1
|
Zhang J, Griffin J, Roy K, Hoffmann A, Zangle TA. Tracking of lineage mass via quantitative phase imaging and confinement in low refractive index microwells. LAB ON A CHIP 2024; 24:4440-4449. [PMID: 39190401 PMCID: PMC11412070 DOI: 10.1039/d4lc00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Measurements of cell lineages are central to a variety of fundamental biological questions, ranging from developmental to cancer biology. However, accurate lineage tracing requires nearly perfect cell tracking, which can be challenging due to cell motion during imaging. Here we demonstrate the integration of microfabrication, imaging, and image processing approaches to demonstrate a platform for cell lineage tracing. We use quantitative phase imaging (QPI), a label-free imaging approach that quantifies cell mass. This gives an additional parameter, cell mass, that can be used to improve tracking accuracy. We confine lineages within microwells fabricated to reduce cell adhesion to sidewalls made of a low refractive index polymer. This also allows the microwells themselves to serve as references for QPI, enabling measurement of cell mass even in confluent microwells. We demonstrate application of this approach to immortalized adherent and nonadherent cell lines as well as stimulated primary B cells cultured ex vivo. Overall, our approach enables lineage tracking, or measurement of lineage mass, in a platform that can be customized to varied cell types.
Collapse
Affiliation(s)
- Jingzhou Zhang
- Department of Chemical Engineering, University of Utah, USA.
| | - Justin Griffin
- Department of Chemical Engineering, University of Utah, USA.
| | - Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, USA.
- Huntsman Cancer Institute, University of Utah, USA
| |
Collapse
|
2
|
Kai F, Ou G, Tourdot RW, Stashko C, Gaietta G, Swift MF, Volkmann N, Long AF, Han Y, Huang HH, Northey JJ, Leidal AM, Viasnoff V, Bryant DM, Guo W, Wiita AP, Guo M, Dumont S, Hanein D, Radhakrishnan R, Weaver VM. ECM dimensionality tunes actin tension to modulate endoplasmic reticulum function and spheroid phenotypes of mammary epithelial cells. EMBO J 2022; 41:e109205. [PMID: 35880301 PMCID: PMC9434103 DOI: 10.15252/embj.2021109205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Guanqing Ou
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Richard W Tourdot
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Connor Stashko
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Niels Volkmann
- Scintillon InstituteSan DiegoCAUSA
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Alexandra F Long
- Tetrad Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
| | - Yulong Han
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Hector H Huang
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Jason J Northey
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Andrew M Leidal
- Department of PathologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Virgile Viasnoff
- Mechanobiology InstituteNational University of SingaporeSingapore CitySingapore
| | | | - Wei Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Arun P Wiita
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ming Guo
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Sophie Dumont
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Dorit Hanein
- Scintillon InstituteSan DiegoCAUSA
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Ravi Radhakrishnan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCAUSA
- UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
3
|
Nakatoh T, Osaki T, Tanimoto S, Jahan MGS, Kawakami T, Chihara K, Sakai N, Yumura S. Cell behaviors within a confined adhesive area fabricated using novel micropatterning methods. PLoS One 2022; 17:e0262632. [PMID: 35030217 PMCID: PMC8759655 DOI: 10.1371/journal.pone.0262632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 01/06/2023] Open
Abstract
In the field of cell and tissue engineering, there is an increasing demand for techniques to spatially control the adhesion of cells to substrates of desired sizes and shapes. Here, we describe two novel methods for fabricating a substrate for adhesion of cells to a defined area. In the first method, the surface of the coverslip or plastic dish was coated with Lipidure, a non-adhesive coating material, and air plasma was applied through a mask with holes, to confer adhesiveness to the surface. In the second method, after the surface of the coverslip was coated with gold by sputtering and then with Lipidure; the Lipidure coat was locally removed using a novel scanning laser ablation method. These methods efficiently confined cells within the adhesive area and enabled us to follow individual cells for a longer duration, compared to the currently available commercial substrates. By following single cells within the confined area, we were able to observe several new aspects of cell behavior in terms of cell division, cell–cell collisions, and cell collision with the boundary between adhesive and non-adhesive areas.
