and Hypertensive Rats. Arq Bras Cardiol 2020; 115:669-677. [PMID: 33111868 PMCID: PMC8386962 DOI: 10.36660/abc.20190198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Many studies have shown that the diterpenoid classes exert a significant effect on the cardiovascular system. Diterpenes, in particular, are among the main compound links to cardiovascular properties such as vasorelaxant, inotropic, diuretic and hypotensive activity. While the manool vasorelaxation mechanism is visible, its effect on blood pressure (BP) is still unknown. OBJECTIVE To evaluate the in vivo hypotensive effect of manool and check the ex vivo vasorelaxation effect in rat aortic rings. METHODS The animals were divided randomly into two groups: normotensive and hypertensive. The normotensive group was sham-operated, and the 2K1C model was adopted for the hypertensive group. Invasive BP monitoring was performed for manool tests at different doses (10, 20 and 40 mg/kg). Concentration-response curves for manool were obtained in the aorta rings, with endothelium, pre-contracted with phenylephrine (Phe) after incubation with Nω-nitro-L-arginine methyl ester(L-NAME) or oxadiazole [4,3-a]quinoxalin-1-one (ODQ). Nitric oxide (NOx) plasma levels were measured by chemiluminescence assay. RESULTS After manool administration, BP was reduced in normotensive and hypertensive groups, and this effect was inhibited by L-NAME in hypertensive animals only in 10 mg/kg dose. Ex vivo manool promoted vasorelaxation, which was inhibited by L-NAME and ODQ incubation or endothelium removal. NOx plasma levels increased in the hypertensive group after manool administration. Manool elicits endothelium-dependent vascular relaxation in rat aorta mediated by the NO/cGMP signaling pathway and BP reduction, also by NOx plasma increase. These combined effects could be involved in modulating peripheral resistance, contributing to the antihypertensive effect of diterpene. CONCLUSION These effects together could be involved in modulating peripheral resistance, contributing to the antihypertensive effect of diterpene.
Collapse
Affiliation(s)
| | - Debora Ribeiro Campos
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| | | | | | - Luciana Garros Ferreira
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| | - Andrea Carla Celotto
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| |
Collapse
|
27
|
Zhou W, Chen Z, Zhang G, Liu Z. A system-level investigation into the pharmacological mechanisms of flavor compounds in liquor. J Food Biochem 2020; 44:e13417. [PMID: 32789942 DOI: 10.1111/jfbc.13417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Maotai-flavor liquor, one of the world's most famous natural fermentation food products plays a significant role in traditional Chinese culture and people's daily lives for a long time due to its good taste. However, the pharmacological activities of flavor compounds in Maotai liquor have not been fully elucidated. In answering this question, a system-level analysis was developed by combining in silico ADME evaluation, multi-target prediction, GO enrichment analysis, network pharmacology technology, pathway analysis, as well as experimental verification to elucidate the pharmacological effects of flavor compounds in Maotai liquor. Finally, 55 active compounds and 80 targets were identified to interpret the pharmacological effect of the flavor compounds. Moreover, the key active compounds were verified by in vitro experiments to validate the reliability of our approaches. Our study provides a novel integrated strategy to comprehensively understand the pharmacological activities of complex components in Maotai liquor. PRACTICAL APPLICATIONS: We proposed an integrative strategy by systems pharmacology to investigate the potential active compounds and their related targets, as well as to understand the potential pharmacological mechanism of flavor compounds in Maotai liquor. The present work will not only shed light on the mechanism of active compounds in Maotai liquor at the system level, but also provide a novel approach for discovery of the active compounds that may benefit human health.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Ziyi Chen
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Guohao Zhang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhigang Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Wu Q, Chen Y, Gu Y, Fang S, Li W, Wang Q, Fang J, Cai C. Systems pharmacology-based approach to investigate the mechanisms of Danggui-Shaoyao-san prescription for treatment of Alzheimer's disease. BMC Complement Med Ther 2020; 20:282. [PMID: 32948180 PMCID: PMC7501700 DOI: 10.1186/s12906-020-03066-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, characterized by a progressive and irreversible loss of memory and cognitive abilities. Currently, the prevention and treatment of AD still remains a huge challenge. As a traditional Chinese medicine (TCM) prescription, Danggui-Shaoyao-san decoction (DSS) has been demonstrated to be effective for alleviating AD symptoms in animal experiments and clinical applications. However, due to the complex components and biological actions, its underlying molecular mechanism and effective substances are not yet fully elucidated. Methods In this study, we firstly systematically reviewed and summarized the molecular effects of DSS against AD based on current literatures of in vivo studies. Furthermore, an integrated systems pharmacology framework was proposed to explore the novel anti-AD mechanisms of DSS and identify the main active components. We further developed a network-based predictive model for identifying the active anti-AD components of DSS by mapping the high-quality AD disease genes into the global drug-target network. Results We constructed a global drug-target network of DSS consisting 937 unique compounds and 490 targets by incorporating experimental and computationally predicted drug–target interactions (DTIs). Multi-level systems pharmacology analyses revealed that DSS may regulate multiple biological pathways related to AD pathogenesis, such as the oxidative stress and inflammatory reaction processes. We further conducted a network-based statistical model, drug-likeness analysis, human intestinal absorption (HIA) and blood-brain barrier (BBB) penetration prediction to uncover the key ani-AD ingredients in DSS. Finally, we highlighted 9 key ingredients and validated their synergistic role against AD through a subnetwork. Conclusion Overall, this study proposed an integrative systems pharmacology approach to disclose the therapeutic mechanisms of DSS against AD, which also provides novel in silico paradigm for investigating the effective substances of complex TCM prescription.
