1
|
Zhang Z, Isaji T, Oyama Y, Liu J, Xu Z, Sun Y, Fukuda T, Lu H, Gu J. O-GlcNAcylation of Focal Adhesion Kinase Regulates Cell Adhesion, Migration, and Proliferation via the FAK/AKT Pathway. Biomolecules 2024; 14:1577. [PMID: 39766284 PMCID: PMC11674061 DOI: 10.3390/biom14121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase pivotal in cellular signal transduction, regulating cell adhesion, migration, growth, and survival. However, the regulatory mechanisms of FAK during tumorigenesis and progression still need to be fully understood. Our previous study demonstrated that O-GlcNAcylation regulates integrin-mediated cell adhesion. To further elucidate the underlying molecular mechanism, we focused on FAK in this study and purified it from 293T cells. Using liquid chromatography-mass spectrometry (LC-MS/MS), we identified the O-GlcNAcylation of FAK at Ser708, Thr739, and Ser886. Compared with wild-type FAK expressed in FAK-knockout 293T cells, the FAK mutant, in which Ser708, Thr739, and Ser886 were replaced with Ala, exhibited lower phosphorylation levels of Tyr397 and AKT. Cell proliferation and migration, assessed through MTT and wound healing assays, were significantly suppressed in the FAK mutant cells compared to the wild-type FAK cells. Additionally, the interaction among FAK, paxillin, and talin was enhanced, and cell adhesion was increased in the mutant cells. These data indicate that specific O-GlcNAcylation of FAK plays a critical regulatory role in integrin-mediated cell adhesion and migration. This further supports the idea that O-GlcNAcylation is essential for tumorigenesis and progression and that targeting the O-GlcNAcylation of FAK could offer a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Zhiwei Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan; (Z.Z.); (Y.O.); (J.L.); (Z.X.); (Y.S.); (T.F.)
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| |
Collapse
|
2
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Janev A, Ramuta TŽ, Jerman UD, Obradović H, Kamenšek U, Čemažar M, Kreft ME. Human amniotic membrane inhibits migration and invasion of muscle-invasive bladder cancer urothelial cells by downregulating the FAK/PI3K/Akt/mTOR signalling pathway. Sci Rep 2023; 13:19227. [PMID: 37932474 PMCID: PMC10628262 DOI: 10.1038/s41598-023-46091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Severin F, Mouawad N, Ruggeri E, Visentin A, Martinello L, Pagnin E, Trimarco V, Pravato S, Angotzi F, Facco M, Trentin L, Frezzato F. Focal adhesion kinase activation by calcium-dependent calpain is involved in chronic lymphocytic leukaemia cell aggressiveness. Br J Haematol 2023; 203:224-236. [PMID: 37495265 DOI: 10.1111/bjh.18996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Signalling events downstream the B-cell receptor (BCR) are central for the survival and progression of chronic lymphocytic leukaemia (CLL) cells. Focal adhesion kinase (FAK), regulated through calpain, interacts with molecules of BCR signalling, cytoskeletal modelling and disease progression, such as Src/Lyn, cortactin and HS1. Hypothesizing that FAK might play a key role in CLL pathogenesis, we observed a down-modulation of FAK whole form, associated with FAK cleavage due to calpain activity upon BCR stimulation. Patients, whose cells were able to release Ca++ after BCR stimulation, had less amount of full-length FAK, which translated into a higher presence of cleaved/activated form of the protein phosphorylated at Y397, these features being mostly shown by immunoglobulin heavy chain (IGHV)-unmutated poor-prognosis patients. Moreover, we found that cortactin and HS1 proteins were overexpressed in those cells, suggesting a possible interplay with FAK. Treatment with the FAK inhibitor Defactinib was able to induce apoptosis in CLL cells. In conclusion, the malignant phenotype in unfavourable-prognosis patients seems to be encouraged by the overexpression of cortactin and HS1, that, together with FAK, may be involved in a druggable pathogenetic pathway in CLL.
Collapse
Affiliation(s)
- Filippo Severin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Nayla Mouawad
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Edoardo Ruggeri
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Leonardo Martinello
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Elisa Pagnin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Valentina Trimarco
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Stefano Pravato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Francesco Angotzi
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Monica Facco
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Desel I, Jung S, Purcz N, Açil Y, Sproll C, Kleinheinz J, Sielker S. Analysis of Genes Related to Invadopodia Formation and CTTN in Oral Squamous Cell Carcinoma-A Systematic Gene Expression Analysis. Curr Issues Mol Biol 2023; 45:6927-6940. [PMID: 37623256 PMCID: PMC10453299 DOI: 10.3390/cimb45080437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Successful treatment for any type of carcinoma largely depends on understanding the patterns of invasion and migration. For oral squamous cell carcinoma (OSCC), these processes are not entirely understood as of now. Invadopodia and podosomes, called invadosomes, play an important role in cancer cell invasion and migration. Previous research has established that cortactin (CTTN) is a major inducer of invadosome formation. However, less is known about the expression patterns of CTTN and other genes related to it or invadopodia formation in OSCC during tumor progression in particular. In this study, gene expression patterns of CTTN and various genes (n = 36) associated with invadopodia formation were analyzed to reveal relevant expression patterns and give a comprehensive overview of them. The genes were analyzed from a whole genome dataset of 83 OSCC samples relating to tumor size, grading, lymph node status, and UICC (Union for Internatioanl Cancer Control). The data revealed significant overexpression of 18 genes, most notably CTTN, SRC (SRC proto-onocogene, non-receptor tyrosine kinase), EGFR (epidermal growth factor receptor), SYK (spleen associated tyrosine kinase), WASL (WASP like actin nucleation promotion factor), and ARPC2 (arrestin beta 1) due to their significant correlation with further tumor parameters. This study is one of the first to summarize the expression patterns of CTTN and related genes in a complex group of OSCC samples.
Collapse
Affiliation(s)
- Immanuel Desel
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Susanne Jung
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Nikolai Purcz
- Department of Cranio-Maxillofacial Surgery, University Hospital Kiel, 24105 Kiel, Germany (Y.A.)
| | - Yahya Açil
- Department of Cranio-Maxillofacial Surgery, University Hospital Kiel, 24105 Kiel, Germany (Y.A.)