Collapse
Affiliation(s)
- Tsukasa Nakatoh
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | | | - Sohma Tanimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Md. Golam Sarowar Jahan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | | | | | - Nobuyuki Sakai
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- * E-mail:
| |
Collapse
|
4
|
Paredes-Redondo A, Harley P, Maniati E, Ryan D, Louzada S, Meng J, Kowala A, Fu B, Yang F, Liu P, Marino S, Pourquié O, Muntoni F, Wang J, Lieberam I, Lin YY. Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections. SCIENCE ADVANCES 2021; 7:eabi8787. [PMID: 34516770 PMCID: PMC8442926 DOI: 10.1126/sciadv.abi8787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/20/2021] [Indexed: 05/13/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by dystrophin gene mutations leading to skeletal muscle weakness and wasting. Dystrophin is enriched at the neuromuscular junction (NMJ), but how NMJ abnormalities contribute to DMD pathogenesis remains unclear. Here, we combine transcriptome analysis and modeling of DMD patient-derived neuromuscular circuits with CRISPR-corrected isogenic controls in compartmentalized microdevices. We show that NMJ volumes and optogenetic motor neuron–stimulated myofiber contraction are compromised in DMD neuromuscular circuits, which can be rescued by pharmacological inhibition of TGFβ signaling, an observation validated in a 96-well human neuromuscular circuit coculture assay. These beneficial effects are associated with normalization of dysregulated gene expression in DMD myogenic transcriptomes affecting NMJ assembly (e.g., MUSK) and axon guidance (e.g., SLIT2 and SLIT3). Our study provides a new human microphysiological model for investigating NMJ defects in DMD and assessing candidate drugs and suggests that enhancing neuromuscular connectivity may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Amaia Paredes-Redondo
- Centre for Genomics and Child Health, Blizard
Institute, Barts and the London School of Medicine and Dentistry, Queen Mary
University of London, 4 Newark Street, London E1 2AT, UK
- Stem Cell Laboratory, National Bowel Research Centre,
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen
Mary University of London, 2 Newark Street, London E1 2AT, UK
- Centre for Predictive in vitro Model, Queen Mary
University of London, Mile End Road, London E1 4NS, UK
| | - Peter Harley
- Centre for Stem Cells and Regenerative Medicine, MRC
Centre for Neurodevelopmental Disorders, and Centre for Developmental
Neurobiology, King’s College London, London, UK
| | - Eleni Maniati
- Centre for Cancer Genomics and Computational Biology,
Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Ryan
- Wellcome Sanger Institute, Wellcome Genome Campus,
Hinxton, Cambridge CB10 1SA, UK
| | - Sandra Louzada
- Wellcome Sanger Institute, Wellcome Genome Campus,
Hinxton, Cambridge CB10 1SA, UK
| | - Jinhong Meng
- UCL Great Ormond Street Institute of Child Health, 30
Guilford Street, London WC1N 1EH, UK
| | - Anna Kowala
- Centre for Genomics and Child Health, Blizard
Institute, Barts and the London School of Medicine and Dentistry, Queen Mary
University of London, 4 Newark Street, London E1 2AT, UK
- Stem Cell Laboratory, National Bowel Research Centre,
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen
Mary University of London, 2 Newark Street, London E1 2AT, UK
- Centre for Predictive in vitro Model, Queen Mary
University of London, Mile End Road, London E1 4NS, UK
| | - Beiyuan Fu
- Wellcome Sanger Institute, Wellcome Genome Campus,
Hinxton, Cambridge CB10 1SA, UK
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus,
Hinxton, Cambridge CB10 1SA, UK
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and
Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The
University of Hong Kong, Hong Kong, China
| | - Silvia Marino
- Centre for Genomics and Child Health, Blizard
Institute, Barts and the London School of Medicine and Dentistry, Queen Mary
University of London, 4 Newark Street, London E1 2AT, UK
| | - Olivier Pourquié
- Department of Genetics and Department of Pathology,
Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road,
Boston, MA, USA
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, 30
Guilford Street, London WC1N 1EH, UK
- NIHR Biomedical Research Centre, Great Ormond
Street Hospital, Great Ormond Street, London, UK
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology,
Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine, MRC
Centre for Neurodevelopmental Disorders, and Centre for Developmental
Neurobiology, King’s College London, London, UK
| | - Yung-Yao Lin
- Centre for Genomics and Child Health, Blizard
Institute, Barts and the London School of Medicine and Dentistry, Queen Mary
University of London, 4 Newark Street, London E1 2AT, UK
- Stem Cell Laboratory, National Bowel Research Centre,
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen
Mary University of London, 2 Newark Street, London E1 2AT, UK
- Centre for Predictive in vitro Model, Queen Mary
University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
5
|
Eto H, Franquelim HG, Heymann M, Schwille P. Membrane-coated 3D architectures for bottom-up synthetic biology. SOFT MATTER 2021; 17:5456-5466. [PMID: 34106121 DOI: 10.1039/d1sm00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.
Collapse
Affiliation(s)
- Hiromune Eto
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Henri G Franquelim
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Michael Heymann
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany. and Department of Intelligent Biointegrative Systems, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Petra Schwille
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
6
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|
7
|
Antibody Printing Technologies. Methods Mol Biol 2020. [PMID: 33237416 DOI: 10.1007/978-1-0716-1064-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Antibody microarrays are routinely employed in the lab and in the clinic for studying protein expression, protein-protein, and protein-drug interactions. The microarray format reduces the size scale at which biological and biochemical interactions occur, leading to large reductions in reagent consumption and handling times while increasing overall experimental throughput. Specifically, antibody microarrays, as a platform, offer a number of different advantages over traditional techniques in the areas of drug discovery and diagnostics. While a number of different techniques and approaches have been developed for creating micro and nanoscale antibody arrays, issues relating to sensitivity, cost, and reproducibility persist. The aim of this review is to highlight current state-of the-art techniques and approaches for creating antibody arrays by providing latest accounts of the field while discussing potential future directions.