Collapse
Affiliation(s)
- Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570000, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570000, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China. .,School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
29
|
Kim M, Kim YB. A network-based pharmacology study of active compounds and targets of Fritillaria thunbergii against influenza. Comput Biol Chem 2020; 89:107375. [PMID: 32980746 DOI: 10.1016/j.compbiolchem.2020.107375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/19/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022]
Abstract
Seasonal and pandemic influenza infections are serious threats to public health and the global economy. Since antigenic drift reduces the effectiveness of conventional therapies against the virus, herbal medicine has been proposed as an alternative. Fritillaria thunbergii (FT) have been traditionally used to treat airway inflammatory diseases such as coughs, bronchitis, pneumonia, and fever-based illnesses. Herein, we used a network pharmacology-based strategy to predict potential compounds from Fritillaria thunbergii (FT), target genes, and cellular pathways to better combat influenza and influenza-associated diseases. We identified five compounds, and 47 target genes using a compound-target network (C-T). Two compounds (beta-sitosterol and pelargonidin) and nine target genes (BCL2, CASP3, HSP90AA1, ICAM1, JUN, NOS2, PPARG, PTGS1, PTGS2) were identified using a compound-influenza disease target network (C-D). Protein-protein interaction (PPI) network was constructed and we identified eight proteins from nine target genes formed a network. The compound-disease-pathway network (C-D-P) revealed three classes of pathways linked to influenza: cancer, viral diseases, and inflammation. Taken together, our systems biology data from C-T, C-D, PPI and C-D-P networks predicted potent compounds from FT and new therapeutic targets and pathways involved in influenza.
Collapse
Affiliation(s)
- Minjee Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
30
|
Wu T, Yue R, Li L, He M. Study on the Mechanisms of Banxia Xiexin Decoction in Treating Diabetic Gastroparesis Based on Network Pharmacology. Interdiscip Sci 2020; 12:487-498. [PMID: 32914205 DOI: 10.1007/s12539-020-00389-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
In China, Banxia Xiexin decoction (BXD) is applied to treat diabetic gastroparesis (DGP), but its key active ingredients and mechanisms against DGP are unclear. This study is designated to reveal the molecular mechanisms of BXD in treating DGP by adopting a creative approach known as network pharmacology to explore the active ingredients and therapeutic targets of BXD. In our study, 730 differentially expressed genes of DGP were obtained, and 30 potential targets of BXD against DGP were screened out (including ADRB2, DRD1, FOS, MMP9, FOSL1, FOSL2, JUN, MAP2, DRD2, MYC, F3, CDKN1A, IL6, NFKBIA, ICAM1, CCL2, SELE, DUOX2, MGAM, THBD, SERPINE1, ALOX5, CXCL11, CXCL2, CXCL10, RUNX2, CD40LG, C1QB, MCL1, and ADCYAP1). Based on the findings, BXD contains 60 compounds with therapeutic effect on DGP, including the key active ingredients such as quercetin, wogonin, baicalein, beta-sitosterol, and kaempferol. Sixty-eight pathways including TNF signaling pathway, IL-17 signaling pathway, and AGE-RAGE signaling pathway were significantly enriched. In this study, the mechanisms of BXD in treating DGP are affirmed to be a complex network with multi-target and multi-pathway, which provides a reference for future experimental studies.
Collapse
Affiliation(s)
- Tingchao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, SiChuan, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, SiChuan, China.
| | - Liang Li
- University of Electronic Science and Technology of China, Chengdu, SiChuan, China
| | - Mingmin He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, SiChuan, China
| |
Collapse
|
31
|
Cui J, Qu Z, Harata-Lee Y, Shen H, Aung TN, Wang W, Kortschak RD, Adelson DL. The effect of compound kushen injection on cancer cells: Integrated identification of candidate molecular mechanisms. PLoS One 2020; 15:e0236395. [PMID: 32730293 PMCID: PMC7392229 DOI: 10.1371/journal.pone.0236395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022] Open
Abstract
Traditional Chinese Medicine (TCM) preparations are often extracts of single or multiple herbs containing hundreds of compounds, and hence it has been difficult to study their mechanisms of action. Compound Kushen Injection (CKI) is a complex mixture of compounds extracted from two medicinal plants and has been used in Chinese hospitals to treat cancer for over twenty years. To demonstrate that a systematic analysis of molecular changes resulting from complex mixtures of bioactives from TCM can identify a core set of differentially expressed (DE) genes and a reproducible set of candidate pathways. We used in vitro cancer models to measure the effect of CKI on cell cycle phases and apoptosis, and correlated those phenotypes with CKI induced changes in gene expression. We treated two cancer cell lines with or without CKI and assessed the resulting phenotypes by employing cell viability and proliferation assays. Based on these results, we carried out high-throughput transcriptome data analysis to identify genes and candidate pathways perturbed by CKI. We integrated these differential gene expression results with previously reported results and carried out validation of selected differentially expressed genes. CKI induced cell-cycle arrest and apoptosis in the cancer cell lines tested. In these cells CKI also altered the expression of 363 core candidate genes associated with cell cycle, apoptosis, DNA replication/repair, and various cancer pathways. Of these, 7 are clinically relevant to cancer diagnosis or therapy, 14 are cell cycle regulators, and most of these 21 candidates are downregulated by CKI. Comparison of our core candidate genes to a database of plant medicinal compounds and their effects on gene expression identified one-to-one, one-to-many and many-to-many regulatory relationships between compounds in CKI and DE genes. By identifying genes and promising candidate pathways associated with CKI treatment based on our transcriptome-based analysis, we have shown that this approach is useful for the systematic analysis of molecular changes resulting from complex mixtures of bioactives.