| | - Christoph Sproll
- Department of Cranio-Maxillofacial Surgery, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Johannes Kleinheinz
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Sonja Sielker
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| |
Collapse
|
7
|
An S, Vo TTL, Son T, Choi H, Kim J, Lee J, Kim BH, Choe M, Ha E, Surh YJ, Kim KW, Seo JH. SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion. Exp Mol Med 2023; 55:779-793. [PMID: 37009792 PMCID: PMC10167369 DOI: 10.1038/s12276-023-00961-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 04/04/2023] Open
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sunho An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tam Thuy Lu Vo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Taekwon Son
- Korea Brain Bank, Korea Brain Research Institute, Daegu, 42601, Republic of Korea
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jinyoung Kim
- Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Juyeon Lee
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byung Hoon Kim
- Department of Urology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Misun Choe
- Department of Pathology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Joon Surh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
8
|
Twafra S, Sokolik CG, Sneh T, Srikanth KD, Meirson T, Genna A, Chill JH, Gil-Henn H. A novel Pyk2-derived peptide inhibits invadopodia-mediated breast cancer metastasis. Oncogene 2023; 42:278-292. [PMID: 36258022 DOI: 10.1038/s41388-022-02481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Dissemination of cancer cells from the primary tumor into distant body tissues and organs is the leading cause of death in cancer patients. While most clinical strategies aim to reduce or impede the growth of the primary tumor, no treatment to eradicate metastatic cancer exists at present. Metastasis is mediated by feet-like cytoskeletal structures called invadopodia which allow cells to penetrate through the basement membrane and intravasate into blood vessels during their spread to distant tissues and organs. The non-receptor tyrosine kinase Pyk2 is highly expressed in breast cancer, where it mediates invadopodia formation and function via interaction with the actin-nucleation-promoting factor cortactin. Here, we designed a cell-permeable peptide inhibitor that contains the second proline-rich region (PRR2) sequence of Pyk2, which binds to the SH3 domain of cortactin and inhibits the interaction between Pyk2 and cortactin in invadopodia. The Pyk2-PRR2 peptide blocks spontaneous lung metastasis in immune-competent mice by inhibiting cortactin tyrosine phosphorylation and actin polymerization-mediated maturation and activation of invadopodia, leading to reduced MMP-dependent tumor cell invasiveness. The native structure of the Pyk2-PRR2:cortactin-SH3 complex was determined using nuclear magnetic resonance (NMR), revealing an extended class II interaction surface spanning the canonical binding groove and a second hydrophobic surface which significantly contributes to ligand affinity. Using structure-guided design, we created a mutant peptide lacking critical residues involved in binding that failed to inhibit invadopodia maturation and function and consequent metastatic dissemination in mice. Our findings shed light on the specific molecular interactions between Pyk2 and cortactin and may lead to the development of novel strategies for preventing dissemination of primary breast tumors predicted at the time of diagnosis to be highly metastatic, and of secondary tumors that have already spread to other parts of the body.
Collapse
Affiliation(s)
- Shams Twafra
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Chana G Sokolik
- Bio-NMR Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tal Sneh
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Kolluru D Srikanth
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Tomer Meirson
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.,Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Alessandro Genna
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Jordan H Chill
- Bio-NMR Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Hava Gil-Henn
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.
| |
Collapse
|
9
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
10
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
11
|
Cortactin Modulates Lung Endothelial Apoptosis Induced by Cigarette Smoke. Cells 2021; 10:cells10112869. [PMID: 34831092 PMCID: PMC8616125 DOI: 10.3390/cells10112869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke (CS) is the primary cause of Chronic Obstructive Pulmonary Disease (COPD), and an important pathophysiologic event in COPD is CS-induced apoptosis in lung endothelial cells (EC). Cortactin (CTTN) is a cytoskeletal actin-binding regulatory protein with modulation by Src-mediated tyrosine phosphorylation. Based upon data demonstrating reduced CTTN mRNA levels in the lungs of smokers compared to non-smokers, we hypothesized a functional role for CTTN in CS-induced mitochondrial ROS generation and apoptosis in lung EC. Exposure of cultured human lung EC to CS condensate (CSC) led to the rearrangement of the actin cytoskeleton and increased CTTN tyrosine phosphorylation (within hours). Exposure to CS significantly increased EC mitochondrial ROS generation and EC apoptosis. The functional role of CTTN in these CSC-induced EC responses was explored using cortactin siRNA to reduce its expression, and by using a blocking peptide for the CTTN SH3 domain, which is critical to cytoskeletal interactions. CTTN siRNA or blockade of its SH3 domain resulted in significantly increased EC mitochondrial ROS and apoptosis and augmented CSC-induced effects. Exposure of lung EC to e-cigarette condensate demonstrated similar results, with CTTN siRNA or SH3 domain blocking peptide increasing lung EC apoptosis. These data demonstrate a novel role for CTTN in modulating lung EC apoptosis induced by CS or e-cigarettes potentially providing new insights into COPD pathogenesis.
Collapse
|
12
|
Mondaca JM, Uzair ID, Castro Guijarro AC, Flamini MI, Sanchez AM. Molecular Basis of LH Action on Breast Cancer Cell Migration and Invasion via Kinase and Scaffold Proteins. Front Cell Dev Biol 2021; 8:630147. [PMID: 33614634 PMCID: PMC7893099 DOI: 10.3389/fcell.2020.630147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a major public health problem affecting women worldwide. Approximately 80% of diagnosed cases are hormone-dependent breast cancers. These hormones are known to stimulate tumor development and progression. In this setting, tentative evidence suggests that luteinizing hormone (LH) may also play a role in tumors. In BC cells that express functional LH receptors (LHR), this hormone regulates cell migration and invasion by controlling several kinases that activate actin cytoskeletal proteins. In this article, we show that LH induces phosphorylation of paxillin and its translocation toward the plasmatic membrane, where focal adhesion complexes are assembled. This process is triggered via a rapid extra-gonadal LHR signaling to Src/FAK/paxillin, which results in the phosphorylation/activation of the nucleation promoter factors cortactin and N-WASP. As a consequence, Arp2/3 complexes induce actin polymerization, essential to promote cell adhesion, migration, and invasion, thus enhancing metastatic spread of tumoral cells. Our findings provide relevant information about how gonadotrophins exert their action in BC. This information helps us understand the extragonadal effects of LH on BC metastasis. It may provide new perspectives for therapeutic treatment, especially for women with high serum levels of gonadotrophins.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ivonne Denise Uzair
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ana Carla Castro Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
13
|
Mondaca JM, Guijarro ACC, Flamini MI, Sanchez AM. Heregulin-induced cell migration is prevented by trastuzumab and trastuzumab-emtansine in HER2+ breast cancer. Breast Cancer Res Treat 2021; 186:363-377. [PMID: 33474679 DOI: 10.1007/s10549-020-06089-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Heregulin (HRG) signaling has been implicated in the development of an aggressive phenotype in breast cancer (BC) cells, and HER2 overexpression has been associated with a worse prognosis in BC patients. Nevertheless, the molecular mechanisms through which HRG affects the efficiency of anti-HER2 therapies such as trastuzumab (Tz) and trastuzumab-emtansine (T-DM1) are currently unknown. METHODS In the present study, we evaluate the molecular action of HRG toward fundamental scaffold proteins and several kinases in the signal transduction pathways triggered via HER2/HER3, which integrate precise and sequential steps to promote changes in cell morphology to impulse BC cell migration. In addition, we evaluate the effectiveness of Tz and T-DM1 on the control of key proteins involved in BC cell motility, since the acquisition of a migratory phenotype is essential to promote invasion and metastasis. RESULTS We show that HRG induces actin cytoskeleton reorganization and focal adhesion complex formation, and promotes actin nucleation in BT-474 BC cells. This signaling is triggered by HER2/HER3 to c-Src, FAK and paxillin. When paxillin is phosphorylated, it recruits PAK1, which then phosphorylates cortactin. In parallel, paxillin signals to N-WASP, and both signalings regulate Arp2/3 complex, leading to the local reorganization of actin fibers. CONCLUSIONS Our findings reveal an original mechanism by which HRG increases HER2+ BC cell motility, and show that the latter can be abolished by Tz and T-DM1 treatments. These results provide evidence for the molecular mechanisms involved in cell motility and drug resistance. They will be useful to develop new and more specific therapeutic schemes that interfere with the progression and metastasis of HER2+ BC.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina
| | - Ana Carla Castro Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina.
