1
|
Meyer NH, Kotnik N, Noubissi Nzeteu GA, van Kempen LC, Mastik M, Bockhorn M, Troja A. Unraveling the MicroRNA tapestry: exploring the molecular dynamics of locoregional recurrent rectal cancer. Front Oncol 2024; 14:1407217. [PMID: 39070144 PMCID: PMC11272531 DOI: 10.3389/fonc.2024.1407217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Colorectal cancer (CRC) ranks as the third most prevalent malignancy globally, with a concerning rise in incidence among young adults. Despite progress in understanding genetic predispositions and lifestyle risk factors, the intricate molecular mechanisms of CRC demand exploration. MicroRNAs (miRNAs) emerge as key regulators of gene expression and their deregulation in tumor cells play pivotal roles in cancer progression. Methods NanoString's nCounter technology was utilized to measure the expression of 827 cancer-related miRNAs in tumor tissue and adjacent non-involved normal colon tissue from five patients with locoregional CRC progression. These expression profiles were then compared to those from the primary colon adenocarcinoma (COAD) cohort in The Cancer Genome Atlas (TCGA). Results and discussion Intriguingly, 156 miRNAs showed a contrasting dysregulation pattern in reccurent tumor compared to their expression in the TCGA COAD cohort. This observation implies dynamic alterations in miRNA expression patterns throughout disease progression. Our exploratory study contributes to understanding the regulatory landscape of recurrent CRC, emphasizing the role of miRNAs in disease relapse. Notable findings include the prominence of let-7 miRNA family, dysregulation of key target genes, and dynamic changes in miRNA expression patterns during progression. Univariate Cox proportional hazard models highlighted miRNAs associated with adverse outcomes and potential protective factors. The study underscores the need for more extensive investigations into miRNA dynamics during tumor progression and the value of stage specific biomarkers for prognosis.
Collapse
Affiliation(s)
- N. Helge Meyer
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Nika Kotnik
- Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gaetan Aime Noubissi Nzeteu
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Mirjam Mastik
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maximilian Bockhorn
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Achim Troja
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| |
Collapse
|
2
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Messina S. The RAS oncogene in brain tumors and the involvement of let-7 microRNA. Mol Biol Rep 2024; 51:531. [PMID: 38637419 PMCID: PMC11026240 DOI: 10.1007/s11033-024-09439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
RAS oncogenes are master regulator genes in many cancers. In general, RAS-driven cancers have an oncogenic RAS mutation that promotes disease progression (colon, lung, pancreas). In contrast, brain tumors are not necessarily RAS-driven cancers because RAS mutations are rarely observed. In particular, glioblastomas (the most lethal brain tumor) do not appear to have dominant genetic mutations that are suitable for targeted therapy. Standard treatment for most brain tumors continues to focus on maximal surgical resection, radiotherapy and chemotherapy. Yet the convergence of genomic aberrations such as EGFR, PDGFR and NF1 (some of which are clinically effective) with activation of the RAS/MAPK cascade is still considered a key point in gliomagenesis, and KRAS is undoubtedly a driving gene in gliomagenesis in mice. In cancer, microRNAs (miRNA) are small, non-coding RNAs that regulate carcinogenesis. However, the functional consequences of aberrant miRNA expression in cancer are still poorly understood. let-7 encodes an intergenic miRNA that is classified as a tumour suppressor, at least in lung cancer. Let-7 suppresses a plethora of oncogenes such as RAS, HMGA, c-Myc, cyclin-D and thus suppresses cancer development, differentiation and progression. let-7 family members are direct regulators of certain RAS family genes by binding to the sequences in their 3'untranslated region (3'UTR). let-7 miRNA is involved in the malignant behaviour in vitro-proliferation, migration and invasion-of gliomas and stem-like glioma cells as well as in vivo models of glioblastoma multiforme (GBM) via KRAS inhibition. It also increases resistance to certain chemotherapeutic agents and radiotherapy in GBM. Although let-7 therapy is not yet established, this review updates the current state of knowledge on the contribution of miRNA let-7 in interaction with KRAS to the oncogenesis of brain tumours.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
4
|
Kogut S, Paculova H, Rodriguez P, Boyd J, Richman A, Palaria A, Schjerven H, Frietze S. Ikaros Regulates microRNA Networks in Acute Lymphoblastic Leukemia. EPIGENOMES 2022; 6:37. [PMID: 36278683 PMCID: PMC9624360 DOI: 10.3390/epigenomes6040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
The hematopoietic transcription factor Ikaros (IKZF1) regulates normal B cell development and functions as a tumor suppressor in precursor B cell acute lymphoblastic leukemia (B-ALL). MicroRNAs (miRNAs) are small regulatory RNAs that through post-transcriptional gene regulation play critical roles in intracellular processes including cell growth in cancer. However, the role of Ikaros in the regulation of miRNA expression in developing B cells is unknown. In this study, we examined the Ikaros-regulated miRNA targets using human IKZF1-mutated Ph+ B-ALL cell lines. Inducible expression of wild-type Ikaros (the Ik1 isoform) caused B-ALL growth arrest and exit from the cell cycle. Global miRNA expression analysis revealed a total of 31 miRNAs regulated by IK1, and ChIP-seq analysis showed that Ikaros bound to several Ik1-responsive miRNA genes. Examination of the prognostic significance of miRNA expression in B-ALL indicate that the IK1-regulated miRNAs hsa-miR-26b, hsa-miR-130b and hsa-miR-4649 are significantly associated with outcome in B-ALL. Our findings establish a potential regulatory circuit between the tumor-suppressor Ikaros and the oncogenic miRNA networks in IKZF1-mutated B-ALL. These results indicate that Ikaros regulates the expression of a subset of miRNAs, of which several may contribute to B-ALL growth.
Collapse
Affiliation(s)
- Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Princess Rodriguez
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Alyssa Richman
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Amrita Palaria
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- The University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
5
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
6
|
Ferneza S, Fetsych M, Shuliak R, Makukh H, Volodko N, Yarema R, Fetsych T. Clinical significance of microRNA-200 and let-7 families expression assessment in patients with ovarian cancer. Ecancermedicalscience 2021; 15:1249. [PMID: 34267805 PMCID: PMC8241451 DOI: 10.3332/ecancer.2021.1249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC) represents the most lethal malignancy in gynaecologic oncology practice and shows a high recurrence rate due to its early chemoresistance to first-line chemotherapy. Yet, timely selection of the correct treatment strategy is likely to prolong a patient's survival. MicroRNAs (miRNAs) are a class of short non-coding RNAs responsible for the expression of 30%-60% of human genes. In numerous studies, miRNAs have been used to provide the overall prognosis for patients and analyse the process's prevalence and responses to chemotherapy. In particular, miRNAs as markers for predicting the sensitivity of OC to platinum- and taxane-based chemotherapeutics can significantly improve the treatment efficacy. This article highlights two families of miRNAs: miR-200 and let-7, which are promising for further research on OC and its chemosensitivity.