Collapse
Affiliation(s)
- Jian Cui
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Yuka Harata-Lee
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Hanyuan Shen
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Thazin Nwe Aung
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Wei Wang
- Zhendong Research Institute, Shanxi-Zhendong Pharmaceutical Co Ltd, Beijing, China
| | - R. Daniel Kortschak
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - David L. Adelson
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
32
|
Zhuang Z, Wen J, Zhang L, Zhang M, Zhong X, Chen H, Luo C. Can network pharmacology identify the anti-virus and anti- inflammatory activities of Shuanghuanglian oral liquid used in Chinese medicine for respiratory tract infection? Eur J Integr Med 2020; 37:101139. [PMID: 32501408 PMCID: PMC7255237 DOI: 10.1016/j.eujim.2020.101139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
Introduction Shuanghuanglian (SHL) oral liquid is a well-known traditional Chinese medicine preparation administered for respiratory tract infections in China. However, the underlying pharmacological mechanisms remain unclear. The present study aims to determine the potential pharmacological mechanisms of SHL oral liquid based on network pharmacology. Methods A network pharmacology-based strategy including collection and analysis of putative compounds and target genes, network construction, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Ontology (GO) enrichment, identification of key compounds and target genes, and molecule docking was performed in this study. Results A total of 82 bioactive compounds and 226 putative target genes of SHL oral liquid were collected. Of note, 28 hub target genes including 4 major hub target genes: estrogen receptor 1 (ESR1), nuclear receptor coactivator 2 (NCOA2), nuclear receptor coactivator 1 (NCOA1), androgen receptor (AR) and 5 key compounds (quercetin, luteolin, baicalein, kaempferol and wogonin) were identified based on network analysis. The hub target genes mainly enriched in pathways including PI3K-Akt signaling pathway, human cytomegalovirus infection, and human papillomavirus infection, which could be the underlying pharmacological mechanisms of SHL oral liquid for treating diseases. Moreover, the key compounds had great molecule docking binding affinity with the major hub target genes. Conclusion Using network pharmacology analysis, SHL oral liquid was found to contain anti-virus, anti-inflammatory, and “multi-compounds and multi-targets” with therapeutic actions. These findings may provide a valuable direction for further clinical application and research.
Collapse
Key Words
- AM, alveolar macrophages
- AR, androgen receptor
- CAS, Chemical abstracts service number
- CFDA, The China Food and Drug Administration
- COX, cyclooxygenases
- COX-2, cyclooxygenase
- DL, drug-likeness
- ESR1, estrogen receptor 1
- Flos Lonicerae
- Fructus Forsythiae
- GO, Gene Ontology
- HCMV, Human cytomegalovirus
- HCV, human cytomegalovirus
- HPV, Human papillomavirus
- HQ, Huangqin, Radix Scutellariae
- JYH, Jinyinhua, Flos Lonicerae
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LQ, Lianqiao, Fructus Forsythiae
- MCP, monocyte chemoattractant protein
- NCOA1, nuclear receptor coactivator 1
- NCOA2, nuclear receptor coactivator 2
- NO, nitric oxide
- Network pharmacology
- OB, oral bioavailability
- PG, prostaglandin
- Pharmacological mechanism
- ROS, reactive oxygen species
- RSV, respiratory syncytial virus
- Radix Scutellariae
- Respiratory tract infection
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SHL oral liquid, Shuanghuanglian oral liquid
- SMILES, Simplified molecular input line entry specification
- Shuanghuanglian oral liquid
- TCM, traditional Chinese medicine
- TCMSP, Traditional Chinese Medicine Systems Pharmacology database
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmao Wen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjia Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjin Luo
- The First Affiliated Hospital of Guangdong University of Chinese Medicine, No.12, Airport Road, Baiyun District, Guangzhou 510405, China
| |
Collapse
|
33
|
Inhibitory effect of a weight-loss Chinese herbal formula RCM-107 on pancreatic α-amylase activity: Enzymatic and in silico approaches. PLoS One 2020; 15:e0231815. [PMID: 32348327 PMCID: PMC7190128 DOI: 10.1371/journal.pone.0231815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Reducing carbohydrates digestion by having a low glycaemic index (GI) foods has been linked to weight loss. Inhibiting related enzymes is an alternative way to decrease carbohydrate digestion. RCM-107 (Slimming Plus), an eight-herb formula that is modified from RCM-104, indicated significant weight-loss action in clinical trials. However, no published research has studied its mechanism of action on reducing carbohydrate absorption via suppressing the activities of porcine pancreatic alpha-amylase (PPA). In this paper, we used fluorescence PPA inhibition assay to investigate the inhibitory effects of RCM-107 and the individual herbs present in this herbal mixture on amylase activity. Subsequently, molecular docking predicted the key active compounds that may be responsible for the enzyme inhibition. According to our results, both the RCM-107 formula and several individual herbs displayed α-amylase inhibitory effects. Also, marginal synergistic effects of RCM-107 were detected. In addition, alisol B, (-)-epigallocatechin-3-gallate (EGCG) and plantagoside have been predicted as the key active compounds that may be responsible for the α-amylase inhibition effect of RCM-107 according to inter-residue contact analysis. Finally, Glu233, Gln63, His305, Asp300 and Tyr151 are predicted to be markers of important areas with which potential amylase inhibitors would interact. Therefore, our data has provided new knowledge on the mechanisms of action of the RCM-107 formula and its individual herbal ingredients for weight loss, in terms of decreasing carbohydrate digestion via the inhibition of pancreatic alpha-amylase.