Collapse
|
8
|
Zhang Y, De Mets R, Monzel C, Acharya V, Toh P, Chin JFL, Van Hul N, Ng IC, Yu H, Ng SS, Tamir Rashid S, Viasnoff V. Biomimetic niches reveal the minimal cues to trigger apical lumen formation in single hepatocytes. NATURE MATERIALS 2020; 19:1026-1035. [PMID: 32341512 DOI: 10.1038/s41563-020-0662-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The symmetry breaking of protein distribution and cytoskeleton organization is an essential aspect for the development of apicobasal polarity. In embryonic cells this process is largely cell autonomous, while differentiated epithelial cells collectively polarize during epithelium formation. Here, we demonstrate that the de novo polarization of mature hepatocytes does not require the synchronized development of apical poles on neighbouring cells. De novo polarization at the single-cell level by mere contact with the extracellular matrix and immobilized cadherin defining a polarizing axis. The creation of these single-cell liver hemi-canaliculi allows unprecedented imaging resolution and control and over the lumenogenesis process. We show that the density and localization of cadherins along the initial cell-cell contact act as key triggers of the reorganization from lateral to apical actin cortex. The minimal cues necessary to trigger the polarization of hepatocytes enable them to develop asymmetric lumens with ectopic epithelial cells originating from the kidney, breast or colon.
Collapse
Affiliation(s)
- Yue Zhang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Richard De Mets
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Pearlyn Toh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jasmine Fei Li Chin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Inn Chuan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - S Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Institute for Liver Studies, King's College Hospital, King's College London, London, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biological Science, National University of Singapore, Singapore, Singapore.
- Centre National de la Recherche Scientifique Unité Mixte Internationale, Singapore, Singapore.
| |
Collapse
|
9
|
How to orient cells in microcavities for high resolution imaging of cytokinesis and lumen formation. Methods Cell Biol 2020. [PMID: 32423649 DOI: 10.1016/bs.mcb.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Imaging dynamics of cellular morphogenesis with high spatial-temporal resolution in 3D is challenging, due to the low spatial resolution along the optical axis and photo-toxicity. However, some cellular structures are planar and hence 2D imaging should be sufficient, provided that the structure of interest can be oriented with respect to the optical axis of the microscope. Here, we report a 3D microfabrication method which positions and orients cell divisions very close to the microscope coverglass. We use this approach to study cytokinesis in fission yeasts and polarization to lumen formation in mammalian epithelial cells. We show that this method improves spatial resolution on range of common microscopies, including super-resolution STED. Altogether, this method could shed new lights on self-organization phenomena in single cells and 3D cell culture systems.
Collapse
|
10
|
Machado CB, Pluchon P, Harley P, Rigby M, Gonzalez Sabater V, Stevenson DC, Hynes S, Lowe A, Burrone J, Viasnoff V, Lieberam I. In Vitro Modelling of Nerve-Muscle Connectivity in a Compartmentalised Tissue Culture Device. ADVANCED BIOSYSTEMS 2019; 3:1800307. [PMID: 31428672 PMCID: PMC6699992 DOI: 10.1002/adbi.201800307] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Indexed: 01/02/2023]
Abstract
Motor neurons project axons from the hindbrain and spinal cord to muscle, where they induce myofibre contractions through neurotransmitter release at neuromuscular junctions. Studies of neuromuscular junction formation and homeostasis have been largely confined to in vivo models. In this study we have merged three powerful tools - pluripotent stem cells, optogenetics and microfabrication - and designed an open microdevice in which motor axons grow from a neural compartment containing embryonic stem cell-derived motor neurons and astrocytes through microchannels to form functional neuromuscular junctions with contractile myofibers in a separate compartment. Optogenetic entrainment of motor neurons in this reductionist neuromuscular circuit enhanced neuromuscular junction formation more than two-fold, mirroring the activity-dependence of synapse development in vivo. We incorporated an established motor neuron disease model into our system and found that coculture of motor neurons with SOD1G93A astrocytes resulted in denervation of the central compartment and diminished myofiber contractions, a phenotype which was rescued by the Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) inhibitor Necrostatin. This coculture system replicates key aspects of nerve-muscle connectivity in vivo and represents a rapid and scalable alternative to animal models of neuromuscular function and disease.