Collapse
Affiliation(s)
- Severyn Ferneza
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Markiyan Fetsych
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Roman Shuliak
- Department of Microinvasive Surgery, Lviv State Regional Oncology Treatment and Diagnostic Center, Hasheka 2A str., Lviv 79000, Ukraine
| | - Halyna Makukh
- Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79000, Ukraine
| | - Natalia Volodko
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Roman Yarema
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Taras Fetsych
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| |
Collapse
|
7
|
Kuang Y, Xu H, Lu F, Meng J, Yi Y, Yang H, Hou H, Wei H, Su S. Inhibition of microRNA let-7b expression by KDM2B promotes cancer progression by targeting EZH2 in ovarian cancer. Cancer Sci 2021; 112:231-242. [PMID: 33091189 PMCID: PMC7780014 DOI: 10.1111/cas.14708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNA let-7b is a potent tumor suppressor and targets crucial oncogenes. Previous studies have shown that let-7b expression is suppressed in ovarian cancer; however, the regulatory mechanisms of let-7b in ovarian cancer are still not well defined. The cellular role and targets of let-7b in ovarian cancer remain elusive. In the present study, we showed that histone demethylase, KDM2B, directly suppressed let-7b expression by H3K36me2 demethylation. Moreover, let-7b inhibited EZH2 expression in ovarian cancer cells. Based on these results we know that let-7b antagonizes the enhancement of EZH2 expression caused by KDM2B overexpression, and its expression is negatively correlated with KDM2B and EZH2 expression. More importantly, proliferation, migration, and wound healing assays showed that let-7b inhibited ovarian cancer cell proliferation and migration in vitro. Additionally, let-7b overexpression neutralized KDM2B-promoted cell proliferation and migration. Furthermore, downregulation of let-7b increased the xenografted tumor volumes in nude mice that were transplanted with KDM2B-silenced cells. EZH2 silencing reversed the tumor growth enhancement mediated by inhibition of let-7b. Last, we show that let-7b expression is suppressed in ovarian carcinomas and its expression is negatively associated with the clinicopathological features of ovarian cancer, including histological type, histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, and lymph node metastatic status. In conclusion, in ovarian cancer, let-7b expression is epigenetically suppressed by high expression of KDM2B. The loss of let-7b upregulates the expression of EZH2, which promotes ovarian cancer growth in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Kuang
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hong Xu
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fangfang Lu
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jiahua Meng
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yeye Yi
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Huilan Yang
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hairui Hou
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hao Wei
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Shanheng Su
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
8
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
9
|
Rong J, Xu L, Hu Y, Liu F, Yu Y, Guo H, Ni X, Huang Y, Zhao L, Wang Z. Inhibition of let-7b-5p contributes to an anti-tumorigenic macrophage phenotype through the SOCS1/STAT pathway in prostate cancer. Cancer Cell Int 2020; 20:470. [PMID: 33005103 PMCID: PMC7526222 DOI: 10.1186/s12935-020-01563-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Background Dysfunction of microRNAs (miRNAs) is a major cause of aberrant expression of inflammatory cytokines and contributes to macrophage polarization. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity, whereas M2 macrophages display regulatory functions in tissue repair and remodeling and promote Th2 immune responses. Previous studies have shown that miRNA let-7 is associated with cellular differentiation and that the expression of let-7b-5p is significantly augmented in M2 macrophages. However, the mechanism by which let-7b-5p regulates macrophage differentiation in prostate cancer (PCa) remains largely unknown. Methods Human macrophages were induced by blood monocytes from healthy male donors, and M1 macrophages were polarized by stimulating them overnight with 100 ng/ml of lipopolysaccharides and 100 ng/ml of IFN-γ. Conditioned medium from PC-3 cells was used to induce prostatic macrophages (M-CMs) in vitro, and we then transfected let-7b-5p mimics or inhibitors into M1 and M-CMs for 72 h. The expression of cluster of differentiation 206 (CD206) in each group was detected with the High-Throughput Connotation of Imaging System. We used quantitative real-time polymerase chain reaction (qRT-PCR) to examine the expression of the inflammatory cytokines IL-10, IL-12, IL-13, TNF-alpha, and let-7b in macrophages. SOCS1 protein levels were evaluated by ELISA, and the phosphorylation difference in STAT family member proteins was analyzed using CST signal-pathway chip. Phagocytosis by macrophages and the effect of macrophages on the proliferation of prostate cancer PC-3 cells were evaluated with phagocytosis assay or the Cell Counting Kit-8 (CCK-8) and colony formation assay. The relationship between SOCS1 and let-7b-5p was confirmed with a dual-luciferase reporter. Results The expression of cluster of differentiation 206 (CD206, a M2-like macrophage surface molecule) was significantly increased in M1 macrophages treated with let-7b-5p mimics, while CD206 expression was decreased in M-CMs treated with let-7b-5p inhibitors. Overexpression or knockdown of let-7b-5p significantly affected the expression of inflammatory factors in macrophages-including interleukin 10 (IL-10), IL-12, IL-13, and tumor necrosis factor alpha. Let-7b-5p downregulated the expression of suppressor of cytokine signaling 1 (SOCS1) and increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1), STAT3, and STAT5a proteins in M-CMs and M1 macrophages with let-7b-5p mimics relative to the other groups. In addition, with the elevated expression of let-7b-5p, the phagocytosis by macrophages showed a commensurate and significant decrease. As a result, M-CMs treated with let-7b-5p inhibitors reduced the proliferation of PC-3 PCa cells. Conclusions Collectively, these data indicated that let-7b-5p may regulate M2 polarization through the SOCS1/STAT pathway and that reversal of M2 differentiation by let-7b-5p inhibitors enhanced macrophage phagocytosis, ultimately inhibiting the proliferation of PCa cells.
Collapse
Affiliation(s)
- Jiping Rong
- Jiangxi Academy of Medical Sciences, and Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Lu Xu
- Medical College of Nanchang University, Nanchang, China
| | - Yinying Hu
- Jiangxi Academy of Medical Sciences, and Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Fan Liu
- Medical College of Nanchang University, Nanchang, China
| | - Yanrong Yu
- Jiangxi Academy of Medical Sciences, and Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Hongyan Guo
- Jiangxi Academy of Medical Sciences, and Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xudong Ni
- Medical College of Nanchang University, Nanchang, China
| | - Yanqin Huang
- Jiangxi Academy of Medical Sciences, and Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Lin Zhao
- Jiangxi Academy of Medical Sciences, and Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Zhigang Wang
- Jiangxi Academy of Medical Sciences, and Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| |
Collapse
|
10
|
Phylogenetic Analysis to Explore the Association Between Anti-NMDA Receptor Encephalitis and Tumors Based on microRNA Biomarkers. Biomolecules 2019; 9:biom9100572. [PMID: 31590348 PMCID: PMC6843259 DOI: 10.3390/biom9100572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) is a small non-coding RNA that functions in the epigenetics control of gene expression, which can be used as a useful biomarker for diseases. Anti-NMDA receptor (anti-NMDAR) encephalitis is an acute autoimmune disorder. Some patients have been found to have tumors, specifically teratomas. This disease occurs more often in females than in males. Most of them have a significant recovery after tumor resection, which shows that the tumor may induce anti-NMDAR encephalitis. In this study, I review microRNA (miRNA) biomarkers that are associated with anti-NMDAR encephalitis and related tumors, respectively. To the best of my knowledge, there has not been any research in the literature investigating the relationship between anti-NMDAR encephalitis and tumors through their miRNA biomarkers. I adopt a phylogenetic analysis to plot the phylogenetic trees of their miRNA biomarkers. From the analyzed results, it may be concluded that (i) there is a relationship between these tumors and anti-NMDAR encephalitis, and (ii) this disease occurs more often in females than in males. This sheds light on this issue through miRNA intervention.
Collapse
|
11
|
Wang H, Unternaehrer JJ. Epithelial-mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Dev Dyn 2018; 248:10-20. [DOI: 10.1002/dvdy.24678] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| |
Collapse
|
12
|
Vahidian F, Mohammadi H, Ali-Hasanzadeh M, Derakhshani A, Mostaan M, Hemmatzadeh M, Baradaran B. MicroRNAs and breast cancer stem cells: Potential role in breast cancer therapy. J Cell Physiol 2018; 234:3294-3306. [PMID: 30362508 DOI: 10.1002/jcp.27246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.
Collapse
Affiliation(s)
- Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali-Hasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Afshin Derakhshani
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran.,Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Mostaan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad university, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Tran HV, Kiemer AK, Helms V. Copy Number Alterations in Tumor Genomes Deleting Antineoplastic Drug Targets Partially Compensated by Complementary Amplifications. Cancer Genomics Proteomics 2018; 15:365-378. [PMID: 30194077 PMCID: PMC6199575 DOI: 10.21873/cgp.20095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIM Genomic DNA copy number alterations (CNAs) are frequent in tumors and have been catalogued by The Cancer Genome Atlas project. Emergence of chemoresistance frequently renders drug therapies ineffective. MATERIALS AND METHODS We analyzed how CNAs recurrently found in the genomes of TCGA patients of thirty-one tumor types affect protein targets of antineoplastic (AN) agents. RESULTS CNA deletions more frequently affected the targets of AN agents than CNA amplifications. Interestingly, in seven tumors we observed signs of compensatory CNAs. For example, in glioblastoma multiforme, two target genes (FLT1, FLT3) of the experimental drug sorafenib were recurrently deleted, whereas another target (KDR) of sorafenib was recurrently amplified. In renal clear cell carcinoma, the target FLT1 of pazopanib, sunitinib, sorafenib, and axitinib was recurrently deleted, whereas FLT4 bound by the same drugs, was recurrently amplified. CONCLUSION Deletions of AN target proteins can be compensated by amplification of alternative targets.