Collapse
|
34
|
Cai W, Wu J, Sun Y, Liu A, Wang R, Ma Y, Shuqing Wang, Dong W. Synthesis, evaluation, molecular dynamics simulation and targets identification of novel pyrazole-containing imide derivatives. J Biomol Struct Dyn 2020; 39:2176-2188. [PMID: 32189577 DOI: 10.1080/07391102.2020.1745284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A new series of novel pyrazole-containing imide derivatives were synthesized and evaluated for their anticancer activities against A-549, Bel7402, and HCT-8 cell lines. Among these compounds A2, A4, A11 and A14 possessed high inhibition activity against A-549 cell lines with IC50 values at 4.91, 3.22, 27.43 and 18.14 μM, respectively, better than that of 5-fluorouracil (IC50=59.27 μM). A2, A4, and A11 also exhibited significant inhibitory activity towards HCT-8 and Bel7402 cell lines. Interestingly, the Heat Shock Protein 90α (Hsp90α, PDB ID: 1UYK) was found to be the potential drug target of these synthesized compounds with the aid of PharmMapper server (http://lilab.ecust.edu.cn/pharmmapper/) and docking module of Schrödinger (Maestro 10.2). Additionally, molecular dynamics simulation was performed out to explore the most likely binding mode of compound A2 with Hsp90α.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenxi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, China
| | - Jingwei Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingzhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ailin Liu
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Runling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuqing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Weili Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
35
|
Huang YX, Xu DQ, Yue SJ, Chen YY, Tao HJ, Fu RJ, Xing LM, Wang T, Ma YL, Wang BA, Tang YP, Duan JA. Deciphering the Active Compounds and Mechanisms of Qixuehe Capsule on Qi Stagnation and Blood Stasis Syndrome: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5053914. [PMID: 32190085 PMCID: PMC7063220 DOI: 10.1155/2020/5053914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Qixuehe capsule (QXH), a Chinese patent medicine, has been demonstrated to be effective in the treatment of menstrual disorders. In traditional Chinese medicine (TCM) theory, qi stagnation and blood stasis syndrome (QS-BSS) is the main syndrome type of menstrual disorders. However, the pharmacodynamic effect of QXH in treating QS-BSS is not clear, and the main active compounds and underlying mechanisms remain unknown. METHODS A rat model of QS-BSS was established to evaluate the pharmacodynamic effect of QXH. Thereafter, a network pharmacology approach was performed to decipher the active compounds and underlying mechanisms of QXH. RESULTS QXH could significantly reduce the rising whole blood viscosity (WBV) and plasma viscosity (PV) but also normalize prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen (FIB) content in QS-BSS rats. Based on partial least-squares-discriminant analysis (PLS-DA), the low-dose QXH-intervened (QXH-L) and the high-dose QXH-intervened (QXH-H) groups seemed the most effective by calculating the relative distance to normality. Through network pharmacology, QXH may improve hemorheological abnormality mainly via 185 compounds-51 targets-28 pathways, whereas 184 compounds-68 targets-28 pathways were associated with QXH in improving coagulopathy. Subsequently, 25 active compounds of QXH were verified by UPLC-Q/TOF-MS. Furthermore, 174 active compounds of QXH were shared in improving hemorheological abnormality and coagulopathy in QS-BSS, each of which can act on multiple targets to be mainly involved in complement and coagulation cascades, leukocyte transendothelial migration, PPAR signaling pathway, VEGF signaling pathway, and arachidonic acid metabolism. The attribution of active compounds indicated that Angelicae Sinensis Radix (DG), Paeoniae Radix Rubra (CS), Carthami Flos (HH), Persicae Semen (TR), and Corydalis Rhizoma (YHS) were the vital herbs of QXH in treating QS-BSS. CONCLUSION QXH can improve the hemorheology abnormality and coagulopathy of QS-BSS, which may result from the synergy of multiple compounds, targets, and pathways.