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Av. Ruiz Leal S/N. Parque Gral, San Martin CC855, 5500, Mendoza, Argentina.
| |
Collapse
|
14
|
Amable G, Martínez-León E, Picco ME, Nemirovsky SI, Rozengurt E, Rey O. Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. J Cell Physiol 2020; 235:8334-8344. [PMID: 32239671 PMCID: PMC7529638 DOI: 10.1002/jcp.29677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
E-cadherin, a central component of the adherens junction (AJ), is a single-pass transmembrane protein that mediates cell-cell adhesion. The loss of E-cadherin surface expression, and therefore cell-cell adhesion, leads to increased cell migration and invasion. Treatment of colorectal cancer (CRC)-derived cells (SW-480 and HT-29) with 2.0 mM metformin promoted a redistribution of cytosolic E-cadherin to de novo formed puncta along the length of the contacting membranes of these cells. Metformin also promoted translocation from the cytosol to the plasma membrane of p120-catenin, another core component of the AJs. Furthermore, E-cadherin and p120-catenin colocalized with β-catenin at cell-cell contacts. Western blot analysis of lysates of CRC-derived cells revealed a substantial metformin-induced increase in the level of p120-catenin as well as E-cadherin phosphorylation on Ser838/840 , a modification associated with β-catenin/E-cadherin interaction. These modifications in E-cadherin, p120-catenin and β-catenin localization suggest that metformin induces rebuilding of AJs in CRC-derived cells. Those modifications were accompanied by the inhibition of focal adhesion kinase (FAK), as revealed by a significant decrease in the phosphorylation of FAK at Tyr397 and paxillin at Tyr118 . These changes were associated with a reduction in the numbers, but an increase in the size, of focal adhesions and by the inhibition of cell migration. Overall, these observations indicate that metformin targets multiple pathways associated with CRC development and progression.
Collapse
Affiliation(s)
- Gastón Amable
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Eduardo Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - María Elisa Picco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1428EGA, Argentina
| | - Enrique Rozengurt
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, CA, 90095-1768, USA
| | - Osvaldo Rey
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| |
Collapse
|
15
|
Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, Liu J, Zhang L, Wang G, Li H, Liu DX, Huang B, Lu J, Zhang Y. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. eLife 2020; 9:57617. [PMID: 32844749 PMCID: PMC7494359 DOI: 10.7554/elife.57617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Arginine methyltransferase PRMT7 is associated with human breast cancer metastasis. Endosomal FAK signalling is critical for cancer cell migration. Here we identified the pivotal roles of PRMT7 in promoting endosomal FAK signalling activation during breast cancer metastasis. PRMT7 exerted its functions through binding to scaffold protein SHANK2 and catalyzing di-methylation of SHANK2 at R240. SHANK2 R240 methylation exposed ANK domain by disrupting its SPN-ANK domain blockade, promoting in co-accumulation of dynamin2, talin, FAK, cortactin with SHANK2 on endosomes. In addition, SHANK2 R240 methylation activated endosomal FAK/cortactin signals in vitro and in vivo. Consistently, all the levels of PRMT7, methylated SHANK2, FAK Y397 phosphorylation and cortactin Y421 phosphorylation were correlated with aggressive clinical breast cancer tissues. These findings characterize the PRMT7-dependent SHANK2 methylation as a key player in mediating endosomal FAK signals activation, also point to the value of SHANK2 R240 methylation as a target for breast cancer metastasis.
Collapse
Affiliation(s)
- Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lingling Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu Peng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jiayuan Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lian Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
16
|
Kiepas A, Voorand E, Senecal J, Ahn R, Annis MG, Jacquet K, Tali G, Bisson N, Ursini-Siegel J, Siegel PM, Brown CM. The SHCA adapter protein cooperates with lipoma-preferred partner in the regulation of adhesion dynamics and invadopodia formation. J Biol Chem 2020; 295:10535-10559. [PMID: 32299913 DOI: 10.1074/jbc.ra119.011903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor β (TGFβ)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFβ enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFβ-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFβ-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFβ. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFβ, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada.,Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada
| | - Ryuhjin Ahn
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada
| | - George Tali
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada.,PROTEO Network and Cancer Research Centre, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Oncology, McGill University, Montréal H4A 3T2, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada .,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada .,Advanced BioImaging Facility (ABIF), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
17
|
Antonosante A, Brandolini L, d’Angelo M, Benedetti E, Castelli V, Maestro MD, Luzzi S, Giordano A, Cimini A, Allegretti M. Autocrine CXCL8-dependent invasiveness triggers modulation of actin cytoskeletal network and cell dynamics. Aging (Albany NY) 2020; 12:1928-1951. [PMID: 31986121 PMCID: PMC7053615 DOI: 10.18632/aging.102733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Glioblastoma (GB) is the most representative form of primary malignant brain tumour. Several studies indicated a pleiotropic role of CXCL8 in cancer due to its ability to modulate the tumour microenvironment, growth and aggressiveness of tumour cell. Previous studies indicated that CXCL8 by its receptors (CXCR1 and CXCR2) induced activation of the PI3K/p-Akt pathway, a crucial event in the regulation of cytoskeleton rearrangement and cell mobilization. Human GB primary cell culture and U-87MG cell line were used to study the effects of CXCR1 and CXCR2 blockage, by a dual allosteric antagonist, on cell migration and cytoskeletal dynamics. The data obtained point towards a specific effect of autocrine CXCL8 signalling on GB cell invasiveness by the activation of pathways involved in cell migration and cytoskeletal dynamics, such as PI3K/p-Akt/p-FAK, p-cortactin, RhoA, Cdc42, Acetylated α-tubulin and MMP2. All the data obtained support the concept that autocrine CXCL8 signalling plays a key role in the activation of an aggressive phenotype in primary glioblastoma cells and U-87MG cell line. These results provide new insights about the potential of a pharmacological approach targeting CXCR1/CXCR2 pathways to decrease migration and invasion of GB cells in the brain parenchyma, one of the principal mechanisms of recurrence.