Collapse
Affiliation(s)
- Ha Vu Tran
- Saarland University, Center for Bioinformatics, Saarbruecken, Germany
- Department of Computer Science, Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Alexandra K Kiemer
- Saarland University, Department of Pharmacy, Pharmaceutical Biology, Saarbruecken, Germany
| | - Volkhard Helms
- Saarland University, Center for Bioinformatics, Saarbruecken, Germany
| |
Collapse
|
14
|
Dürrbaum M, Kruse C, Nieken KJ, Habermann B, Storchová Z. The deregulated microRNAome contributes to the cellular response to aneuploidy. BMC Genomics 2018; 19:197. [PMID: 29703144 PMCID: PMC6389165 DOI: 10.1186/s12864-018-4556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress and triggers conserved transcriptome and proteome changes. RESULTS In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development, growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a subset of mRNAs that contain so called 5'TOP motif and we show that its upregulation in aneuploids provides resistance to starvation-induced shut down of ribosomal protein translation. CONCLUSIONS Our work suggests that the changes of the microRNAome contribute on one hand to the adverse effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting translation under adverse conditions.
Collapse
Affiliation(s)
- Milena Dürrbaum
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Christine Kruse
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - K. Julia Nieken
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Computational Biology Group, Developmental Biology Institute of Marseille (IBDM) UMR 7288, CNRS, Aix Marseille Université, 13288 Marseille, France
| | - Zuzana Storchová
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
- Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Strasse 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
15
|
Wang L, Li M, Zhou Y, Zhao Y. MicroRNA Let-7g Directly Targets Forkhead Box C2 (FOXC2) to Modulate Bone Metastasis in Breast Cancer. Open Med (Wars) 2017; 12:157-162. [PMID: 28894844 PMCID: PMC5588756 DOI: 10.1515/med-2017-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/08/2017] [Indexed: 12/24/2022] Open
Abstract
Aberrantly expressed microRNAs have been implicated in lots of cancers. Reduced amounts of let-7g have been found in breast cancer tissues. The function of let-7g in bone metastasis of breast cancer remains poorly understood. This study is to explore the significance of let-7g and its novel target gene in bone metastasis of breast cancer. The expression of let-7g or forkhead box C2 (FOXC2) was measured in human clinical breast cancer tissues with bone metastasis by using quantitative real-time Polymerase Chain Reaction (qRT-PCR). After transfection with let-7g or anti-let-7g in breast cancer cell linesMDA-MB-231or SK-BR3, qRT-PCR and Western blot were done to test the levels of let-7g and FOXC2. The effect of anti-let-7g and/ or FOXC2 RNA interference (RNAi) on cell migration in breast cancer cells was evaluated by using wound healing assay. Clinically, qRT-PCR showed that FOXC2 levels were higher in breast cancer tissues with bone metastasis than those in their noncancerous counterparts. Let-7g was showed to be negatively correlated with FOXC2 in human breast cancer samples with bone metastasis. We found that enforced expression of let-7g reduced levels of FOXC2 protein by using Western blot in MDA-MB-231 cells. Conversely, anti-let-7g enhanced levels of FOXC2 in SK-BR3 cells. In terms of function, anti-let-7g accelerated migration of SK-BR3 cells. Interestingly, FOXC2 RNAi abrogated anti-let-7g-mediated migration in breast cancer cells. Thus, we conclude that let-7g suppresses cell migration through targeting FOXC2 in breast cancer. Our finding provides a new perspective for understanding the mechanism of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical University, Xi'an710077, China
| | - Ming Li
- The Second Department of Geriatrics, Ninth Hospital of Xi'an, Xi'an710054, China
| | - Yongxin Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical University, Xi'an710077, China
| | - Yu Zhao
- Department of Orthopaedics, Ninth Hospital of Xi'an, Xi'an710054, China
| |
Collapse
|
16
|
Gong W, Zheng J, Liu X, Ma J, Liu Y, Xue Y. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. Oncotarget 2016; 7:62208-62223. [PMID: 27556696 PMCID: PMC5308721 DOI: 10.18632/oncotarget.11403] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023] Open
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA, promotes oncogenesis in various tumors, including human gliomas. Herein, we studied the expression and function of NEAT1 in glioma stem cells (GSCs). Quantitative real-time PCR demonstrated that NEAT1 was upregulated in GSCs. NEAT1 knockdown inhibited GSC cell proliferation, migration and invasion and promoted GSC apoptosis. A potential binding region between NEAT1 and microRNA let-7e was confirmed by dual-luciferase assays. Upregulation of NEAT1 reduced the expression of let-7e, and there was reciprocal repression between NEAT1 and let-7e in an Argonaute 2-dependent manner. Let-7e expression was lower expression in glioblastoma tissues and GSCs than in normal brain tissues and cells. Restoration of let-7e suppressed tumor function by inhibiting proliferation, migration and invasion while promoting apoptosis in GSCs. NEAT1 knockdown and let-7e overexpression both reduced NRAS protein expression. NRAS was identified as a direct target of let-7e and promoted oncogenesis in GSCs. As NEAT1 promoted oncogenesis by downregulating let-7e expression, both of these genes could be considered for application in glioma therapy.
Collapse
Affiliation(s)
- Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
17
|
|
18
|
Schober A, Weber C. Mechanisms of MicroRNAs in Atherosclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:583-616. [DOI: 10.1146/annurev-pathol-012615-044135] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| |
Collapse
|
19
|
Wang Z, Xu L, Hu Y, Huang Y, Zhang Y, Zheng X, Wang S, Wang Y, Yu Y, Zhang M, Yuan K, Min W. miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer. Sci Rep 2016; 6:25602. [PMID: 27157642 PMCID: PMC4860600 DOI: 10.1038/srep25602] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/18/2016] [Indexed: 11/09/2022] Open
Abstract
Macrophage polarization is a highly plastic physiological process that responds to a variety of environmental factors by changing macrophage phenotype and function. Tumor-associated macrophages (TAMs) are generally recognized as promoting tumor progression. As universal regulators, microRNAs (miRNAs) are functionally involved in numerous critical cellular processes including macrophage polarization. Let-7b, a miRNA, has differential expression patterns in inflamed tissues compared with healthy controls. However, whether and how miRNA let-7b regulates macrophage phenotype and function is unclear. In this report, we find that up-regulation of let-7b is characteristic of prostatic TAMs, and down-regulation of let-7b in TAMs leads to changes in expression profiles of inflammatory cytokines, such as IL-12, IL-23, IL-10 and TNF-α. As a result, TAMs treated with let-7b inhibitors reduce angiogenesis and prostate carcinoma (PCa) cell mobility. Let-7b may play a vital role in regulating macrophage polarization, thus modulating the prognosis of prostate cancer.