Collapse
Affiliation(s)
- Yu-Xi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford, UK
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui-jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Li-Ming Xing
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Taiyi Wang
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford, UK
| | - Yu-ling Ma
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford, UK
| | - Bao-An Wang
- Shaanxi Momentum Qixuehe Pharmaceutical Co., Ltd., Xi'an 712000, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
36
|
A Systems Pharmacology Approach for Identifying the Multiple Mechanisms of Action for the Rougui-Fuzi Herb Pair in the Treatment of Cardiocerebral Vascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5196302. [PMID: 32025235 PMCID: PMC6982690 DOI: 10.1155/2020/5196302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Cardiocerebral vascular diseases (CCVDs) are the main reasons for high morbidity and mortality all over the world, including atherosclerosis, hypertension, myocardial infarction, stroke, and so on. Chinese herbs pair of the Cinnamomum cassia Presl (Chinese name, rougui) and the Aconitum carmichaelii Debx (Chinese name, fuzi) can be effective in CCVDs, which is recorded in the ancient classic book Shennong Bencao Jing, Mingyibielu and Thousand Golden Prescriptions. However, the active ingredients and the molecular mechanisms of rougui-fuzi in treatment of CCVDs are still unclear. This study was designed to apply a system pharmacology approach to reveal the molecular mechanisms of the rougui-fuzi anti-CCVDs. The 163 candidate compounds were retrieved from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). And 84 potential active compounds and the corresponding 42 targets were obtained from systematic model. The underlying mechanisms of the therapeutic effect for rougui-fuzi were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, component-target-disease (C-T-D) and target-pathway (T-P) networks were constructed to further dissect the core pathways, potential targets, and active compounds in treatment of CCVDs for rougui-fuzi. We also constituted protein-protein in interaction (PPI) network by the reflect target protein of the crucial pathways against CCVDs. As a result, 21 key compounds, 8 key targets, and 3 key pathways were obtained for rougui-fuzi. Afterwards, molecular docking was performed to validate the reliability of the interactions between some compounds and their corresponding targets. Finally, UPLC-Q-Exactive-MSE and GC-MS/MS were analyzed to detect the active ingredients of rougui-fuzi. Our results may provide a new approach to clarify the molecular mechanisms of Chinese herb pair in treatment with CCVDs at a systematic level.
Collapse
|
37
|
Singh P, Omer A. An integrated approach of network based system pharmacology approach and molecular docking to explore multiscale role of Pinus roxburghii and investigation into its mechanism. Pharmacogn Mag 2020. [DOI: 10.4103/0973-1296.301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Exploring the Pharmacological Mechanism of the Herb Pair "HuangLian-GanJiang" against Colorectal Cancer Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2735050. [PMID: 31871473 PMCID: PMC6906823 DOI: 10.1155/2019/2735050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023]
Abstract
Since the herb pair Huang Lian-Gan Jiang (HL-GJ) was put forward as conventional compatibility for cold-heat regulation in the middle energizer in the theory of Traditional Chinese Medicine (TCM), their therapeutic effects were observed on the prevention and treatment of intestinal inflammation and tumors including colorectal cancer (CRC). However, the active compounds, crucial targets, and related pathways of HL-GJ against CRC remained unclear. The purpose of this research was to establish a comprehensive and systemic approach that could identify the active compounds, excavate crucial targets, and reveal anti-CRC mechanisms of HL-GJ against CRC based on network pharmacology. We used methods including chemical compound screening based on absorption, distribution, metabolism, and excretion (ADME), compound target prediction, CRC target collection, network construction and analysis, Gene Ontology (GO), and pathway analysis. In this study, eight main active compounds of HL-GJ were identified, including Gingerenone C, Isogingerenone B, 5,8-dihydroxy-2-(2-phenylethyl) Chromone, 2,3,4-trihydroxy-benzenepropanoic acid, 3,4-dihydroxyphenylethyl Alcohol Glucoside, 3-carboxy-4-hydroxy-phenoxy Glucoside, Moupinamide, and Obaculactone. HRAS, KRAS, PIK3CA, PDE5A, PPARG, TGFBR1, and TGFBR2 were identified as crucial targets of HL-GJ against CRC. There were mainly 500 biological processes and 70 molecular functions regulated during HL-GJ against CRC (P < 0.001). There were mainly 162 signaling pathways contributing to therapeutic effects (P < 0.001), the top 10 of which included DAP12 signaling, signaling by PDGF, signaling by EGFR, NGF signaling via TRKA from the plasma membrane, signaling by NGF, downstream signal transduction, DAP12 interactions, signaling by VEGF, signaling by FGFR3, and signaling by FGFR4. The study established a comprehensive and systematic paradigm to understand the pharmacological mechanisms of multiherb compatibility such as an herb pair, which might accelerate the development and modernization of TCM.