Collapse
Affiliation(s)
- Carolina Barcellos Machado
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| | - Perrine Pluchon
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK; Mechanobiology Institute, National
University of Singapore, Singapore 117411
| | - Peter Harley
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Victoria Gonzalez Sabater
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Stephanie Hynes
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Andrew Lowe
- Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore,
Singapore 117411
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| |
Collapse
|
11
|
Grenci G, Bertocchi C, Ravasio A. Integrating Microfabrication into Biological Investigations: the Benefits of Interdisciplinarity. MICROMACHINES 2019; 10:E252. [PMID: 30995747 PMCID: PMC6523848 DOI: 10.3390/mi10040252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
The advent of micro and nanotechnologies, such as microfabrication, have impacted scientific research and contributed to meaningful real-world applications, to a degree seen during historic technological revolutions. Some key areas benefitting from the invention and advancement of microfabrication platforms are those of biological and biomedical sciences. Modern therapeutic approaches, involving point-of-care, precision or personalized medicine, are transitioning from the experimental phase to becoming the standard of care. At the same time, biological research benefits from the contribution of microfluidics at every level from single cell to tissue engineering and organoids studies. The aim of this commentary is to describe, through proven examples, the interdisciplinary process used to develop novel biological technologies and to emphasize the role of technical knowledge in empowering researchers who are specialized in a niche area to look beyond and innovate.
Collapse
Affiliation(s)
- Gianluca Grenci
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.
- Biomedical Engineering Department, National University of Singapore, Singapore 117583, Singapore.
| | - Cristina Bertocchi
- Department of Physiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile.
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| |
Collapse
|
12
|
Jalal S, Shi S, Acharya V, Huang RYJ, Viasnoff V, Bershadsky AD, Tee YH. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci 2019; 132:jcs.220780. [PMID: 30787030 PMCID: PMC6432717 DOI: 10.1242/jcs.220780] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/24/2019] [Indexed: 12/23/2022] Open
Abstract
Actin cytoskeleton self-organization in two cell types, fibroblasts and epitheliocytes, was studied in cells confined to isotropic adhesive islands. In fibroblasts plated onto islands of optimal size, an initially circular actin pattern evolves into a radial pattern of actin bundles that undergo asymmetric chiral swirling before finally producing parallel linear stress fibers. Epitheliocytes, however, did not exhibit succession through all the actin patterns described above. Upon confinement, the actin cytoskeleton in non-keratinocyte epitheliocytes was arrested at the circular stage, while in keratinocytes it progressed as far as the radial pattern but still could not break symmetry. Epithelial–mesenchymal transition pushed actin cytoskeleton development from circular towards radial patterns but remained insufficient to cause chirality. Knockout of cytokeratins also did not promote actin chirality development in keratinocytes. Left–right asymmetric cytoskeleton swirling could, however, be induced in keratinocytes by treatment with small doses of the G-actin sequestering drug, latrunculin A in a transcription-independent manner. Both the nucleus and the cytokeratin network followed the induced chiral swirling. Development of chirality in keratinocytes was controlled by DIAPH1 (mDia1) and VASP, proteins involved in regulation of actin polymerization. This article has an associated First Person interview with the first author of the paper. Summary: Epitheliocytes cannot develop the F-actin patterns typically observed in fibroblasts, but can do so after treatments affecting actin polymerization. Regulators of actin polymerization, DIAPH1 and VASP, control this process.
Collapse
Affiliation(s)
- Salma Jalal
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shidong Shi
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Obstetrics & Gynaecology, National University Hospital, Singapore 119228.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre National Pour la Recherche Scientifique, Singapore 117411.,Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411 .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yee Han Tee
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| |
Collapse
|
13
|
Wong HC, Grenci G, Wu J, Viasnoff V, Low HY. Roll-to-Roll Fabrication of Residual-Layer-Free Micro/Nanoscale Membranes with Precise Pore Architectures and Tunable Surface Textures. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Him Cheng Wong
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Gianluca Grenci
- Mechano Biology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Biomedical Engineering Department, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 Singapore
| | - Jumiati Wu
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Virgile Viasnoff
- Mechano Biology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Bio Mechanics of Cellular Contacts, Centre National de la Recherche Scientifique, UMI 3639, Singapore 117411, Singapore
| | - Hong Yee Low
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
14
|
Khetani S, Mohammadi M, Nezhad AS. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnol Bioeng 2018; 115:2504-2529. [DOI: 10.1002/bit.26787] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Sultan Khetani