Collapse
Affiliation(s)
- Zhigang Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Lu Xu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yinying Hu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanqin Huang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yujuan Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xiufen Zheng
- Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Shanshan Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yifan Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanrong Yu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Meng Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Keng Yuan
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Weiping Min
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
- Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
20
|
Salilew-Wondim D, Ibrahim S, Gebremedhn S, Tesfaye D, Heppelmann M, Bollwein H, Pfarrer C, Tholen E, Neuhoff C, Schellander K, Hoelker M. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genomics 2016; 17:218. [PMID: 26965375 PMCID: PMC4785637 DOI: 10.1186/s12864-016-2513-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Background Clinical and subclinical endometritis are known to affect the fertility of dairy cows by inducing uterine inflammation. We hypothesized that clinical or subclinical endometritis could affect the fertility of cows by disturbing the molecular milieu of the uterine environment. Here we aimed to investigate the endometrial molecular signatures and pathways affected by clinical and subclinical endometritis. For this, Holstein Frisian cows at 42–60 days postpartum were classified as healthy (HE), subclinical endometritis (SE) or clinical endometritis (CE) based on veterinary clinical examination of the animals and histological evaluation the corresponding endometrial biopsies. Endometrial transcriptome and miRNome profile changes and associated molecular pathways induced by subclinical or clinical endometritis were then investigated using GeneChip® Bovine Genome Array and Exiqon microRNA PCR Human Panel arrays, respectively. The results were further validated in vitro using endometrial stromal and epithelial cells challenged with subclinical and clinical doses of lipopolysaccharide (LPS). Result Transcriptome profile analysis revealed altered expression level of 203 genes in CE compared to HE animals. Of these, 92 genes including PTHLH, INHBA, DAPL1 and SERPINA1 were significantly upregulated, whereas the expression level of 111 genes including MAOB, CXCR4, HSD11B and, BOLA, were significantly downregulated in CE compared to the HE animal group. However, in SE group, the expression patterns of only 28 genes were found to be significantly altered, of which 26 genes including PTHLH, INHBA, DAPL1, MAOB, CXCR4 and TGIF1 were common to the CE group. Gene annotation analysis indicated the immune system processes; G-protein coupled receptor signaling pathway and chemotaxis to be among the affected functions in endometritis animal groups. In addition, miRNA expression analysis indicated the dysregulation of 35 miRNAs including miR-608, miR-526b* and miR-1265 in CE animals and 102 miRNAs including let-7 family (let-7a, let-7c, let-7d, let-7d*, let-7e, let-7f, let-7i) in SE animals. Interestingly, 14 miRNAs including let-7e, miR-92b, miR-337-3p, let-7f and miR-145 were affected in both SE and CE animal groups. Further in vitro analysis of selected differentially expressed genes and miRNAs in endometrial stroma and epithelial cells challenged with SE and CE doses of LPS showed similar results to that of the array data generated using samples collected from SE and CE animals. Conclusion The results of this study unraveled endometrial transcriptome and miRNome profile alterations in cows affected by subclinical or clinical endometritis which may have a significant effect on the uterine homeostasis and uterine receptivity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2513-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany
| | - Sally Ibrahim
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany
| | - Samuel Gebremedhn
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany.
| | - Maike Heppelmann
- Clinic for Cattle, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | | | - Ernst Tholen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany
| | - Michael Hoelker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, 53115, Bonn, Germany
| |
Collapse
|
21
|
Abstract
Prostate cancer (PCa) is the most common male malignancy and the second highest cause of cancer-related mortality in United States. MicroRNAs (miRNAs) are small non-coding RNAs that represent a new mechanism to regulate mRNA post-transcriptionally. It is involved in diverse physiological and pathophysiological process. Dysregulation of miRNAs has been associated with the multistep progression of PCa from prostatic intraepithelial neoplasia (PIN), localized adenocarcinoma to metastatic castration-resistance PCa (CRPC). Identification of unique miRNA could provide new biomarkers for PCa and develop into therapeutic strategies. In this review, we will summarize a broad spectrum of both tumor suppressive and oncogenic miRNAs, and their mechanisms contribute to prostate carcinogenesis.
Collapse
Affiliation(s)
- U-Ging Lo
- Departments of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diane Yang
- Departments of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Departments of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Liu D, Deng Q, Sun L, Wang T, Yang Z, Chen H, Guo L, Liu Y, Ma Y, Guo N, Shi M. A Her2-let-7-β2-AR circuit affects prognosis in patients with Her2-positive breast cancer. BMC Cancer 2015; 15:832. [PMID: 26526356 PMCID: PMC4629406 DOI: 10.1186/s12885-015-1869-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022] Open
Abstract
Background Our previous studies show that β2-adrenergic receptor (β2-AR) is highly expressed in most Her2-overexpressing breast cancers. However, the mechanisms underlying upregulation of the β2-AR expression in Her2-overexpressing breast cancer cells are not fully understood. The clinical significance of the β2-AR overexpression in breast cancer is unclear. Methods Human breast cancer cells MCF-7 and MCF-7/Her2 were transfected with the let-7 mimics or inhibitors. The expression of β2-AR was analyzed by Western blot. The β2-AR status in primary and metastatic sites of breast cancer and the human breast cancer tissue microarrays containing 49 primary tumors and 50 metastatic lymph node tissues was analyzed by immunohistochemistry. The correlation of lymph node metastasis with the β2-AR level was determined in 59 primary tumor tissues from the patients with Her2-positive breast cancer. The clinical prognostic significance of the β2-AR overexpression in the patients with Her2-positive breast cancers was evaluated by a retrospective study. Results The let-7f level in Her2-overexpressing breast cancer cells SKBR3 and BT474 was significantly lower than that in MCF-7 cells, which express low level of Her2. Ectopic expression of Her2 in MCF-7 cells (MCF-7/Her2) represses the expression of microRNA let-7f, which is previously identified to regulate baseline β2-AR expression. The treatment with MEK1/2 inhibitors PD98059 or PD184352 effectively restored the let-7f level, suggesting that Her2-overexpression-mediated ERK constitutive activation inhibited let-7f, leading to the upregulation of the β2-AR expression. The transfection with the let-7f mimics markedly downregulated the β2-AR level, whereas the let-7 inhibitor significantly upregulated the β2-AR expression in both parental MCF-7 and MCF-7/Her2 cells. In addition, treatment of MCF-7/Her2 cells with isoproterenol resulted in a concentration-dependent reduction of the let-7f expression, demonstrating that the inhibitory effect of Her2 overexpression on let-7f can be reinforced by agonist-triggered β2-AR activation. We further demonstrate that high level of β2-AR associates with lymph node metastasis and poor outcome in the patients with Her2-positive breast cancer. Conclusions The mutual and reciprocal interaction between Her2, β2-AR, and let-7f may maintain a high level of β2-AR in breast cancer cells. Our data suggest that β2-AR may be a new useful biomarker for predicting prognosis in Her2-positive breast cancer and may also be a promising selective therapeutic target for the aggressive subtype of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1869-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Que Deng
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Limin Sun
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Tao Wang
- 307 Hospital of People's Liberation Army, Beijing, 100071, P.R. China.
| | - Zhengyan Yang
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Hongyu Chen
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Liang Guo
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Yanjun Liu
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, P.R. China.
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, P.R. China.
| | - Ning Guo
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Ming Shi
- Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| |
Collapse
|
23
|
A Single Let-7 MicroRNA Bypasses LIN28-Mediated Repression. Cell Rep 2015; 13:260-6. [PMID: 26440890 DOI: 10.1016/j.celrep.2015.08.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/12/2015] [Accepted: 08/31/2015] [Indexed: 01/09/2023] Open
Abstract
Let-7 microRNAs (miRNAs) are critical regulators of animal development, stem cell differentiation, glucose metabolism, and tumorigenesis. Mammalian genomes contain 12 let-7 isoforms that suppress expression of a common set of target mRNAs. LIN28 proteins selectively block let-7 biogenesis in undifferentiated cells and in cancer. The current model for coordinate let-7 repression involves the LIN28 cold-shock domain (CSD) binding the terminal loop and the two CCHC-type zinc fingers recognizing a GGAG sequence motif in precursor let-7 (pre-let-7) RNAs. Here, we perform a systematic analysis of all let-7 miRNAs and find that a single let-7 family member, human let-7a-3 (and its murine ortholog let-7c-2), escapes LIN28-mediated regulation. Mechanistically, we find that the pre-let-7c-2 loop precludes LIN28A binding and regulation. These findings refine the current model of let-7 regulation by LIN28 proteins and have important implications for understanding the LIN28/let-7 axis in development and disease.