Collapse
|
39
|
MEIm XD, Cao YF, Che YY, Li J, Shang ZP, Zhao WJ, Qiao YJ, Zhang JY. Danshen: a phytochemical and pharmacological overview. Chin J Nat Med 2019; 17:59-80. [PMID: 30704625 DOI: 10.1016/s1875-5364(19)30010-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/27/2022]
Abstract
Danshen, the dried root or rhizome of Salvia miltiorrhiza Bge., is a traditional and folk medicine in Asian countries, especially in China and Japan. In this review, we summarized the recent researches of Danshen in traditional uses and preparations, chemical constituents, pharmacological activities and side effects. A total of 201 compounds from Danshen have been reported, including lipophilic diterpenoids, water-soluble phenolic acids, and other constituents, which have showed various pharmacological activities, such as anti-inflammation, anti-oxidation, anti-tumor, anti-atherogenesis, and anti-diabetes. This article intends to provide novel insight information for further development of Danshen, which could be of great value to its improvement of utilization.
Collapse
Affiliation(s)
- Xiao-Dan MEIm
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Feng Cao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Yun Che
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jing Li
- College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhan-Peng Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wen-Jing Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Jiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jia-Yu Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
40
|
Zhang W, Huai Y, Miao Z, Qian A, Wang Y. Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery. Front Pharmacol 2019; 10:743. [PMID: 31379563 PMCID: PMC6657703 DOI: 10.3389/fphar.2019.00743] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023] Open
Abstract
As a traditional medical intervention in Asia and a complementary and alternative medicine in western countries, traditional Chinese medicine (TCM) has attracted global attention in the life science field. TCM provides extensive natural resources for medicinal compounds, and these resources are generally regarded as effective and safe for use in drug discovery. However, owing to the complexity of compounds and their related multiple targets of TCM, it remains difficult to dissect the mechanisms of action of herbal medicines at a holistic level. To solve the issue, in the review, we proposed a novel approach of systems pharmacology to identify the bioactive compounds, predict their related targets, and illustrate the molecular mechanisms of action of TCM. With a predominant focus on the mechanisms of actions of TCM, we also highlighted the application of the systems pharmacology approach for the prediction of drug combination and dynamic analysis, the synergistic effects of TCMs, formula dissection, and theory analysis. In summary, the systems pharmacology method contributes to understand the complex interactions among biological systems, drugs, and complex diseases from a network perspective. Consequently, systems pharmacology provides a novel approach to promote drug discovery in a precise manner and a systems level, thus facilitating the modernization of TCM.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Ying Huai
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yonghua Wang
- Lab of Systems Pharmacology, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
41
|
An important mechanism of herb-induced hepatotoxicity: To produce RMs based on active functional groups-containing ingredients from phytomedicine by binding CYP450s. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
42
|
Wang Y, Wang Q, Li C, Lu L, Zhang Q, Zhu R, Wang W. A Review of Chinese Herbal Medicine for the Treatment of Chronic Heart Failure. Curr Pharm Des 2019; 23:5115-5124. [PMID: 28950815 PMCID: PMC6340156 DOI: 10.2174/1381612823666170925163427] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
Abstract
Heart failure is one of the major causes of mortality worldwide and it is the end stage of sev-eral cardiovascular diseases. Traditional Chinese medicine has been used in the management of heart failure for a long time. Only until recently, well-designed clinical trials have been put into practice to study the efficacies of Chinese herbs. Extensive studies have also been carried out to explore the under-lying mechanisms of pharmaceutical actions of Chinese herbs. In this study, we will summarize the frequently used Chinese herbs, formulae and patent Chinese drugs in treating patients with heart failure and review published clinical evaluations of Chinese herbs in treating cardiovascular diseases. The mechanisms by which Chinese herbs exert cardio-protective effects will also be reviewed. In the end, we will point out the limitations of current studies and challenges facing modernization of traditional Chi-nese medicine.