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| | - Mehdi Mohammadi
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
- Department of Biological Sciences; University of Calgary; Calgary Canada
| | - Amir Sanati Nezhad
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| |
Collapse
|
15
|
Stoecklin C, Yue Z, Chen WW, de Mets R, Fong E, Studer V, Viasnoff V. A New Approach to Design Artificial 3D Microniches with Combined Chemical, Topographical, and Rheological Cues. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Celine Stoecklin
- Mechanobiology Institute; 5A Engineering Drive 1 Singapore 117411 Singapore
| | - Zhang Yue
- Mechanobiology Institute; 5A Engineering Drive 1 Singapore 117411 Singapore
| | - Wilhelm W. Chen
- Mechanobiology Institute; 5A Engineering Drive 1 Singapore 117411 Singapore
- School of Materials Science and Engineering; Nanyang Technological University; N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Richard de Mets
- Mechanobiology Institute; 5A Engineering Drive 1 Singapore 117411 Singapore
| | - Eileen Fong
- School of Materials Science and Engineering; Nanyang Technological University; N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Vincent Studer
- CNRS; Interdisciplinary Institute for Neuroscience; UMR 5297 Bordeaux F-33000 France
| | - Virgile Viasnoff
- Mechanobiology Institute; 5A Engineering Drive 1 Singapore 117411 Singapore
- CNRS; UMI 3639 5A Engineering Drive 1 Singapore 117411 Singapore
- Department of Biological Sciences; National university of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| |
Collapse
|
16
|
Le-The H, Tibbe M, Loessberg-Zahl J, Palma do Carmo M, van der Helm M, Bomer J, van den Berg A, Leferink A, Segerink L, Eijkel J. Large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes. NANOSCALE 2018; 10:7711-7718. [PMID: 29658030 PMCID: PMC5944386 DOI: 10.1039/c7nr09658e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
Free-standing polydimethylsiloxane (PDMS) through-hole membranes have been studied extensively in recent years for chemical and biomedical applications. However, robust fabrication of such membranes with sub-μm through-holes, and at a sub-μm thickness over large areas is challenging. In this paper, we report a robust and simple method for large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes, combining soft-lithography with reactive plasma etching techniques. First, arrays of sub-μm photoresist (PR) columns were patterned on another spin-coated sacrificial PR layer, using conventional photolithography processes. Subsequently, a solution of PDMS : hexane at a 1 : 10 ratio was spin-coated over these fabricated arrays. The cured PDMS membrane was etched in a plasma mixture of sulfur hexafluoride (SF6) and oxygen (O2) to open the through-holes. This PDMS membrane can be smoothly released with a supporting ring by completely dissolving the sacrificial PR structures in acetone. Using this fabrication method, we demonstrated the fabrication of free-standing PDMS membranes at various sub-μm thicknesses down to 600 ± 20 nm, and nanometer-sized through-hole (810 ± 20 nm diameter) densities, over areas as large as 3 cm in diameter. Furthermore, we demonstrated the potential of the as-prepared membranes as cell-culture substrates for biomedical applications by culturing endothelial cells on these membranes in a Transwell-like set-up.
Collapse
Affiliation(s)
- Hai Le-The
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Martijn Tibbe
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Joshua Loessberg-Zahl
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Marciano Palma do Carmo
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Marinke van der Helm
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Johan Bomer
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Anne Leferink
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Loes Segerink
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| | - Jan Eijkel
- BIOS Lab-on-a-Chip Group , MESA + Institute for Nanotechnology , MIRA Institute for Biomedical Technology and Technical Medicine , Max Planck Center for Complex Fluid Dynamics , University of Twente , 7522 NB Enschede , The Netherlands .
| |
Collapse
|
17
|
Moeller J, Denisin AK, Sim JY, Wilson RE, Ribeiro AJS, Pruitt BL. Controlling cell shape on hydrogels using lift-off protein patterning. PLoS One 2018; 13:e0189901. [PMID: 29298336 PMCID: PMC5752030 DOI: 10.1371/journal.pone.0189901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Polyacrylamide gels functionalized with extracellular matrix proteins are commonly used as cell culture platforms to evaluate the combined effects of extracellular matrix composition, cell geometry and substrate rigidity on cell physiology. For this purpose, protein transfer onto the surface of polyacrylamide hydrogels must result in geometrically well-resolved micropatterns with homogeneous protein distribution. Yet the outcomes of micropatterning methods have not been pairwise evaluated against these criteria. We report a high-fidelity photoresist lift-off patterning method to pattern ECM proteins on polyacrylamide hydrogels with elastic moduli ranging from 5 to 25 kPa. We directly compare the protein transfer efficiency and pattern geometrical accuracy of this protocol to the widely used microcontact printing method. Lift-off patterning achieves higher protein transfer efficiency, increases pattern accuracy, increases pattern yield, and reduces variability of these factors within arrays of patterns as it bypasses the drying and transfer steps of microcontact printing. We demonstrate that lift-off patterned hydrogels successfully control cell size and shape and enable long-term imaging of actin intracellular structure and lamellipodia dynamics when we culture epithelial cells on these substrates.