Collapse
Affiliation(s)
- Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Sabino Luzzi
- San Matteo Hospital, University of Pavia, Pavia, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
18
|
Cheng T, Wang Y, Lu M, Zhan X, Zhou T, Li B, Zhan X. Quantitative Analysis of Proteome in Non-functional Pituitary Adenomas: Clinical Relevance and Potential Benefits for the Patients. Front Endocrinol (Lausanne) 2019; 10:854. [PMID: 31920968 PMCID: PMC6915109 DOI: 10.3389/fendo.2019.00854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Non-functional pituitary adenoma (NFPA) is a common tumor that occurs in the pituitary gland, and generally without any symptoms at its early stage and without clinical elevation of hormones, which is commonly diagnosed when it grows up to compress its surrounding tissues and organs. Currently, the pathogenesis of NFPA has not been clarified yet. It is necessary to investigate molecular alterations in NFPA, and identify reliable biomarkers and drug therapeutic targets for effective treatments. Methods: Tandem mass tags (TMT)-based quantitative proteomics was used to identify and quantify proteins in NFPAs. GO and KEGG enrichment analyses were used to analyze the identified proteins. Differentially expressed genes (DEGs) between NFPA and control tissues were obtained from GEO datasets. These two sets of protein and gene data were analyzed to obtain overlapped molecules (genes; proteins), followed by further GO and KEGG pathway analyses of these overlapped molecules, and molecular network analysis to obtain the hub molecules with Cytoscape. Two hub molecules (SRC and AKT1) were verified with Western blotting. Results: Totally 6076 proteins in NFPA tissues were identified, and 3598 DEGs between NFPA and control tissues were identified from GEO database. Overlapping analysis of 6076 proteins and 3598 DEGs obtained 1088 overlapped molecules (DEGs; proteins). KEGG pathway analysis of 6076 proteins obtained 114 statistically significant pathways, including endocytosis, and spliceosome signaling pathways. KEGG pathway analysis of 1088 overlapped molecules obtained 52 statistically significant pathways, including focal adhesion, cGMP-PKG pathway, and platelet activation signaling pathways. These pathways play important roles in cell energy supply, adhesion, and maintenance of the tumor microenvironment. According to the association degree in Cytoscape, ten hub molecules (DEGs; proteins) were identified, including GAPDH, ALB, ACACA, SRC, ENO2, CALM1, POTEE, HSPA8, DECR1, and AKT1. Western-blotting analysis confirmed the upregulated expressions of SRC and PTMScan experiment confirmed the increased levels of pAKT1, in NFPAs compared to controls. Conclusions: This study established the large-scale quantitative protein profiling of NFPA tissue proteome. It offers a basis for subsequent in-depth proteomics analysis of NFPAs, and insight into the molecular mechanism of NFPAs. It also provided the basic data to discover reliable biomarkers and therapeutic targets for NFPA patients.
Collapse
Affiliation(s)
- Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Tehrani S, Davis L, Cepurna WO, Delf RK, Lozano DC, Choe TE, Johnson EC, Morrison JC. Optic Nerve Head Astrocytes Display Axon-Dependent and -Independent Reactivity in Response to Acutely Elevated Intraocular Pressure. Invest Ophthalmol Vis Sci 2019; 60:312-321. [PMID: 30665231 PMCID: PMC6343680 DOI: 10.1167/iovs.18-25447] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose Optic nerve head (ONH) astrocytes provide support for axons, but exhibit structural and functional changes (termed reactivity) in a number of glaucoma models. The purpose of this study was to determine if ONH astrocyte structural reactivity is axon-dependent. Methods Using rats, we combine retrobulbar optic nerve transection (ONT) with acute controlled elevation of intraocular pressure (CEI), to induce total optic nerve axon loss and ONH astrocyte reactivity, respectively. Animals were euthanized immediately or 1 day post CEI, in the presence or absence of ONT. ONH sections were labeled with fluorescent-tagged phalloidin and antibodies against β3 tubulin, phosphorylated cortactin, phosphorylated paxillin, or complement C3. ONH label intensities were quantified after confocal microscopy. Retrobulbar nerves were assessed for axon injury by light microscopy. Results While ONT alone had no effect on ONH astrocyte structural orientation, astrocytes demonstrated significant reorganization of cellular extensions within hours after CEI, even when combined with ONT. However, ONH astrocytes displayed differential intensities of actin (phosphorylated cortactin) and focal adhesion (phosphorylated paxillin) mediators in response to CEI alone, ONT alone, or the combination of CEI and ONT. Lastly, label intensities of complement C3 within the ONH were unchanged in eyes subjected to CEI alone, ONT alone, or the combination of CEI and ONT, relative to controls. Conclusions Early ONH astrocyte structural reactivity to elevated IOP is multifaceted, displaying both axon dependent and independent responses. These findings have important implications for pursuing astrocytes as diagnostic and therapeutic targets in neurodegenerative disorders with fluctuating levels of axon injury.
Collapse
Affiliation(s)
- Shandiz Tehrani
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| | - Lauren Davis
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| | - William O Cepurna
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| | - R Katherine Delf
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| | - Diana C Lozano
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| | - Tiffany E Choe
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| | - Elaine C Johnson
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| | - John C Morrison
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
20
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
22
|
Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Abstract
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.
Collapse
Affiliation(s)
- Pauline Jeannot
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester , Manchester M20 4BX, UK
| | - Arnaud Besson
- CRCT INSERM UMR1037, Université Toulouse III Paul Sabatier , CNRS ERL5294, Toulouse, France.,LBCMCP , Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
24
|
Genna A, Lapetina S, Lukic N, Twafra S, Meirson T, Sharma VP, Condeelis JS, Gil-Henn H. Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol 2017; 217:375-395. [PMID: 29133485 PMCID: PMC5748976 DOI: 10.1083/jcb.201702184] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but how it potentiates tumor cell invasiveness is unclear. Genna et al. find that Pyk2 and the closely related kinase FAK modulate breast cancer cell invasiveness by distinct mechanisms and coordinate the balance between focal adhesion–mediated migration and invadopodia-dependent extracellular matrix invasion. The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but the mechanism by which it potentiates tumor cell invasiveness is unclear at present. Using high-throughput protein array screening and bioinformatic analysis, we identified cortactin as a novel substrate and interactor of proline-rich tyrosine kinase 2 (Pyk2). Pyk2 colocalizes with cortactin to invadopodia of invasive breast cancer cells, where it mediates epidermal growth factor–induced cortactin tyrosine phosphorylation both directly and indirectly via Src-mediated Abl-related gene (Arg) activation, leading to actin polymerization in invadopodia, extracellular matrix degradation, and tumor cell invasion. Both Pyk2 and the closely related focal adhesion kinase (FAK) regulate tumor cell invasion, albeit via distinct mechanisms. Although Pyk2 regulates tumor cell invasion by controlling invadopodium-mediated functions, FAK controls invasiveness of tumor cells by regulating focal adhesion–mediated motility. Collectively, our findings identify Pyk2 as a unique mediator of invadopodium formation and function and also provide a novel insight into the mechanisms by which Pyk2 mediates tumor cell invasion.
Collapse
Affiliation(s)
- Alessandro Genna
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Nikola Lukic
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shams Twafra
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
25
|
Amin EM, Liu Y, Deng S, Tan KS, Chudgar N, Mayo MW, Sanchez-Vega F, Adusumilli PS, Schultz N, Jones DR. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK. Sci Signal 2017; 10:eaah3941. [PMID: 28928239 PMCID: PMC5771642 DOI: 10.1126/scisignal.aah3941] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Large-scale, genome-wide studies report that RNA binding proteins are altered in cancers, but it is unclear how these proteins control tumor progression. We found that the RNA-editing protein ADAR (adenosine deaminase acting on double-stranded RNA) acted as a facilitator of lung adenocarcinoma (LUAD) progression through its ability to stabilize transcripts encoding focal adhesion kinase (FAK). In samples from 802 stage I LUAD patients, increased abundance of ADAR at both the mRNA and protein level correlated with tumor recurrence. Knocking down ADAR in LUAD cells suppressed their mesenchymal properties, migration, and invasion in culture. Analysis of gene expression patterns in LUAD cells identified ADAR-associated enrichment of a subset of genes involved in cell migration pathways; among these, FAK is the most notable gene whose expression was increased in the presence of ADAR. Molecular analyses revealed that ADAR posttranscriptionally increased FAK protein abundance by binding to the FAK transcript and editing a specific intronic site that resulted in the increased stabilization of FAK mRNA. Pharmacological inhibition of FAK blocked ADAR-induced invasiveness of LUAD cells, suggesting a potential therapeutic application for LUAD that has a high abundance of ADAR.