Collapse
Affiliation(s)
- Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Lu
- Basic Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning, China
| | - Wei Wang
- Basic Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
43
|
Ge P, Wen L, Wang X, Zhang J, Xu G. Rapidly identify compounds from danshen by using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer and predict its mechanisms of intervening thrombotic diseases. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1511993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Peng Ge
- Department of laboratory, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Liujing Wen
- Department of Pharmacy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Xu Wang
- Department of laboratory, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Jingya Zhang
- Department of laboratory, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Guojie Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
44
|
Li X, Liu H, Shao Y, Ma G, Song D, Xu G, Wang Z. Wide Identification of the Compounds in Licorice and Exploration of the Mechanism for Prostatitis Treatment by Combining UHPLC‐LTQ‐Orbitrap MS with Network Pharmacology. ChemistrySelect 2019. [DOI: 10.1002/slct.201802661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuming Li
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| | - Hui Liu
- School of PharmacyMinzu University of China Beijing 100081 China
| | - Yuanyang Shao
- School of Chinese Materia MedicaBeijing University of Chinese Medicine Beijing 102488 China
| | - Guang Ma
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| | - Dianbin Song
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| | - Guojie Xu
- School of Life ScienceBeijing University of Chinese Medicine Beijing 102488 China
| | - Zhiyong Wang
- Department of UrologyAffiliated Hospital of Chengde Medical University Hebei 067000 China
| |
Collapse
|
45
|
Liu L, Wang H. The Recent Applications and Developments of Bioinformatics and Omics Technologies in Traditional Chinese Medicine. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190102125403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background:Traditional Chinese Medicine (TCM) is widely utilized as complementary health care in China whose acceptance is still hindered by conventional scientific research methodology, although it has been exercised and implemented for nearly 2000 years. Identifying the molecular mechanisms, targets and bioactive components in TCM is a critical step in the modernization of TCM because of the complexity and uniqueness of the TCM system. With recent advances in computational approaches and high throughput technologies, it has become possible to understand the potential TCM mechanisms at the molecular and systematic level, to evaluate the effectiveness and toxicity of TCM treatments. Bioinformatics is gaining considerable attention to unearth the in-depth molecular mechanisms of TCM, which emerges as an interdisciplinary approach owing to the explosive omics data and development of computer science. Systems biology, based on the omics techniques, opens up a new perspective which enables us to investigate the holistic modulation effect on the body.Objective:This review aims to sum up the recent efforts of bioinformatics and omics techniques in the research of TCM including Systems biology, Metabolomics, Proteomics, Genomics and Transcriptomics.Conclusion:Overall, bioinformatics tools combined with omics techniques have been extensively used to scientifically support the ancient practice of TCM to be scientific and international through the acquisition, storage and analysis of biomedical data.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Hao Wang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
46
|
Zhang R, Zhu X, Bai H, Ning K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front Pharmacol 2019; 10:123. [PMID: 30846939 PMCID: PMC6393382 DOI: 10.3389/fphar.2019.00123] [Citation(s) in RCA: 742] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
The research field of systems biology has greatly advanced and, as a result, the concept of network pharmacology has been developed. This advancement, in turn, has shifted the paradigm from a “one-target, one-drug” mode to a “network-target, multiple-component-therapeutics” mode. Network pharmacology is more effective for establishing a “compound-protein/gene-disease” network and revealing the regulation principles of small molecules in a high-throughput manner. This approach makes it very powerful for the analysis of drug combinations, especially Traditional Chinese Medicine (TCM) preparations. In this work, we first summarized the databases and tools currently used for TCM research. Second, we focused on several representative applications of network pharmacology for TCM research, including studies on TCM compatibility, TCM target prediction, and TCM network toxicology research. Third, we compared the general statistics of several current TCM databases and evaluated and compared the search results of these databases based on 10 famous herbs. In summary, network pharmacology is a rational approach for TCM studies, and with the development of TCM research, powerful and comprehensive TCM databases have emerged but need further improvements. Additionally, given that several diseases could be treated by TCMs, with the mediation of gut microbiota, future studies should focus on both the microbiome and TCMs to better understand and treat microbiome-related diseases.
Collapse
Affiliation(s)
- Runzhi Zhang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zhu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Bai
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Ning
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Zhou X, Razmovski-Naumovski V, Kam A, Chang D, Li CG, Chan K, Bensoussan A. Synergistic study of a Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination on cell survival in EA.hy926 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:50. [PMID: 30791910 PMCID: PMC6385400 DOI: 10.1186/s12906-019-2458-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Background This study investigated the protective effects of the Danshen (DS) and Sanqi (SQ) herb pair on cell survival in the human cardiovascular endothelial (EA.hy926) cell line exposed to injury. Methods Nine combination ratios of Danshen-Sanqi extracts (DS-SQ) were screened for their protective effects in the EA.hy926 cell line against two different cellular impairments induced by DL-homocysteine (Hcy) – adenosine (Ado) – tumour necrosis factors (TNF) and oxidative stress (H2O2), respectively. The type of interaction (synergistic, antagonistic, additive) between DS and SQ was analysed using a combination index (CI) model. The effects of key bioactive compounds from DS and SQ were tested using the same models. The compound from each herb that demonstrated the most potent activity in cell viability was combined to evaluate their synergistic/antagonistic interaction using CI. Results DS-SQ ratios of 6:4 (50–300 μg/mL) produced synergistic effects (CI < 1) in restoring cell viability, reducing lactate dehydrogenase (LDH) leakage and caspase-3 expressions against Hcy-Ado-TNF. Additionally, DS-SQ 6:4 (50–150 μg/mL) was found to synergistically protect endothelial cells from impaired cellular injury induced by oxidative