Collapse
|
24
|
Cava C, Bertoli G, Castiglioni I. Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential. BMC SYSTEMS BIOLOGY 2015; 9:62. [PMID: 26391647 PMCID: PMC4578257 DOI: 10.1186/s12918-015-0211-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Development of human cancer can proceed through the accumulation of different genetic changes affecting the structure and function of the genome. Combined analyses of molecular data at multiple levels, such as DNA copy-number alteration, mRNA and miRNA expression, can clarify biological functions and pathways deregulated in cancer. The integrative methods that are used to investigate these data involve different fields, including biology, bioinformatics, and statistics. RESULTS These methodologies are presented in this review, and their implementation in breast cancer is discussed with a focus on integration strategies. We report current applications, recent studies and interesting results leading to the identification of candidate biomarkers for diagnosis, prognosis, and therapy in breast cancer by using both individual and combined analyses. CONCLUSION This review presents a state of art of the role of different technologies in breast cancer based on the integration of genetics and epigenetics, and shares some issues related to the new opportunities and challenges offered by the application of such integrative approaches.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| |
Collapse
|
25
|
The effects of lanthanum chloride on proliferation and apoptosis of cervical cancer cells: involvement of let-7a and miR-34a microRNAs. Biometals 2015. [PMID: 26209160 DOI: 10.1007/s10534-015-9872-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lanthanide elements have been documented to possess various biologic effects, and their compounds have been studied intensely for their anti-cancer potential. However, the underlying mechanisms remain largely unknown. In the present study, we propose that the levels of proliferation and apoptosis related microRNAs (miRNAs), let-7a and miR-34a, which mediate the apoptosis of cervical cancer cells, can be affected by the lanthanum ion. Our data showed that LaCl3 inhibited the proliferation and induced the apoptosis of cervical cancer cells both in vivo and in vitro by regulating let-7a, miR-34a and their downstream genes. This study provides novel evidence demonstrating that the anticancer mechanism of lanthanum chloride is partially attributed to miRNAs regulation and establishes an experimental basis for the clinical application of lanthanum chloride as an anti-cancer drug.
Collapse
|
26
|
Krakowsky RHE, Tollefsbol TO. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer. Front Nutr 2015; 2:16. [PMID: 26075205 PMCID: PMC4445322 DOI: 10.3389/fnut.2015.00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/02/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level.
Collapse
Affiliation(s)
- Rosanna H E Krakowsky
- Department of Biology, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Biochemistry, University of Leipzig , Leipzig , Germany
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Center for Healthy Ageing, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Cancer Center, University of Alabama at Birmingham , Birmingham, AL , USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
27
|
Ross SA, Davis CD. The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr 2015; 34:305-36. [PMID: 25033062 DOI: 10.1146/annurev-nutr-071813-105729] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the molecular mechanisms that inform how diet and dietary supplements influence health and disease is an active research area. One such mechanism concerns the role of diet in modulating the activity and function of microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that are involved in posttranscriptional gene silencing and have been shown to control gene expression in diverse biological processes including development, differentiation, cell proliferation, metabolism, and inflammation as well as in human diseases. Recent evidence described in this review highlights how dietary factors may influence cancer, cardiovascular disease, type 2 diabetes mellitus, obesity, and nonalcoholic fatty liver disease through modulation of miRNA expression. Additionally, circulating miRNAs are emerging as putative biomarkers of disease, susceptibility, and perhaps dietary exposure. Research needs to move beyond associations in cells and animals to understanding the direct effects of diet and dietary supplements on miRNA expression and function in human health and disease.
Collapse
Affiliation(s)
- Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892;
| | | |
Collapse
|
28
|
Chiu SC, Chung HY, Cho DY, Chan TM, Liu MC, Huang HM, Li TY, Lin JY, Chou PC, Fu RH, Yang WK, Harn HJ, Lin SZ. Therapeutic potential of microRNA let-7: tumor suppression or impeding normal stemness. Cell Transplant 2015; 23:459-69. [PMID: 24816444 DOI: 10.3727/096368914x678418] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The first microRNA, let-7, and its family were discovered in Caenorhabditis elegans and are functionally conserved from worms to humans in the regulation of embryonic development and stemness. The let-7 family has been shown to have an essential role in stem cell differentiation and tumor-suppressive activity. Deregulating expression of let-7 is commonly reported in many human cancers. Emerging evidence has accumulated and suggests that reestablishment of let-7 in tumor cells is a valuable therapeutic strategy. However, findings reach beyond tumor therapeutics and may impinge on stemness and differentiation of stem cells. In this review, we discuss the role of let-7 in development and differentiation of normal adult stem/progenitor cells and offer a viewpoint of the association between deregulated let-7 expression and tumorigenesis. The regulation of let-7 expression, cancer-relevant let-7 targets, and the application of let-7 are highlighted.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shishodia G, Verma G, Srivastava Y, Mehrotra R, Das BC, Bharti AC. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer 2014; 14:996. [PMID: 25539644 PMCID: PMC4364636 DOI: 10.1186/1471-2407-14-996] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/10/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aberrantly expressed and constitutively active STAT3 signaling plays a pivotal role in initiation and progression of human papillomavirus-induced cervical carcinogenesis. However, the underlying mechanism(s) responsible for pleiotropic effects of STAT3 signaling is poorly understood. In view of emerging regulatory role of microRNAs, Let-7a and miR-21 that may interact with STAT3 signaling and/or its downstream effectors, present study was designed in HPV16-positive cervical cancer cells to assess the functional contribution of these miRs in STAT3 signaling in cervical cancer. METHODS Functional silencing of STAT3 signaling and HPV16 oncoprotein expression in SiHa cells was done by STAT3-specific and 16 E6 siRNAs. Pharmacological intervention of STAT3 was done using specific inhibitors like curcumin and stattic. Loss-of-function study of miR-21 using miR-21 inhibitor and gain-of-function study of let-7a was done using let-7a mimic in SiHa cells. RESULTS Functional silencing of STAT3 signaling in SiHa cells by STAT3-specific siRNA resulted in a dose-dependent decrease in cellular miR-21 level. Pharmacological intervention of STAT3 using specific inhibitors like curcumin and Stattic that abrogated STAT3 activation resulted in loss of cellular miR-21 pool. Contrary to this, specific targeting of miR-21 using miR-21 inhibitor resulted in an increased level of PTEN, a negative regulator of STAT3, and reduced active pSTAT3 level. Besides miR-21, restoration of cellular Let-7a using chemically synthesized Let-7a mimic reduced overall STAT3 level. Abrogation of HPV oncoprotein E6 by specific siRNA resulted in increased Let-7a but loss of miR-21 and a correspondingly reduced pSTAT3/STAT3 and elevated the level of cellular PTEN. CONCLUSIONS Our results demonstrate existence of a functional loop involving Let-7a, STAT3 and miR-21 which were found potentially regulated by viral oncoprotein E6. IMPLICATIONS miR-21 and Let-7a along with STAT3 may prove useful targets for pharmacological intervention for management of cervical cancer.
Collapse
Affiliation(s)
- Gauri Shishodia
- />Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, I-7, Sector-39, Noida, Uttar Pradesh 201301 India
- />Dr. BR. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Gaurav Verma
- />Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, I-7, Sector-39, Noida, Uttar Pradesh 201301 India
| | - Yogesh Srivastava
- />Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, I-7, Sector-39, Noida, Uttar Pradesh 201301 India
| | - Ravi Mehrotra
- />Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, I-7, Sector-39, Noida, Uttar Pradesh 201301 India
| | - Bhudev Chandra Das
- />Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, I-7, Sector-39, Noida, Uttar Pradesh 201301 India
- />Dr. BR. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- />Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, I-7, Sector-39, Noida, Uttar Pradesh 201301 India
| |
Collapse
|
30
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
31
|
The mystery of let-7d - a small RNA with great power. Contemp Oncol (Pozn) 2014; 18:293-301. [PMID: 25477749 PMCID: PMC4248056 DOI: 10.5114/wo.2014.44467] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/16/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
miRNAs belong to a class of small non-coding RNAs which can modulate gene expression. Disturbances in their expression and function may cause cancer formation, progression and cell response to various types of stress. The let-7 family is one of the most studied groups of miRNAs. The family contains 13 members with similar sequences and a wide spectrum of target genes. In this paper, we mostly focus on one member of the family – let-7d. This miRNA is dysregulated in many types of cancers. It can be over- or down-expressed, and it acts as a tumor suppressor or oncogene. It regulates various genes such as LIN28, C-MYC, K-RAS, HMGA2 and IMP-1. Moreover, let-7d has a significant impact on epithelial-to-mesenchymal transition (EMT) and formation of cancer initiating cells which are resistant to irradiation and chemical exposure and responsible for cancer metastasis. Let-7d can serve as a prognostic and predictive marker for personalization of the treatment. Let-7d is a small RNA with great power, but in different cell genetic backgrounds it acts in different ways, which makes this molecule still mysterious.