Collapse
Affiliation(s)
- Elianna M Amin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuan Liu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Su Deng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neel Chudgar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Francisco Sanchez-Vega
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Regulation of focal adhesion turnover in SDF-1α-stimulated migration of mesenchymal stem cells in neural differentiation. Sci Rep 2017; 7:10013. [PMID: 28855566 PMCID: PMC5577153 DOI: 10.1038/s41598-017-09736-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Directed migration of the transplanted mesenchymal stem cells (MSCs) to the lesion sites plays a pivotal role in the efficacy of cell-based therapy. Our previous study demonstrates that MSCs under varying neural differentiation states possess different migratory capacities in response to chemoattractants. However, the underlying mechanism has not been fully addressed. Herein, we show that the assembly and turnover of focal adhesions, the phosphorylation of FAK and paxillin, and the reorganisation of F-actin in MSCs are closely related to their differentiation states in response to SDF-1α. Upon SDF-1α stimulation, FAs turnover more rapidly with the most obvious reduction in the existing time of FAs in MSCs of 24-h preinduction that exhibit the most effective migration towards SDF-1α. Further, we confirm that PI3K/Akt and MAPK pathways participate in the regulation of SDF-1α-induced cell migration and FA assembly, and moreover, that the regulatory effects vary greatly depending on the differentiation states. Collectively, these results demonstrate that FA assembly and turnover, which is accompanied with F-actin reorganisation in response to SDF-1α, correlates closely with the differentiation states of MSCs, which might contribute to the different chemotactic responses of these cells, and thus help develop new strategy to improve the efficacy of MSCs-based therapy.
Collapse
|
27
|
Dickreuter E, Cordes N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol Chem 2017; 398:721-735. [PMID: 28002024 DOI: 10.1515/hsz-2016-0326] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.
Collapse
Affiliation(s)
| | - Nils Cordes
- , Faculty of Medicine and University Hospital Carl Gustav Carus
| |
Collapse
|
28
|
Belvitch P, Brown ME, Brinley BN, Letsiou E, Rizzo AN, Garcia JGN, Dudek SM. The ARP 2/3 complex mediates endothelial barrier function and recovery. Pulm Circ 2017; 7:200-210. [PMID: 28680579 PMCID: PMC5448540 DOI: 10.1086/690307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023] Open
Abstract
Pulmonary endothelial cell (EC) barrier dysfunction and recovery is critical to the pathophysiology of acute respiratory distress syndrome. Cytoskeletal and subsequent cell membrane dynamics play a key mechanistic role in determination of EC barrier integrity. Here, we characterizAQe the actin related protein 2/3 (Arp 2/3) complex, a regulator of peripheral branched actin polymerization, in human pulmonary EC barrier function through studies of transendothelial electrical resistance (TER), intercellular gap formation, peripheral cytoskeletal structures and lamellipodia. Compared to control, Arp 2/3 inhibition with the small molecule inhibitor CK-666 results in a reduction of baseline barrier function (1,241 ± 53 vs 988 ± 64 ohm; p < 0.01), S1P-induced barrier enhancement and delayed recovery of barrier function after thrombin (143 ± 14 vs 93 ± 6 min; p < 0.01). Functional changes of Arp 2/3 inhibition on barrier integrity are associated temporally with increased intercellular gap area at baseline (0.456 ± 0.02 vs 0.299 ± 0.02; p < 0.05) and thirty minutes after thrombin (0.885 ± 0.03 vs 0.754 ± 0.03; p < 0.05). Immunofluorescent microscopy reveals reduced lamellipodia formation after S1P and during thrombin recovery in Arp 2/3 inhibited cells. Individual lamellipodia demonstrate reduced depth following Arp 2/3 inhibition vs vehicle at baseline (1.83 ± 0.41 vs 2.55 ± 0.46 µm; p < 0.05) and thirty minutes after S1P treatment (1.53 ± 0.37 vs 2.09 ± 0.36 µm; p < 0.05). These results establish a critical role for Arp 2/3 activity in determination of pulmonary endothelial barrier function and recovery through formation of EC lamellipodia and closure of intercellular gaps.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Mary E Brown
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | | | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Alicia N Rizzo
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Joe G N Garcia
- University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| |
Collapse
|
29
|
Watkins RJ, Imruetaicharoenchoke W, Read ML, Sharma N, Poole VL, Gentilin E, Bansal S, Bosseboeuf E, Fletcher R, Nieto HR, Mallick U, Hackshaw A, Mehanna H, Boelaert K, Smith VE, McCabe CJ. Pro-invasive Effect of Proto-oncogene PBF Is Modulated by an Interaction with Cortactin. J Clin Endocrinol Metab 2016; 101:4551-4563. [PMID: 27603901 PMCID: PMC5155689 DOI: 10.1210/jc.2016-1932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Metastatic disease is responsible for the majority of endocrine cancer deaths. New therapeutic targets are urgently needed to improve patient survival rates. OBJECTIVE The proto-oncogene PTTG1-binding factor (PBF/PTTG1IP) is overexpressed in multiple endocrine cancers and circumstantially associated with tumor aggressiveness. This study aimed to understand the role of PBF in tumor cell invasion and identify possible routes to inhibit its action. Design, Setting, Patients, and Interventions: Thyroid, breast, and colorectal cells were transfected with PBF and cultured for in vitro analysis. PBF and cortactin (CTTN) expression was determined in differentiated thyroid cancer and The Cancer Genome Atlas RNA-seq data. PRIMARY OUTCOME MEASURE Pro-invasive effects of PBF were evaluated by 2D Boyden chamber, 3D organotypic, and proximity ligation assays. RESULTS Our study identified that PBF and CTTN physically interact and co-localize, and that this occurs at the cell periphery, particularly at the leading edge of migrating cancer cells. Critically, PBF induces potent cellular invasion and migration in thyroid and breast cancer cells, which is entirely abrogated in the absence of CTTN. Importantly, we found that CTTN is over-expressed in differentiated thyroid cancer, particularly in patients with regional lymph node metastasis, which significantly correlates with elevated PBF expression. Mutation of PBF (Y174A) or pharmacological intervention modulates the PBF: CTTN interaction and attenuates the invasive properties of cancer cells. CONCLUSION Our results demonstrate a unique role for PBF in regulating CTTN function to promote endocrine cell invasion and migration, as well as identify a new targetable interaction to block tumor cell movement.