Collapse
Affiliation(s)
- Jens Moeller
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Aleksandra K. Denisin
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Joo Yong Sim
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Robin E. Wilson
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Alexandre J. S. Ribeiro
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
18
|
Pontes B, Monzo P, Gole L, Le Roux AL, Kosmalska AJ, Tam ZY, Luo W, Kan S, Viasnoff V, Roca-Cusachs P, Tucker-Kellogg L, Gauthier NC. Membrane tension controls adhesion positioning at the leading edge of cells. J Cell Biol 2017; 216:2959-2977. [PMID: 28687667 PMCID: PMC5584154 DOI: 10.1083/jcb.201611117] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/04/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022] Open
Abstract
Pontes et al. show that plasma membrane mechanics exerts an upstream control during cell motility. Variations in plasma membrane tension orchestrate the behavior of the cell leading edge, with increase–decrease cycles in tension promoting adhesion row positioning. Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.
Collapse
Affiliation(s)
- Bruno Pontes
- Mechanobiology Institute, National University of Singapore, Singapore.,Laboratório de Pinças Óticas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pascale Monzo
- Mechanobiology Institute, National University of Singapore, Singapore.,Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM-FIRC), Milan, Italy
| | - Laurent Gole
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anita Joanna Kosmalska
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zhi Yang Tam
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Weiwei Luo
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Sophie Kan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore.,Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles Paristech, Paris, France
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Lisa Tucker-Kellogg
- Mechanobiology Institute, National University of Singapore, Singapore.,Centre for Computational Biology, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, Singapore .,Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM-FIRC), Milan, Italy
| |
Collapse
|
19
|
Hernández-Castro JA, Li K, Meunier A, Juncker D, Veres T. Fabrication of large-area polymer microfilter membranes and their application for particle and cell enrichment. LAB ON A CHIP 2017; 17:1960-1969. [PMID: 28443860 DOI: 10.1039/c6lc01525e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A vacuum assisted UV micro-molding (VAUM) process is proposed for the fabrication of freestanding and defect-free polymer membranes based on a UV-curable methacrylate polymer (MD 700). VAUM is a highly flexible and powerful method for fabricating low cost, robust, large-area membranes over 9 × 9 cm2 with pore sizes from 8 to 20 μm in diameter, 20 to 100 μm in thickness, high aspect ratio (the thickness of the polymer over the diameter of the hole is up to 15 : 1), high porosity, and a wide variety of geometrical characteristics. The fabricated freestanding membranes are flexible while mechanically robust enough for post manipulation and handling, which allows them to be cut and integrated as a plastic cartridge onto thermoplastic 3D microfluidic devices with single or double filtration stages. Very high particle capture efficiencies (≈98%) have been demonstrated in the microfluidic devices integrated with polymer membranes, even when the size of the beads is very close to the size of the pores of the microfilter. About 85% of the capture efficiency has been achieved in cancer cell trapping experiments, in which a breast cancer cell line (MDA-MB-231) spiked with phosphate-buffered saline buffer when the pore size of the filter is 8 μm and the device is operated at a flow rate of 0.1 mL min-1.
Collapse
|
20
|
Ruprecht V, Monzo P, Ravasio A, Yue Z, Makhija E, Strale PO, Gauthier N, Shivashankar GV, Studer V, Albiges-Rizo C, Viasnoff V. How cells respond to environmental cues - insights from bio-functionalized substrates. J Cell Sci 2016; 130:51-61. [PMID: 27856508 DOI: 10.1242/jcs.196162] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomimetic materials have long been the (he)art of bioengineering. They usually aim at mimicking in vivo conditions to allow in vitro culture, differentiation and expansion of cells. The past decade has witnessed a considerable amount of progress in soft lithography, bio-inspired micro-fabrication and biochemistry, allowing the design of sophisticated and physiologically relevant micro- and nano-environments. These systems now provide an exquisite toolbox with which we can control a large set of physicochemical environmental parameters that determine cell behavior. Bio-functionalized surfaces have evolved from simple protein-coated solid surfaces or cellular extracts into nano-textured 3D surfaces with controlled rheological and topographical properties. The mechanobiological molecular processes by which cells interact and sense their environment can now be unambiguously understood down to the single-molecule level. This Commentary highlights recent successful examples where bio-functionalized substrates have contributed in raising and answering new questions in the area of extracellular matrix sensing by cells, cell-cell adhesion and cell migration. The use, the availability, the impact and the challenges of such approaches in the field of biology are discussed.