Collapse
|
32
|
Kang W, Tong JHM, Lung RWM, Dong Y, Yang W, Pan Y, Lau KM, Yu J, Cheng AS, To KF. let-7b/g silencing activates AKT signaling to promote gastric carcinogenesis. J Transl Med 2014; 12:281. [PMID: 25288334 PMCID: PMC4196013 DOI: 10.1186/s12967-014-0281-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant AKT activation contributes to gastric cancer cell survival and chemotherapy resistance, however its regulation is poorly understood. microRNAs have been established to be important regulators in gastric carcinogenesis. Here, we showed the functional role and putative target of let-7b and let-7g (let-7b/g) in gastric carcinogenesis. Methods The expression of let-7b/g in gastric cancer cell lines and primary tumors were evaluated by miRNA qRT-PCR. The putative target gene of let-7b/g was explored by TargetScan followed by further validation. Functional analyses including MTT proliferation, monolayer colony formation, cell invasion assays and in vivo study were performed in both ectopic expression and knockdown approaches. Results let-7b/g was found down-regulated in gastric cancer and its downregulation was associated with poor survival and correlated with lymph node metastasis. let-7b/g inhibited AKT2 expression by directly binding to its 3’UTR, reduced p-AKT (S473) activation and suppressed expression of the downstream effector pS6. AKT2 mRNA expression showed negative correlation with the expression of let-7b/g in primary tumors. Short interfering RNA (siRNA) mediated knockdown of AKT2 phenocopied the tumor-suppressive effects of let-7b/g. Moreover, AKT2 re-expression partly abrogated the growth-inhibitory effect of let-7b/g. Conclusion In conclusion, our findings reveal decreased let-7b/g contributes to aberrant AKT activation in gastric tumorigenesis and provide a potential therapeutic strategy for gastric cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0281-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
33
|
Kan CWS, Howell VM, Hahn MA, Marsh DJ. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer. Genes Chromosomes Cancer 2014; 54:1-19. [PMID: 25280227 DOI: 10.1002/gcc.22221] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer death in women worldwide. Serous epithelial ovarian cancer (SEOC) is the most common and aggressive histological subtype. Widespread genomic alterations go hand-in-hand with aberrant DNA damage signaling and are a hallmark of high-grade SEOC. MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that are nonrandomly distributed in the genome. They are frequently located in chromosomal regions susceptible to copy number variation (CNV) associated with malignancy that can influence their expression. Widespread changes in miRNA expression have been reported in multiple cancer types including ovarian cancer. This review examines CNV and single nucleotide polymorphisms, two common types of genomic alterations that occur in ovarian cancer, in the context of their influence on the expression of miRNA and the ability of miRNA to bind to and regulate their target genes. This includes genes encoding proteins involved in DNA repair and the maintenance of genomic stability. Improved understanding of mechanisms of miRNA dysregulation and the role of miRNA in ovarian cancer will provide further insight into the pathogenesis and treatment of this disease.
Collapse
Affiliation(s)
- Casina W S Kan
- Hormones and Cancer Group, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
| | | | | | | |
Collapse
|
34
|
Veigaard C, Kjeldsen E. Exploring the genome-wide relation between copy number status and microRNA expression. Genomics 2014; 104:271-8. [PMID: 25124499 DOI: 10.1016/j.ygeno.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 12/19/2022]
Abstract
The deregulation of miRNAs has been associated with several different cancer types. Deregulation occurs in several ways, but generally little is known about the basis for the distorted expression of miRNAs. We investigated the relation between copy number status and miRNA expression at the genome-wide level using cytogenetic and array-based methods to characterize genomic aberrations in hematopoietic cell lines. For the same cell lines, we obtained global miRNA expression profiles, and analyzed the genome-wide correlation using the Spearman's rank test. This analysis showed that the expression of only a two miRNAs (miR-324-5p encoded by MIR324 at 17p13.1 and miR-660 encoded by MIR660 at Xp11.23) was influenced by copy number status. Our data imply that no direct relation between copy number status and miRNA expression exists in the investigated cell lines.
Collapse
Affiliation(s)
- Christopher Veigaard
- Department of Hematology, Aarhus University Hospital, Aarhus University, 8000 Aarhus C, Denmark
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
35
|
Joosse SA, Müller V, Steinbach B, Pantel K, Schwarzenbach H. Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases. Br J Cancer 2014; 111:909-17. [PMID: 24983365 PMCID: PMC4150270 DOI: 10.1038/bjc.2014.360] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MAGE-A (melanoma-associated antigen-A) are promising targets for specific immunotherapy and their expression may be induced by the epigenetic factor BORIS. METHODS To determine their relevance for breast cancer, we quantified the levels of MAGE-A1, -A2, -A3, -A12 and BORIS mRNA, as well as microRNAs let-7b and miR-202 in pre- and postoperative serum of 102 and 34 breast cancer patients, respectively, and in serum of 26 patients with benign breast diseases and 37 healthy women by real-time PCR. The mean follow-up time of the cancer patients was 6.2 years. RESULTS The serum levels of MAGE-A and BORIS mRNA, as well as let-7b were significantly higher in patients with invasive carcinomas than in patients with benign breast diseases or healthy women (P<0.001), whereas the levels of miR-202 were elevated in both patient cohorts (P<0.001). In uni- and multivariate analyses, high levels of miR-202 significantly correlated with poor overall survival (P=0.0001). Transfection of breast cancer cells with synthetic microRNAs and their inhibitors showed that let-7b and miR-202 did not affect the protein expression of MAGE-A1. CONCLUSIONS Based on their cancer-specific increase in breast cancer patients, circulating MAGE-A and BORIS mRNAs may be further explored for early detection of breast cancer and monitoring of MAGE-directed immunotherapies. Moreover, serum miR-202 is associated with prognosis.
Collapse
Affiliation(s)
- S A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - V Müller
- Clinic of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B Steinbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Gadducci A, Sergiampietri C, Lanfredini N, Guiggi I. Micro-RNAs and ovarian cancer: the state of art and perspectives of clinical research. Gynecol Endocrinol 2014; 30:266-71. [PMID: 24479883 DOI: 10.3109/09513590.2013.871525] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dysregulation of microRNA (mi-RNA) expression plays a major role in the development and progression of most human malignancies. Members of the miR-200 family, miR-182, miR-214 and miR-221 are frequently up-regulated, whereas miR-100, let-7i, miR-199a, miR-125b, mir-145 and miR-335 are often down-regulated in ovarian cancer compared with normal ovarian tissue. Most mi-RNA signatures are overlapping in different tumor histotypes but some mi-RNAs seem to be histotype specific. For instance, the endometrioid type shares with the serous and clear cell types the up-regulation of miR-200 family members, but also presents over-expression of miR-21, miR-202 and miR-205. Clear cell carcinoma has a significantly higher expression of miR-30a and miR-30a*, whereas mucinous histotype has elevated levels of miR-192/194. In vitro and in vivo investigations have shown that several mi-RNAs can modulate the sensitivity of ovarian cancer to platinum and taxane, and clinical studies have suggested that mi-RNA profiling may predict the outcome of patients with this malignancy. Some mi-RNAs could be used as biomarkers to identify patients that might benefit from the addition of molecularly targeted agents (i.e. anti-angiogenic agents, MET inhibitors and poly(ADP-ribose) polymerase (PARP) inhibitors) to standard chemotherapy. Moreover, mi-RNAs could represent potential targets for the development of novel therapies.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa , Pisa , Italy
| | | | | | | |
Collapse
|
37
|
Zhang Z, Huang L, Yu Z, Chen X, Yang D, Zhan P, Dai M, Huang S, Han Z, Cao K. Let-7a functions as a tumor suppressor in Ewing's sarcoma cell lines partly by targeting cyclin-dependent kinase 6. DNA Cell Biol 2014; 33:136-147. [PMID: 24383407 PMCID: PMC3942682 DOI: 10.1089/dna.2013.2179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs play an important role in the development and progression of Ewing's sarcoma (ES). Especially, the expression of let-7a has been reported to be significantly downregulated in various cancers, and can affect the initiation and maintenance of tumor progression. However, the relative effects of let-7a on ES cells and relative mechanisms are largely unknown. In this study, we identified the underexpression of let-7a in human ES cells comparing with the human mesenchymal stem cells. Then, we sought to compensate for its loss through exogenous transfection with let-7a mimic into ES cell lines A673 and SK-ES-1. Restored let-7a expression inhibited cell proliferation, migration, as well as invasion; arrested cell cycle progression; and induced cell apoptosis of both cell lines. Moreover, bioinformatic prediction suggested that cyclin-dependent kinase 6 (CDK6), which is overexpressed and functions as an oncoprotein in ES cells, is a putative target gene of let-7a. Using mRNA and protein expression analysis and luciferase assays, we further identified the target role of CDK6. Finally, we found that restored CDK6 expression in ES cells that had been treated with let-7a mimic before could partly dampen let-7a-mediated tumor suppression. Taken together, our results showed that let-7a acted as a tumor suppressor in ES by targeting CDK6, and it may provide novel diagnostic and therapeutic options for human Ewing sarcoma clinical operation in future.