Collapse
Affiliation(s)
- Rachel J Watkins
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Waraporn Imruetaicharoenchoke
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Martin L Read
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Neil Sharma
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vikki L Poole
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Erica Gentilin
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sukhchain Bansal
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Emy Bosseboeuf
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rachel Fletcher
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hannah R Nieto
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ujjal Mallick
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Allan Hackshaw
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hisham Mehanna
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kristien Boelaert
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vicki E Smith
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
30
|
Tehrani S, Davis L, Cepurna WO, Choe TE, Lozano DC, Monfared A, Cooper L, Cheng J, Johnson EC, Morrison JC. Astrocyte Structural and Molecular Response to Elevated Intraocular Pressure Occurs Rapidly and Precedes Axonal Tubulin Rearrangement within the Optic Nerve Head in a Rat Model. PLoS One 2016; 11:e0167364. [PMID: 27893827 PMCID: PMC5125687 DOI: 10.1371/journal.pone.0167364] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/12/2016] [Indexed: 02/01/2023] Open
Abstract
Glaucomatous axon injury occurs at the level of the optic nerve head (ONH) in response to uncontrolled intraocular pressure (IOP). The temporal response of ONH astrocytes (glial cells responsible for axonal support) to elevated IOP remains unknown. Here, we evaluate the response of actin-based astrocyte extensions and integrin-based signaling within the ONH to 8 hours of IOP elevation in a rat model. IOP elevation of 60 mm Hg was achieved under isoflurane anesthesia using anterior chamber cannulation connected to a saline reservoir. ONH astrocytic extension orientation was significantly and regionally rearranged immediately after IOP elevation (inferior ONH, 43.2° ± 13.3° with respect to the anterior-posterior axis versus 84.1° ± 1.3° in controls, p<0.05), and re-orientated back to baseline orientation 1 day post IOP normalization. ONH axonal microtubule filament label intensity was significantly reduced 1 and 3 days post IOP normalization, and returned to control levels on day 5. Phosphorylated focal adhesion kinase (FAK) levels steadily decreased after IOP normalization, while levels of phosphorylated paxillin (a downstream target of FAK involved in focal adhesion dynamics) were significantly elevated 5 days post IOP normalization. The levels of phosphorylated cortactin (a downstream target of Src kinase involved in actin polymerization) were significantly elevated 1 and 3 days post IOP normalization and returned to control levels by day 5. No significant axon degeneration was noted by morphologic assessment up to 5 days post IOP normalization. Actin-based astrocyte structure and signaling within the ONH are significantly altered within hours after IOP elevation and prior to axonal cytoskeletal rearrangement, producing some responses that recover rapidly and others that persist for days despite IOP normalization.
Collapse
Affiliation(s)
- Shandiz Tehrani
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Lauren Davis
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - William O. Cepurna
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Tiffany E. Choe
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Diana C. Lozano
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ashley Monfared
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lauren Cooper
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joshua Cheng
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Elaine C. Johnson
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John C. Morrison
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
31
|
Albini E, Rosini V, Gargaro M, Mondanelli G, Belladonna ML, Pallotta MT, Volpi C, Fallarino F, Macchiarulo A, Antognelli C, Bianchi R, Vacca C, Puccetti P, Grohmann U, Orabona C. Distinct roles of immunoreceptor tyrosine-based motifs in immunosuppressive indoleamine 2,3-dioxygenase 1. J Cell Mol Med 2016; 21:165-176. [PMID: 27696702 PMCID: PMC5192792 DOI: 10.1111/jcmm.12954] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
The enzyme indoleamine 2,3‐dioxygenase 1 (IDO1) catalyses the initial, rate‐limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1‐dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine‐based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP‐1 and SHP‐2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine‐phosphorylated ITIMs will instead bind the suppressor of cytokine signalling 3 (SOCS3), which drives IDO1 proteasomal degradation and shortens the enzyme half‐life. To dissect any differential roles of the two IDO1's ITIMs, we generated protein mutants by replacing one or both ITIM‐associated tyrosines with phospho‐mimicking glutamic acid residues. Although all mutants lost their enzymic activity, the ITIM1 – but not ITIM2 mutant – did bind SHPs and conferred immunosuppressive effects on DCs, making cells capable of restraining an antigen‐specific response in vivo. Conversely, the ITIM2 mutant would preferentially bind SOCS3, and IDO1's degradation was accelerated. Thus, it is the selective phosphorylation of either ITIM that controls the duration of IDO1 expression and function, in that it dictates whether enhanced tolerogenic signalling or shutdown of IDO1‐dependent events will occur in a local microenvironment.
Collapse
Affiliation(s)
- Elisa Albini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Verdiana Rosini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
32
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
33
|
The Phosphorylation and Distribution of Cortactin Downstream of Integrin α9β1 Affects Cancer Cell Behaviour. Sci Rep 2016; 6:28529. [PMID: 27339664 PMCID: PMC4919783 DOI: 10.1038/srep28529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Integrins, a family of heterodimeric adhesion receptors are implicated in cell migration, development and cancer progression. They can adopt conformations that reflect their activation states and thereby impact adhesion strength and migration. Integrins in an intermediate activation state may be optimal for migration and we have shown previously that fully activated integrin α9β1 corresponds with less migratory behaviour in melanoma cells. Here, we aimed to identify components associated with the activation status of α9β1. Using cancer cell lines with naturally occuring high levels of this integrin, activation by α9β1-specific ligands led to upregulation of fibronectin matrix assembly and tyrosine phosphorylation of cortactin on tyrosine 470 (Y470). Specifically, cortactin phosphorylated on Y470, but not Y421, redistributed together with α9β1 to focal adhesions where active β1 integrin also localises, upon integrin activation. This was commensurate with reduced migration. The localisation and phosphorylation of cortactin Y470 was regulated by Yes kinase and PTEN phosphatase. Cortactin levels influenced fibronectin matrix assembly and active β1 integrin on the cell surface, being inversely correlated with migratory behaviour. This study underlines the complex interplay between cortactin and α9β1 integrin that regulates cell-extracellular matrix interactions.
Collapse
|
34
|
Daulat AM, Bertucci F, Audebert S, Sergé A, Finetti P, Josselin E, Castellano R, Birnbaum D, Angers S, Borg JP. PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. Dev Cell 2016; 37:311-325. [PMID: 27184734 DOI: 10.1016/j.devcel.2016.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 03/15/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
Components of the evolutionarily conserved developmental planar cell polarity (PCP) pathway were recently described to play a prominent role in cancer cell dissemination. However, the molecular mechanisms by which PCP molecules drive the spread of cancer cells remain largely unknown. PRICKLE1 encodes a PCP protein bound to the promigratory serine/threonine kinase MINK1. We identify RICTOR, a member of the mTORC2 complex, as a PRICKLE1-binding partner and show that the integrity of the PRICKLE1-MINK1-RICTOR complex is required for activation of AKT, regulation of focal adhesions, and cancer cell migration. Disruption of the PRICKLE1-RICTOR interaction results in a strong impairment of breast cancer cell dissemination in xenograft assays. Finally, we show that upregulation of PRICKLE1 in basal breast cancers, a subtype characterized by high metastatic potential, is associated with poor metastasis-free survival.