damage (H2O2) by restoring reduced cell viability and inhibiting excessive expression of reactive oxygen species (ROS). In particular, the combination of salvianolic acid A (SA) and ginsenoside Rb1 (Rb1) at 4:6 (1–150 μM) showed synergistic effects in preventing cytotoxic effects caused by Hcy-Ado-TNF (CI < 1). This simplified combination also demonstrated synergistic effects on H2O2-induced oxidative damage on EA.hy926 cells. Conclusions This study provides scientific evidence to support the traditional use of the DS-SQ combination on protecting endothelial cells through their synergistic interactions. Electronic supplementary material The online version of this article (10.1186/s12906-019-2458-z) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Zhao M, Chen Y, Wang C, Xiao W, Chen S, Zhang S, Yang L, Li Y. Systems Pharmacology Dissection of Multi-Scale Mechanisms of Action of Huo-Xiang-Zheng-Qi Formula for the Treatment of Gastrointestinal Diseases. Front Pharmacol 2019; 9:1448. [PMID: 30687082 PMCID: PMC6336928 DOI: 10.3389/fphar.2018.01448] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multi-components Traditional Chinese Medicine (TCM) treats various complex diseases (multi-etiologies and multi-symptoms) via herbs interactions to exert curative efficacy with less adverse effects. However, the ancient Chinese compatibility theory of herbs formula still remains ambiguous. Presently, this combination principle is dissected through a systems pharmacology study on the mechanism of action of a representative TCM formula, Huo-xiang-zheng-qi (HXZQ) prescription, on the treatment of functional dyspepsia (FD), a chronic or recurrent clinical disorder of digestive system, as typical gastrointestinal (GI) diseases which burden human physical and mental health heavily and widely. In approach, a systems pharmacology platform which incorporates the pharmacokinetic and pharmaco-dynamics evaluation, target fishing and network pharmacological analyses is employed. As a result, 132 chemicals and 48 proteins are identified as active compounds and FD-related targets, and the mechanism of HXZQ formula for the treatment of GI diseases is based on its three function modules of anti-inflammation, immune protection and gastrointestinal motility regulation mainly through four, i.e., PIK-AKT, JAK-STAT, Toll-like as well as Calcium signaling pathways. In addition, HXZQ formula conforms to the ancient compatibility rule of "Jun-Chen-Zuo-Shi" due to the different, while cooperative roles that herbs possess, specifically, the direct FD curative effects of GHX (serving as Jun drug), the anti-bacterial efficacy and major accompanying symptoms-reliving bioactivities of ZS and BZ (as Chen), the detoxication and ADME regulation capacities of GC (as Shi), as well as the minor symptoms-treating efficacy of the rest 7 herbs (as Zuo). This work not only provides an insight of the therapeutic mechanism of TCMs on treating GI diseases from a multi-scale perspective, but also may offer an efficient way for drug discovery and development from herbal medicine as complementary drugs.
Collapse
Affiliation(s)
- Miaoqing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, China
| | - Yangyang Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shusheng Chen
- Systems Biology Laboratory, Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, United States
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China.,Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, China
| |
Collapse
|
49
|
Tu C, Niu M, Li C, Liu Z, He Q, Li R, Zhang Y, Xiao X, Wang J. Network pharmacology oriented study reveals inflammatory state-dependent dietary supplement hepatotoxicity responses in normal and diseased rats. Food Funct 2019; 10:3477-3490. [DOI: 10.1039/c8fo01974f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhubarb, a well-used herbal and dietary supplement, has been widely used as a laxative in many countries.
Collapse
Affiliation(s)
- Can Tu
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 610000
- China
- China Military Institute of Chinese Medicine
| | - Ming Niu
- China Military Institute of Chinese Medicine
- Beijing 100039
- China
| | - Chunyu Li
- China Military Institute of Chinese Medicine
- Beijing 100039
- China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital
- Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhenjie Liu
- China Military Institute of Chinese Medicine
- Beijing 100039
- China
| | - Qin He
- China Military Institute of Chinese Medicine
- Beijing 100039
- China
| | - Ruisheng Li
- China Military Institute of Chinese Medicine
- Beijing 100039
- China
| | - Yaming Zhang
- China Military Institute of Chinese Medicine
- Beijing 100039
- China
| | - Xiaohe Xiao
- Integrative Medical Center for Liver Diseases
- Beijing 100039
- China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine
- Beijing 100039
- China
| |
Collapse
|
50
|
Arji G, Safdari R, Rezaeizadeh H, Abbassian A, Mokhtaran M, Hossein Ayati M. A systematic literature review and classification of knowledge discovery in traditional medicine. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 168:39-57. [PMID: 30392889 DOI: 10.1016/j.cmpb.2018.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/14/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION AND OBJECTIVE Despite the importance of machine learning methods application in traditional medicine there is a no systematic literature review and a classification for this field. This is the first comprehensive literature review of the application of data mining methods in traditional medicine. METHOD We reviewed 5 database between 2000 to 2017 based on the Kitchenham systematic review methodology. 502 articles were identified and reviewed for their relevance to application of machine learning methods in traditional medicine, 42 selected papers were classified and categorized on four dimension; 1) application domain of data mining techniques in traditional medicine; 2) the data mining methods most frequently used in traditional medicine; 3) main strength and limitation of data mining techniques in traditional medicine; 4) the performance evaluation methods in data mining methods in traditional medicine. RESULT The result obtained showed that main application domain of data mining techniques in traditional medicine was related to syndrome differentiation. Bayesian Networks (BNs), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) were recognized as being the methods most frequently applied in traditional medicine. Furthermore, each data mining techniques has its own strength and limitations when applied in traditional medicine. Single scaler methods were frequently used for performance evaluation of data mining methods. CONCLUSION Machine learning methods have become an important research field in traditional medicine. Our research provides information about this methods by examining the related articles.
Collapse
Affiliation(s)
- Goli Arji
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Safdari
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Abbassian
- Department of Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehrshad Mokhtaran
- Assistant Professor of Medical Informatics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ayati
- Department of Traditional Medicine, School of Traditional Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|