1
|
Chen Y, Xu Y, Zhang Y, Yang D, Sun Y. Functions of the fusogenic and non-fusogenic activities of Syncytin-1 in human physiological and pathological processes. Biochem Biophys Res Commun 2025; 761:151746. [PMID: 40188598 DOI: 10.1016/j.bbrc.2025.151746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
Human endogenous retroviruses (HERVs), which represent the genetic remnants of ancient viral infections, constitute approximately 8 % of the human genome. Among the proteins encoded by these viruses, Syncytin-1, encoded by the env gene of the HERV-W family, functions as a vital fusion protein in placental development, in which it plays a pivotal role in facilitating the fusion of trophoblast cells to form the syncytiotrophoblast that is essential for maintaining the structural integrity and functional viability of the placenta. Recent studies have shown that in addition to its expression in the placenta, Syncytin-1 also plays key roles in a range of different tissues and cell types, influencing biological processes such as cell proliferation, apoptosis, and immune regulation. Abnormal expression of Syncytin-1 has been closely linked to the onset, progression, and metastasis of tumors, potentially promoting tumor invasion via mechanisms involving cell fusion and modulation of the immune microenvironment. Moreover, associations have been established between Syncytin-1 and neurological disorders, including multiple sclerosis and schizophrenia, in which it modulates neuroinflammation. In this review, we systematically examine the molecular structure and functional attributes of Syncytin-1, emphasizing its roles in cell fusion, tumor progression, and immune regulation, and discuss its potential applications as a therapeutic target and diagnostic biomarker.
Collapse
Affiliation(s)
- Yuling Chen
- Medical School, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Ya Xu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Yu Zhang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Danni Yang
- Medical School, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Yi Sun
- Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2025; 51:296-316. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Friedenson B. Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis. JMIRX MED 2025; 6:e50712. [PMID: 39885374 PMCID: PMC11796484 DOI: 10.2196/50712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Background The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce. If this model applies to human breast cancers, then they should have genome damage characteristic of EBV infection. Objective This study tests the hypothesis that EBV infection predisposes one to breast cancer by causing permanent genome damage that compromises cancer safeguards. Methods Publicly available genome data from approximately 2100 breast cancers and 25 ovarian cancers were compared to cancers with proven associations to EBV, including 70 nasopharyngeal cancers, 90 Burkitt lymphomas, 88 diffuse large B-cell lymphomas, and 34 gastric cancers. Calculation algorithms to make these comparisons were developed. Results Chromosome breakpoints in breast and ovarian cancer clustered around breakpoints in EBV-associated cancers. Breakpoint distributions in breast and EBV-associated cancers on some chromosomes were not confidently distinguished (P>.05), but differed from controls unrelated to EBV infection. Viral breakpoint clusters occurred in high-risk, sporadic, and other breast cancer subgroups. Breakpoint clusters disrupted gene functions essential for cancer protection, which remain compromised even if EBV infection disappears. As CRISPR (clustered regularly interspaced short palindromic repeats)-like reminders of past infection during evolution, EBV genome fragments were found regularly interspaced between Piwi-interacting RNA (piRNA) genes on chromosome 6. Both breast and EBV-associated cancers had inactivated genes that guard piRNA defenses and the major histocompatibility complex (MHC) locus. Breast and EBV-associated cancer breakpoints and other variations converged around the highly polymorphic MHC. Not everyone develops cancer because MHC differences produce differing responses to EBV infection. Chromosome shattering and mutation hot spots in breast cancers preferentially occurred at incorporated viral sequences. On chromosome 17, breast cancer breakpoints that clustered around those in EBV-mediated cancers were linked to estrogen effects. Other breast cancer breaks affected sites where EBV inhibits JAK-STAT and SWI-SNF signaling pathways. A characteristic EBV-cancer gene deletion that shifts metabolism to favor tumors was also found in breast cancers. These changes push breast cancer into metastasis and then favor survival of metastatic cells. Conclusions EBV infection predisposes one to breast cancer and metastasis, even if the virus disappears. Identifying this pathogenic viral damage may improve screening, treatment, and prevention. Immunizing children against EBV may protect against breast, ovarian, other cancers, and potentially even chronic unexplained diseases.