Collapse
Affiliation(s)
- Avais M Daulat
- Inserm, U1068, CRCM, Cell Polarity, Cell Signalling and Cancer "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France; Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France
| | - François Bertucci
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France
| | - Stéphane Audebert
- Inserm, U1068, CRCM, Cell Polarity, Cell Signalling and Cancer "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France; Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France
| | - Arnauld Sergé
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Leuko/Stromal Interactions, Marseille 13009, France
| | - Pascal Finetti
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France
| | - Emmanuelle Josselin
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, TrGET Platform, Marseille 13009, France
| | - Rémy Castellano
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, TrGET Platform, Marseille 13009, France
| | - Daniel Birnbaum
- Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France; Inserm, U1068, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France
| | - Stéphane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, ON M5S1A8, Canada
| | - Jean-Paul Borg
- Inserm, U1068, CRCM, Cell Polarity, Cell Signalling and Cancer "Equipe labellisée Ligue Contre le Cancer", Marseille 13009, France; Institut Paoli-Calmettes, Marseille 13009, France; Aix-Marseille Université, UM 105, Marseille 13284, France; CNRS, UMR7258, CRCM, Marseille 13009, France.
| |
Collapse
|
35
|
Wang H, Leung M, Wandinger-Ness A, Hudson LG, Song M. Constrained inference of protein interaction networks for invadopodium formation in cancer. IET Syst Biol 2016; 10:76-85. [PMID: 26997662 PMCID: PMC4804358 DOI: 10.1049/iet-syb.2015.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/27/2015] [Accepted: 07/10/2015] [Indexed: 11/19/2022] Open
Abstract
Integrating prior molecular network knowledge into interpretation of new experimental data is routine practice in biology research. However, a dilemma for deciphering interactome using Bayes' rule is the demotion of novel interactions with low prior probabilities. Here the authors present constrained generalised logical network (CGLN) inference to predict novel interactions in dynamic networks, respecting previously known interactions and observed temporal coherence. It encodes prior interactions as probabilistic logic rules called local constraints, and forms global constraints using observed dynamic patterns. CGLN finds constraint-satisfying trajectories by solving a k-stops problem in the state space of dynamic networks and then reconstructs candidate networks. They benchmarked CGLN on randomly generated networks, and CGLN outperformed its alternatives when 50% or more interactions in a network are given as local constraints. CGLN is then applied to infer dynamic protein interaction networks regulating invadopodium formation in motile cancer cells. CGLN predicted 134 novel protein interactions for their involvement in invadopodium formation. The most frequently predicted interactions centre around focal adhesion kinase and tyrosine kinase substrate TKS4, and 14 interactions are supported by the literature in molecular contexts related to invadopodium formation. As an alternative to the Bayesian paradigm, the CGLN method offers constrained network inference without requiring prior probabilities and thus can promote novel interactions, consistent with the discovery process of scientific facts that are not yet in common beliefs.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ming Leung
- Departments of Biology and Computer Science, Duke University, Durham, NC 27708, USA
| | | | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
36
|
Missirlis D, Haraszti T, Scheele CVC, Wiegand T, Diaz C, Neubauer S, Rechenmacher F, Kessler H, Spatz JP. Substrate engagement of integrins α5β1 and αvβ3 is necessary, but not sufficient, for high directional persistence in migration on fibronectin. Sci Rep 2016; 6:23258. [PMID: 26987342 PMCID: PMC4796868 DOI: 10.1038/srep23258] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/02/2016] [Indexed: 12/29/2022] Open
Abstract
The interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5β1 and αvβ3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner. Fibronectin stimulated α5β1-dependent organization of the actin cytoskeleton into oriented, ventral stress fibers, and assembly of dynamic, polarized protrusions, characterized as regions free of stress fibers and rich in nascent adhesions at their edge. Such protrusions correlated with persistent, local leading edge advancement, but were not sufficient, nor necessary for directional migration over longer times. Selective blocking of αvβ3 or α5β1 integrins using small molecule integrin antagonists reduced directional persistence on fibronectin, indicating integrin cooperativity in maintaining directionality. On the other hand, patterned substrates, designed to selectively engage either integrin, or their combination, were not sufficient to establish directional migration. Overall, our study demonstrates adhesive coating-dependent regulation of directional persistence in fibroblast migration and challenges the generality of the previously suggested role of β1 and β3 integrins in directional migration.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Tamás Haraszti
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Catharina v C Scheele
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Tina Wiegand
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Carolina Diaz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| |
Collapse
|
37
|
Tyrosine 397 phosphorylation is critical for FAK-promoted Rac1 activation and invasive properties in oral squamous cell carcinoma cells. J Transl Med 2016; 96:296-306. [PMID: 26752742 DOI: 10.1038/labinvest.2015.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/02/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer worldwide. Despite advances in diagnosis and therapy, treatment options for patients with metastatic OSCC are few, due in part to the limited understanding of the molecular events involved in the invasion and metastasis of OSCC. In this study, we investigated the expression of focal adhesion kinase (FAK) and its tyrosine 397 phosphorylation (pY397) in the tissue specimens of OSCC. The roles of pY397 in regulating the activities of Rac1 and cortactin and the invasive properties of OSCC cells were further determined. Results from immunohistochemical analyses in 9 benign, 19 premalignant, and 19 malignant oral tissues showed that the immunoreactivity of FAK was observed in 5 benign (56%), 19 premalignant (100%), and 18 malignant tissues (95%), whereas the immunoreactivity of pY397 was only found in 1 of 9 (11%) benign lesions but was observed in 9 premalignant (47%) and 12 malignant (63%) lesions. Compared with the low-invading SCC4 cells, the high-invading OECM-1 cells exhibited higher levels of FAK expression and pY397, correlating with higher levels of GTP-bound Rac1 and cortactin phosphorylation. Manipulation of FAK expression or Y397 phosphorylation in SCC4, FaDu, OECM-1, or HSC-3 cells regulated their Rac1 activities and invasive properties. Furthermore, treatment of NSC23766, a Rac1-specific inhibitor, in OECM-1 and HSC-3 cells led to reduced invasive properties. Nevertheless, knockdown of FAK expression or suppression of pY397 had no effect on the cortactin activity in OECM-1 cells. The data collectively suggest that pY397 plays critical roles in the FAK-promoted Rac1 activation and invasive properties in OSCC cells. Thus, the inhibition of FAK phosphorylation at Y397 or Rac1 activity can serve as a therapeutic strategy for treating patients with metastatic OSCC.
Collapse
|
38
|
Swaminathan V, Fischer RS, Waterman CM. The FAK-Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin. Mol Biol Cell 2016; 27:1085-100. [PMID: 26842895 PMCID: PMC4814217 DOI: 10.1091/mbc.e15-08-0590] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) is an important regulator of focal adhesion dynamics during cell migration. Distinct functions of FAK—kinase activation and Arp2/3 binding—enable cells to mechanosense or haptotax during spreading and migration. Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration.
Collapse
Affiliation(s)
- Vinay Swaminathan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8019
| | - R S Fischer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8019
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8019
| |
Collapse
|
39
|
Son K, Smith TC, Luna EJ. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Cytoskeleton (Hoboken) 2015; 72:47-64. [PMID: 25655724 DOI: 10.1002/cm.21210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
We investigated cross-talk between the membrane-associated, myosin II-regulatory protein supervillin and the actin-regulatory small GTPases Rac1, RhoA, and Cdc42. Supervillin knockdown reduced Rac1-GTP loading, but not the GTP loading of RhoA or Cdc42, in HeLa cells with normal levels of the Rac1-activating protein Trio. No reduction in Rac1-GTP loading was observed when supervillin levels were reduced in Trio-depleted cells. Conversely, overexpression of supervillin isoform 1 (SV1) or, especially, isoform 4 (SV4) increased Rac1 activation. Inhibition of the Trio-mediated Rac1 guanine nucleotide exchange activity with ITX3 partially blocked the SV4-mediated increase in Rac1-GTP. Both SV4 and SV1 co-localized with Trio at or near the plasma membrane in ruffles and cell surface projections. Two sequences within supervillin bound directly to Trio spectrin repeats 4-7: SV1-171, which contains N-terminal residues found in both SV1 and SV4 and the SV4-specific differentially spliced coding exons 3, 4, and 5 within SV4 (SV4-E345; SV4 amino acids 276-669). In addition, SV4-E345 interacted with the homologous sequence in rat kalirin (repeats 4-7, amino acids 531-1101). Overexpressed SV1-174 and SV4-E345 affected Rac1-GTP loading, but only in cells with endogenous levels of Trio. Trio residues 771-1057, which contain both supervillin-interaction sites, exerted a dominant-negative effect on cell spreading. Supervillin and Trio knockdowns, separately or together, inhibited cell spreading, suggesting that supervillin regulates the Rac1 guanine nucleotide exchange activity of Trio, and potentially also kalirin, during cell spreading and lamellipodia extension.