Collapse
Affiliation(s)
- Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Andrea Ravasio
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Zhang Yue
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Ekta Makhija
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Pierre Olivier Strale
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
| | | | - G V Shivashankar
- IFOM, Via Adamello, 16, Milano 20139, Italy.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
| | - Corinne Albiges-Rizo
- INSERM, U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Institute Albert Bonniot, University Grenoble Alpes, La Tronche F-38700, France
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore .,CNRS UMI 3639, 5A Engineering Drive 1, 117411 Singapore
| |
Collapse
|
21
|
Single step neutravidin patterning: a lithographic approach for patterning proteins. Biomed Microdevices 2016; 18:29. [DOI: 10.1007/s10544-016-0053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Li Q, Zhang Y, Pluchon P, Robens J, Herr K, Mercade M, Thiery JP, Yu H, Viasnoff V. Extracellular matrix scaffolding guides lumen elongation by inducing anisotropic intercellular mechanical tension. Nat Cell Biol 2016; 18:311-8. [PMID: 26878396 DOI: 10.1038/ncb3310] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
The de novo formation of secretory lumens plays an important role during organogenesis. It involves the establishment of a cellular apical pole and the elongation of luminal cavities. The molecular parameters controlling cell polarization have been heavily scrutinized. In particular, signalling from the extracellular matrix (ECM) proved essential to the proper localization of the apical pole by directed protein transport. However, little is known about the regulation of the shape and the directional development of lumen into tubes. We demonstrate that the spatial scaffolding of cells by ECM can control tube shapes and can direct their elongation. We developed a minimal organ approach comprising of hepatocyte doublets cultured in artificial microniches to precisely control the spatial organization of cellular adhesions in three dimensions. This approach revealed a mechanism by which the spatial repartition of integrin-based adhesion can elicit an anisotropic intercellular mechanical stress guiding the osmotically driven elongation of lumens in the direction of minimal tension. This mechanical guidance accounts for the different morphologies of lumen in various microenvironmental conditions.
Collapse
Affiliation(s)
- Qiushi Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yue Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Perrine Pluchon
- Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| | - Jeffrey Robens
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Keira Herr
- Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Myriam Mercade
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, INSA, INRA, CNRS, 31077 Toulouse, France
| | - Jean-Paul Thiery
- Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597, Singapore.,Institute of Bioengineering and Nanotechnology (IBN), Agency for Science, Technology and Research, Singapore 138669, Singapore
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore.,Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore.,CNRS UMI3639, Singapore 117411, Singapore
| |
Collapse
|
23
|
Gao Y, Tian J, Wu J, Cao W, Zhou B, Shen R, Wen W. Digital microfluidic programmable stencil (dMPS) for protein and cell patterning. RSC Adv 2016. [DOI: 10.1039/c6ra17633j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patterning biomolecules and cells on substrates is usually a prerequisite for biological analysis and cell studies.
Collapse
Affiliation(s)
- Yibo Gao
- Environmental Science Programs
- Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
- Department of Physics
| | - Jingxuan Tian
- Department of Physics
- Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
| | - Jinbo Wu
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- PR China
| | - Wenbin Cao
- Department of Physics
- Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
| | - Bingpu Zhou
- Institute of Applied Physics and Materials Engineering
- Faculty of Science and Technology
- University of Macau
- Taipa
- PR China
| | - Rong Shen
- Institute of Physics
- Chinese Academy of Sciences
- Beijing
- PR China
| | - Weijia Wen
- Environmental Science Programs
- Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
- Department of Physics
| |
Collapse
|
24
|
Beardslee LA, Stolwijk J, Khaladj DA, Trebak M, Halman J, Torrejon KY, Niamsiri N, Bergkvist M. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness. J Biomed Mater Res B Appl Biomater 2015; 104:1192-201. [PMID: 26079689 DOI: 10.1002/jbm.b.33464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 04/18/2015] [Accepted: 05/17/2015] [Indexed: 11/10/2022]
Abstract
A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016.
Collapse
Affiliation(s)
- Luke A Beardslee
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Judith Stolwijk
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Dimitrius A Khaladj
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Mohamed Trebak
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Justin Halman
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Karen Y Torrejon
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Nuttawee Niamsiri
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Magnus Bergkvist
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| |
Collapse
|
25
|
Le S, Yao M, Chen J, Efremov AK, Azimi S, Yan J. Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies. Nucleic Acids Res 2015; 43:e113. [PMID: 26007651 PMCID: PMC4787821 DOI: 10.1093/nar/gkv554] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
Single-molecule manipulation technologies have been extensively applied to studies of the structures and interactions of DNA and proteins. An important aspect of such studies is to obtain the dynamics of interactions; however the initial binding is often difficult to obtain due to large mechanical perturbation during solution introduction. Here, we report a simple disturbance-free rapid solution exchange method for magnetic tweezers single-molecule manipulation experiments, which is achieved by tethering the molecules inside microwells (typical dimensions–diameter (D): 40–50 μm, height (H): 100 μm; H:D∼2:1). Our simulations and experiments show that the flow speed can be reduced by several orders of magnitude near the bottom of the microwells from that in the flow chamber, effectively eliminating the flow disturbance to molecules tethered in the microwells. We demonstrate a wide scope of applications of this method by measuring the force dependent DNA structural transitions in response to solution condition change, and polymerization dynamics of RecA on ssDNA/SSB-coated ssDNA/dsDNA of various tether lengths under constant forces, as well as the dynamics of vinculin binding to α-catenin at a constant force (< 5 pN) applied to the α-catenin protein.