Collapse
Affiliation(s)
- Zhongzu Zhang
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Lu Huang
- The Department of Child Health Care, Jiangxi Maternal and Child Health Hospital, Nanchang, People's Republic of China
| | - Zhiming Yu
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Xiang Chen
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Dong Yang
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Ping Zhan
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Min Dai
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Shanhu Huang
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Zhimin Han
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Kai Cao
- The Department of Orthopedic Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
38
|
Patel K, Kollory A, Takashima A, Sarkar S, Faller DV, Ghosh SK. MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett 2014; 347:54-64. [PMID: 24491408 DOI: 10.1016/j.canlet.2014.01.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/25/2013] [Accepted: 01/22/2014] [Indexed: 12/18/2022]
Abstract
Although dispensable for normal pancreatic function, STAT3 signaling is frequently activated in pancreatic cancers. Consistent downregulation of expression of microRNA let-7 is also characteristic of pancreatic ductal adenocarcinoma (PDAC) biopsy specimens. We demonstrate in this study that re-expression of let-7 in poorly-differentiated PDAC cell lines reduced phosphorylation/activation of STAT3 and its downstream signaling events and reduced the growth and migration of PDAC cells. Let-7 re-expression did not repress expression of STAT3 protein or its activator cytokine interleukin 6 (IL-6). However, let-7 re-expression enhanced cytoplasmic expression of suppressor of cytokine signaling 3 (SOCS3), which blocks STAT3 activation by JAK2. Our study thus identified a mechanism by which STAT3 signaling can be inhibited in pancreatic cancer cells by modifying let-7 expression.
Collapse
Affiliation(s)
- Kripa Patel
- Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Anita Kollory
- Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Asami Takashima
- Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Sibaji Sarkar
- Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Douglas V Faller
- Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Sajal K Ghosh
- Cancer Center, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
39
|
Zhang K, Gao H, Wu X, Wang J, Zhou W, Sun G, Wang J, Wang Y, Mu B, Kim C, Chu P, Ho DM, Ann DK, Wong TT, Yen Y. Frequent overexpression of HMGA2 in human atypical teratoid/rhabdoid tumor and its correlation with let-7a3/let-7b miRNA. Clin Cancer Res 2014; 20:1179-89. [PMID: 24423609 DOI: 10.1158/1078-0432.ccr-13-1452] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive pediatric malignancies characterized by biallelic inactivation of the SMARCB1 tumor suppressor gene. We searched for novel genomic aberrations by investigating the copy number and expression alterations of let-7a3/let-7b microRNA (miRNA) and correlated these with expression of high-mobility group AT-hook 2 (HMGA2) oncoprotein, a target of let-7 miRNA family, in 18 AT/RT samples to elucidate potential roles of HMGA2 in the pathogenesis of AT/RT. EXPERIMENTAL DESIGN Genomic aberrations, let-7a3/let-7b miRNA and HMGA2 expression in AT/RT tissues were identified using quantitative PCR, reverse transcription PCR (RT-PCR), and immunohistochemistry. The impact of let-7b miRNA on HMGA2 expression and the malignant potential of human rhabdoid tumor cell G401 (SMARCB1(-/-)) were investigated by antisense inhibition and ectopic overexpression studies. RESULTS The copy number of let-7a3/let-7b miRNA was substantially decreased in 4 of 11 AT/RT samples. A significantly inverse correlation between let-7a3/let-7b miRNA expression and HMGA2 mRNA expression was observed in AT/RT tissues (R = -0.34; P < 0.05). Immunohistochemistry analysis demonstrated that HMGA2 was highly overexpressed in 83.3% (15 of 18) of AT/RT tissues. Restoration of let-7 miRNA or knockdown of HMGA2 expression significantly suppressed proliferation and colony formation, and almost abolished the invasive potential of G401 cells. CONCLUSION Reduction of let-7a3/let-7b miRNA may be one of mechanisms leading to overexpression of HMGA2 in AT/RT tissues. HMGA2 oncoprotein plays critical roles in the pathogenesis of AT/RT development; and reconstitution of let-7 miRNA or knockdown of HMGA2 oncoprotein may provide a novel therapeutic strategy for the treatment of patients with AT/RT.
Collapse
Affiliation(s)
- Keqiang Zhang
- Authors' Affiliations: Department of Molecular Pharmacology; Solexa Core Lab; Division of Information Sciences, Department of Molecular Medicine; Department of Pathology; Translational Research Laboratory, Beckman Research Institute, City of Hope National Medical Center, Duarte, California; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital; Pediatric Neurosurgery, Department of Surgery, Cheng Hsin General Hospital; and Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri M, Procopio AD, Franceschi C. MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 2013; 12:1056-68. [PMID: 23688930 DOI: 10.1016/j.arr.2013.05.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental data demonstrate a strong correlation between age-related chronic inflammation (inflamm-aging) and cancer development. However, a comprehensive approach is needed to clarify the underlying molecular mechanisms. Chronic inflammation has mainly been attributed to continuous immune cells activation, but the cellular senescence process, which may involve acquisition of a senescence-associated secretory phenotype (SASP), can be another important contributor, especially in the elderly. MicroRNAs (miRs), a class of molecules involved in gene expression regulation, are emerging as modulators of some pathways, including NF-κB, mTOR, sirtuins, TGF-β and Wnt, that may be related to inflammation, cellular senescence and age-related diseases, cancer included. Interestingly, cancer development is largely avoided or delayed in centenarians, where changes in some miRs are found in plasma and leukocytes. We identified miRs that can be considered as senescence-associated (SA-miRs), inflammation-associated (inflamma-miRs) and cancer-associated (onco-miRs). Here we review recent findings concerning three of them, miR-21, -126 and -146a, which target mRNAs belonging to the NF-κB pathway; we discuss their ability to link cellular senescence, inflamm-aging and cancer and their changes in centenarians, and provide an update on the possibility of using miRs to block accumulation of senescent cells to prevent formation of a microenvironment favoring cancer development and progression.