Collapse
Affiliation(s)
- Kyonghee Son
- Department of Cell and Developmental Biology, Program in Cell & Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | |
Collapse
|
40
|
Vistein R, Puthenveedu MA. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation. Traffic 2014; 15:1195-205. [PMID: 25077552 DOI: 10.1111/tra.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 02/03/2023]
Abstract
The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here, we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways.
Collapse
Affiliation(s)
- Rachel Vistein
- Department of Biological Sciences, The Center for the Neural Basis of Cognition, Carnegie Mellon University, MI202, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
41
|
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities.
Collapse
Affiliation(s)
- Florian J. Sulzmaier
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - David D. Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
- Address correspondence to: David D. Schlaepfer, Ph.D., University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Dr., MC0803, La Jolla, CA 92093,
| |
Collapse
|
42
|
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2014; 31:65-75. [PMID: 25117005 DOI: 10.1016/j.semcancer.2014.07.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany.
| |
Collapse
|
43
|
Lin CW, Sun MS, Liao MY, Chung CH, Chi YH, Chiou LT, Yu J, Lou KL, Wu HC. Podocalyxin-like 1 promotes invadopodia formation and metastasis through activation of Rac1/Cdc42/cortactin signaling in breast cancer cells. Carcinogenesis 2014; 35:2425-35. [PMID: 24970760 DOI: 10.1093/carcin/bgu139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metastatic disease is the leading cause of cancer mortality. Identifying biomarkers and regulatory mechanisms is important toward developing diagnostic and therapeutic tools against metastatic cancer. In this study, we demonstrated that podocalyxin-like 1 (PODXL) is overexpressed in breast tumor cells and increased in lymph node metastatic cancer. Mechanistically, we found that the expression of PODXL was associated with cell motility and invasiveness. Suppression of PODXL in MDA-MB-231 cells reduced lamellipodia formation and focal adhesion kinase (FAK) and paxillin phosphorylation. PODXL knockdown reduced the formation of invadopodia, such as inhibiting the colocalization of F-actin with cortactin and suppressing phosphorylation of cortactin and neural Wiskott-Aldrich syndrome protein. Conversely, overexpression of PODXL in MCF7 cells induced F-actin/cortactin colocalization and enhanced invadopodia formation and activation. Invadopodia activity and tumor invasion in PODXL-knockdown cells are similar to that in cortactin-knockdown cells. We further found that the DTHL motif in PODXL is crucial for regulating cortactin phosphorylation and Rac1/Cdc42 activation. Inhibition of Rac1/Cdc42 impeded PODXL-mediated cortactin activation and FAK and paxillin phosphorylation. Moreover, inhibition of PODXL in MDA-MB-231 cells significantly suppressed tumor colonization in the lungs and distant metastases, similar to those in cortactin-knockdown cells. These findings show that overexpression of PODXL enhanced invadopodia formation and tumor metastasis by inducing Rac1/Cdc42/cortactin signaling network.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan,
| | - Min-Siou Sun
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and
| | - Mei-Ying Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chu-Hung Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Hsuan Chi
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Li-Tin Chiou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - John Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Lung Lou
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
44
|
Saitou T, Kajiwara K, Oneyama C, Suzuki T, Okada M. Roles of raft-anchored adaptor Cbp/PAG1 in spatial regulation of c-Src kinase. PLoS One 2014; 9:e93470. [PMID: 24675741 PMCID: PMC3968143 DOI: 10.1371/journal.pone.0093470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022] Open
Abstract
The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed.
Collapse
Affiliation(s)
- Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan
- * E-mail: (TS); (KK)
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail: (TS); (KK)
| | - Chitose Oneyama
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Suzuki
- Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Abstract
Increases in intracellular pH (pHi) occur upon integrin receptor binding to matrix proteins and in tumor cells. In this issue, Choi et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201308034) show that pHi increase activates FAK by causing deprotonation of histidine 58 in its FERM (band 4.1, ezrin, radixin, moesin) homology domain, which exposes a region important for FAK autophosphorylation. This model of FAK activation could contribute to motility of tumor cells by promoting focal adhesion turnover.
Collapse
Affiliation(s)
- Christine Lawson
- Department of Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | | |
Collapse
|
46
|
Cheng C, Ansari MM, Cooper JA, Gong X. EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 2013; 140:4237-45. [PMID: 24026120 DOI: 10.1242/dev.100727] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2(-/-) mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2(-/-) cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2(-/-) lenses. Src(-/-) equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Augusto C. Montezano
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rhian M. Touyz
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
48
|
Patel VB, Wang Z, Fan D, Zhabyeyev P, Basu R, Das SK, Wang W, Desaulniers J, Holland SM, Kassiri Z, Oudit GY. Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments. Circ Res 2013; 112:1542-56. [PMID: 23553616 DOI: 10.1161/circresaha.111.300299] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The classic phagocyte nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox) or Nox2) is expressed in the heart. Nox2 activation requires membrane translocation of the p47(phox) subunit and is linked to heart failure. We hypothesized that loss of p47(phox) subunit will result in decreased reactive oxygen species production and resistance to heart failure. OBJECTIVE To define the role of p47(phox) in pressure overload-induced biomechanical stress. METHODS AND RESULTS Eight-week-old male p47(phox) null (p47(phox) knockout [KO]), Nox2 null (Nox2KO), and wild-type mice were subjected to transverse aortic constriction-induced pressure overload. Contrary to our hypothesis, p47(phox)KO mice showed markedly worsened systolic dysfunction in response to pressure overload at 5 and 9 weeks after transverse aortic constriction compared with wild-type-transverse aortic constriction mice. We found that biomechanical stress upregulated N-cadherin and β-catenin in p47(phox)KO hearts but disrupted the actin filament cytoskeleton and reduced phosphorylation of focal adhesion kinase. p47(phox) interacts with cytosolic cortactin by coimmunoprecipitation and double immunofluorescence staining in murine and human hearts and translocated to the membrane on biomechanical stress where cortactin interacted with N-cadherin, resulting in adaptive cytoskeletal remodeling. However, p47(phox)KO hearts showed impaired interaction of cortactin with N-cadherin, resulting in loss of biomechanical stress-induced actin polymerization and cytoskeletal remodeling. In contrast, Nox2 does not interact with cortactin, and Nox2-deficient hearts were protected from pressure overload-induced adverse myocardial and intracellular cytoskeletal remodeling. CONCLUSIONS We showed a novel role of p47(phox) subunit beyond and independent of nicotinamide adenine dinucleotide phosphate oxidase activity as a regulator of cortactin and adaptive cytoskeletal remodeling, leading to a paradoxically enhanced susceptibility to biomechanical stress and heart failure.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton T6G 2S2, AB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|