Collapse
Affiliation(s)
- Shimin Le
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Jin Chen
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Sara Azimi
- Department of Physics, National University of Singapore, 117542, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore Department of Physics, National University of Singapore, 117542, Singapore Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
| |
Collapse
|
26
|
Rana K, Timmer BJ, Neeves KB. A combined microfluidic-microstencil method for patterning biomolecules and cells. BIOMICROFLUIDICS 2014; 8:056502. [PMID: 25332748 PMCID: PMC4191368 DOI: 10.1063/1.4896231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
Despite the myriad of soft lithography based micropatterning methods available to researchers, it is still challenging to define small features (10-100 μm) that are spaced far apart (1-10 mm). In this report, we describe a combined microfluidic-microstencil patterning method that can produce multifunctional substrates of small features, O(10 μm), with a large pitch, O(1 mm). In that, we fabricate microstencils using an UV curable polyurethane (Norland Optical Adhesive 81) with dense arrays of 10-100 μm holes. Overlaying arrays of microfluidic channels over these microstencils allow for the control of the spacing between features and the ability to pattern multiple substrates. We show that this method is capable of patterning soluble proteins, fibrillar insoluble collagen, liposomes, cells, and nanoparticles. We demonstrate the utility of the method by measuring platelet adhesion under flow to three adhesive proteins (insoluble fibrillar collagen, laminin, and reconstituted acid solubilized collagen fibers) in a single assay.
Collapse
Affiliation(s)
- Kuldeepsinh Rana
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden , Colorado 80401, USA
| | - Benjamin J Timmer
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden , Colorado 80401, USA
| | - Keith B Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden , Colorado 80401, USA
| |
Collapse
|
27
|
Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci U S A 2013; 110:11875-80. [PMID: 23821745 DOI: 10.1073/pnas.1301766110] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phagocytes clear the body of undesirable particles such as infectious agents and debris. To extend pseudopods over the surface of targeted particles during engulfment, cells must change shape through extensive membrane and cytoskeleton remodeling. We observed that pseudopod extension occurred in two phases. In the first phase, pseudopods extended rapidly, with actin polymerization pushing the plasma membrane forward. The second phase occurred once the membrane area from preexisting reservoirs was depleted, leading to increased membrane tension. Increased tension directly altered the small Rho GTPase Rac1, 3'-phosphoinositide, and cytoskeletal organization. Furthermore, it activated exocytosis of vesicles containing GPI-anchored proteins, increasing membrane area and phagocytosis efficiency for large particles. We thus propose that, during phagocytosis, membrane remodeling, cytoskeletal organization, and biochemical signaling are orchestrated by the mechanical signal of membrane tension. These results put a simple mechanical signal at the heart of understanding immunological responses.
Collapse
|
28
|
Vereshchagina E, Mc Glade D, Glynn M, Ducrée J. A hybrid microfluidic platform for cell-based assays via diffusive and convective trans-membrane perfusion. BIOMICROFLUIDICS 2013; 7:34101. [PMID: 24404021 PMCID: PMC3663865 DOI: 10.1063/1.4804250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/24/2013] [Indexed: 05/07/2023]
Abstract
We present a novel 3D hybrid assembly of a polymer microfluidic chip with polycarbonate track-etched membrane (PCTEM) enabling membrane-supported cell culture. Two chip designs have been developed to establish either diffusive or convective reagent delivery using the integrated PCTEM. While it is well suited to a range of cell-based assays, we specifically employ this platform for the screening of a common antitumor chemotoxic agent (mitomycin C - MMC) on the HL60 myeloid leukemia cell line. The toxic activity of MMC is based on the generation of severe DNA damage in the cells. Using either mode of operation, the HL60 cells were cultured on-chip before, during, and after exposure to MMC at concentrations ranging from 0 to 50 μM. Cell viability was analysed off-chip by the trypan blue dye exclusion assay. The results of the on-chip viability assay were found to be consistent with those obtained off-chip and indicated ca. 40% cell survival at MMC concentration of 50 μM. The catalogue of capabilities of the here described cell assay platform comprises of (i) the culturing of cells either under shear-free conditions or under induced through-membrane flows, (ii) the tight time control of the reagent exposure, (iii) the straightforward assembly of devices, (iv) the flexibility on the choice of the membrane, and, prospectively, (v) the amenability for large-scale parallelization.
Collapse
Affiliation(s)
- Elizaveta Vereshchagina
- School of Physical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Declan Mc Glade
- School of Physical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Macdara Glynn
- Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Jens Ducrée
- School of Physical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland ; Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|