Collapse
|
41
|
Tang Z, Ow GS, Thiery JP, Ivshina AV, Kuznetsov VA. Meta-analysis of transcriptome reveals let-7b as an unfavorable prognostic biomarker and predicts molecular and clinical subclasses in high-grade serous ovarian carcinoma. Int J Cancer 2013; 134:306-18. [PMID: 23825028 DOI: 10.1002/ijc.28371] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/07/2013] [Accepted: 06/18/2013] [Indexed: 01/28/2023]
Abstract
High-grade serous ovarian carcinoma (HG-SOC) is a heterogeneous, poorly classified, lethal disease that frequently exhibits altered expressions of microRNAs. Let-7 family members are often reported as tumor suppressors; nonetheless, clinicopathological functions and prognostic values of individual let-7 family members have not been addressed in HG-SOC. In our work, we performed an integrative study to investigate the potential roles, clinicopathological functions and prognostic values of let-7 miRNA family in HG-SOC. Using microarray and clinical data of 1,170 HG-SOC patients, we developed novel survival prediction and system biology methods to analyze prognostic values and functional associations of let-7 miRNAs with global transcriptome and clinicopathological factors. We demonstrated that individual let-7 members exhibit diverse evolutionary history and distinct regulatory characteristics. Statistical tests and network analysis suggest that let-7b could act as a global synergistic interactor and master regulator controlling hundreds of protein-coding genes. The elevated expression of let-7b is associated with poor survival rates, which suggests an unfavorable role of let-7b in treatment response for HG-SOC patients. A novel let-7b-defined 36-gene prognostic survival signature outperforms many clinicopathological parameters, and stratifies HG-SOC patients into three high-confidence, reproducible, clinical subclasses: low-, intermediate- and high-risk, with 5-year overall survival rates of 56-71%, 12-29% and 0-10%, respectively. Furthermore, the high-risk and low-risk subclasses exhibit strong mesenchymal and proliferative tumor phenotypes concordant with resistance and sensitivity to primary chemotherapy. Our results have led to identification of promising prognostic markers of HG-SOC, which could provide a rationale for genetic-based stratification of patients and optimization of treatment regimes.
Collapse
|
42
|
The role of microRNAs in breast cancer stem cells. Int J Mol Sci 2013; 14:14712-23. [PMID: 23860207 PMCID: PMC3742269 DOI: 10.3390/ijms140714712] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022] Open
Abstract
The concept of the existence of a subset of cancer cells with stem cell-like properties, which are thought to play a significant role in tumor formation, metastasis, resistance to anticancer therapies and cancer recurrence, has gained tremendous attraction within the last decade. These cancer stem cells (CSCs) are relatively rare and have been described by different molecular markers and cellular features in different types of cancers. Ten years ago, a novel class of molecules, small non-protein-coding RNAs, was found to be involved in carcinogenesis. These small RNAs, which are called microRNAs (miRNAs), act as endogenous suppressors of gene expression that exert their effect by binding to the 3′-untranslated region (UTR) of large target messenger RNAs (mRNAs). MicroRNAs trigger either translational repression or mRNA cleavage of target mRNAs. Some studies have shown that putative breast cancer stem cells (BCSCs) exhibit a distinct miRNA expression profile compared to non-tumorigenic breast cancer cells. The deregulated miRNAs may contribute to carcinogenesis and self-renewal of BCSCs via several different pathways and can act either as oncomirs or as tumor suppressive miRNAs. It has also been demonstrated that certain miRNAs play an essential role in regulating the stem cell-like phenotype of BCSCs. Some miRNAs control clonal expansion or maintain the self-renewal and anti-apoptotic features of BCSCs. Others are targeting the specific mRNA of their target genes and thereby contribute to the formation and self-renewal process of BCSCs. Several miRNAs are involved in epithelial to mesenchymal transition, which is often implicated in the process of formation of CSCs. Other miRNAs were shown to be involved in the increased chemotherapeutic resistance of BCSCs. This review highlights the recent findings and crucial role of miRNAs in the maintenance, growth and behavior of BCSCs, thus indicating the potential for novel diagnostic, prognostic and therapeutic miRNA-based strategies.
Collapse
|
43
|
MicroRNAs implicated in the immunopathogenesis of lupus nephritis. Clin Dev Immunol 2013; 2013:430239. [PMID: 23983769 PMCID: PMC3741610 DOI: 10.1155/2013/430239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/20/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the deposition of immune complexes due to widespread loss of immune tolerance to nuclear self-antigens. Deposition in the renal glomeruli results in the development of lupus nephritis (LN), the leading cause of morbidity and mortality in SLE. In addition to the well-recognized genetic susceptibility to SLE, disease pathogenesis is influenced by epigenetic regulators such as microRNAs (miRNAs). miRNAs are small, noncoding RNAs that bind to the 3′ untranslated region of target mRNAs resulting in posttranscriptional gene modulation. miRNAs play an important and dynamic role in the activation of innate immune cells and are critical in regulating the adaptive immune response. Immune stimulation and the resulting cytokine milieu alter miRNA expression while miRNAs themselves modify cellular responses to stimulation. Here we examine dysregulated miRNAs implicated in LN pathogenesis from human SLE patients and murine lupus models. The effects of LN-associated miRNAs in the kidney, peripheral blood mononuclear cells, macrophages, mesangial cells, dendritic cells, and splenocytes are discussed. As the role of miRNAs in immunopathogenesis becomes delineated, it is likely that specific miRNAs may serve as targets for therapeutic intervention in the treatment of LN and other pathologies.
Collapse
|
44
|
Hu X, Guo J, Zheng L, Li C, Zheng TM, Tanyi JL, Liang S, Benedetto C, Mitidieri M, Katsaros D, Zhao X, Zhang Y, Huang Q, Zhang L. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol Cancer Res 2013; 11:240-50. [PMID: 23339187 DOI: 10.1158/1541-7786.mcr-12-0432] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The heterochronic gene let-7 serves as a tumor suppressor microRNA by targeting various oncogenic pathways in cancer cells. Considerable evidence indicates that reduced expression of let-7 might be associated with poor clinical outcome in patients with cancer. Here, we report that the expression levels of three let-7 family members, let-7a, let-7b, and let-7g, were significantly decreased in the patients with breast cancer with lymph node metastasis compared with those without lymph node metastasis. Enforced expression of let-7b significantly inhibits breast cancer cell motility and affects actin dynamics. Using bioinformatic and experimental approaches, four genes in the actin cytoskeleton pathway, including PAK1, DIAPH2, RDX, and ITGB8, were identified as let-7 direct targets. Blocking the expression of PAK1, DIAPH2, and RDX significantly inhibits breast cancer cell migration induced by let-7b repression. Our results indicate that reconstitution of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of metastatic disease.
Collapse
Affiliation(s)
- Xiaowen Hu
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zaman MS, Maher DM, Khan S, Jaggi M, Chauhan SC. Current status and implications of microRNAs in ovarian cancer diagnosis and therapy. J Ovarian Res 2012; 5:44. [PMID: 23237306 PMCID: PMC3539914 DOI: 10.1186/1757-2215-5-44] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/06/2012] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the fifth most common cancer among women and causes more deaths than any other type of female reproductive cancer. Currently, treatment of ovarian cancer is based on the combination of surgery and chemotherapy. While recurrent ovarian cancer responds to additional chemotherapy treatments, the progression-free interval becomes shorter after each cycle, as chemo-resistance increases until the disease becomes incurable. There is, therefore, a strong need for prognostic and predictive markers to help optimize and personalize treatment in order to improve the outcome of ovarian cancer. An increasing number of studies indicate an essential role for microRNAs in ovarian cancer progression and chemo-resistance. MicroRNAs (miRNAs) are small endogenous non-coding RNAs (~22bp) which are frequently dysregulated in cancer. Typically, miRNAs are involved in crucial biological processes, including development, differentiation, apoptosis and proliferation. Two families of miRNAs, miR-200 and let-7, are frequently dysregulated in ovarian cancer and have been associated with poor prognosis. Both have been implicated in the regulation of epithelial-to-mesenchymal transition, a cellular transition associated with tumor aggressiveness, tumor invasion and chemo-resistance. Moreover, miRNAs also have possible implications for improving cancer diagnosis; for example miR-200 family, let-7 family, miR-21 and miR-214 may be useful in diagnostic tests to help detect ovarian cancer at an early stage. Additionally, the use of multiple target O-modified antagomirs (MTG-AMO) to inhibit oncogenic miRNAs and miRNA replacement therapy for tumor suppressor miRNAs are essential tools for miRNA based cancer therapeutics. In this review we describe the current status of the role miRNAs play in ovarian cancer and focus on the possibilities of microRNA-based therapies and the use of microRNAs as diagnostic tools.
Collapse
Affiliation(s)
- Mohd Saif Zaman
- Cancer Biology Research Center, Sanford Research/USD, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | | | | | | | | |
Collapse
|