Collapse
Affiliation(s)
- Bernard Friedenson
- Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216
| |
Collapse
|
4
|
Mustafin RN. Role of Retroelements in Frontotemporal Dementia Development. Front Biosci (Schol Ed) 2025; 17:25922. [PMID: 40150869 DOI: 10.31083/fbs25922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 03/29/2025]
Abstract
Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887).
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
5
|
Ruberto S, Domınguez-Mozo MI, Garcıa-Martınez MA, Cossu D, Sechi LA, Alvarez-Lafuente R. Immune response profiling of HERV-W envelope proteins in multiple sclerosis: potential biomarkers for disease progression. Front Immunol 2025; 15:1505239. [PMID: 39850873 PMCID: PMC11754046 DOI: 10.3389/fimmu.2024.1505239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The envelope proteins syncytin-1 and pHERV-W from the Human Endogenous Retroviral family 'W' (HERV-W) have been identified as potential risk factors in multiple sclerosis (MS). This study aims to evaluate both humoral and cell-mediated immune response to antigenic peptides derived from these proteins across different clinical forms and inflammatory phases of MS. Methods Indirect enzyme-linked immunosorbent assay (ELISA) was employed to measure immunoglobulin G (IgG) responses to syncytin-1env 486-500 and pHERV-Wenv 486-504 peptides in MS patients. Discriminant analysis was used to assess whether clinical course prediction could be enhanced by integrating clinical variables with humoral response data against other MS-associated viral factors. Additionally, peripheral blood mononuclear cells from MS patients and healthy controls (HC) were analyzed for inflammatory responses following stimulation with these peptides. Results MS patients exhibited significantly elevated antibody titers against -pHERV-Wenv 486-504 and syncytin-1env 486-500 compared to HCs, with the highest levels observed in progressive MS forms. Discriminant analysis accurately predicted the clinical course in 75.3% of the cases, with an 85% accuracy rate for progressive MS. In vitro, stimulation with pHERV-Wenv 486-504 led to a notable increase in pro-inflammatory cytokine production by CD4, CD8, and CD19 cells compared to syncytin-1env 486-500. A strong correlation was found between pHERV- Wenv 486-504 induced cytokine production and EBV and CMV titers in MS patients. Discussion These findings suggest that the pHERV-W envelope protein could be a valuable biomarker for monitoring peripheral inflammation in MS.
Collapse
Affiliation(s)
- Stefano Ruberto
- Division of Microbiology and Virology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Environmental Factors in Degenerative Diseases Research Group. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María I. Domınguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M. Angel Garcıa-Martınez
- Environmental Factors in Degenerative Diseases Research Group. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Davide Cossu
- Division of Microbiology and Virology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Neurology, Juntendo University, Tokyo, Japan
| | - Leonardo A. Sechi
- Division of Microbiology and Virology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC Microbiologia e Virologia, Azienda Ospedaliera Universitaria, Sassari, Italy
| | - Roberto Alvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
6
|
Viret C, Bynoe MS. Human Endogenous Retroviruses Expression in Autoimmunity. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:521-528. [PMID: 39703611 PMCID: PMC11650914 DOI: 10.59249/oikf8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In relation to ancient infections, a substantial number of retroviral sequences with persistent immunogenic potential were integrated within the human genome (HERVs). Under physiological conditions, coding sequences from HERVs can participate in cell/tissue homeostasis and physiological functions in an epigenetically controlled manner. However, HERV expression is susceptible to contribute to various pathologies, including autoinflammatory and autoimmune disorders, when reprogrammed by exogenous stimuli such as drugs or microbial infections. Both innate and adaptive components of the immune system can be mobilized in response to deregulated/de-repressed expression of HERV determinants and thereby, modify immune tolerance to tissue antigens. Self-directed immune responses induced/worsened by HERV expression are suspected to participate in both tissue-specific and systemic disorders. A substantial level of mechanistic investigation is needed to better delineate the impact of HERV expression in diseases in general, and in inflammation and autoimmunity in particular.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en
Infectiologie, Université de Lyon, CNRS UMR5308, INSERM U1111, Université Claude
Bernard Lyon 1, ENS de Lyon, Lyon, France
| | - Margaret S. Bynoe
- Department of Microbiology and Immunology, College of
Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Evans EF, Saraph A, Tokuyama M. Transactivation of Human Endogenous Retroviruses by Viruses. Viruses 2024; 16:1649. [PMID: 39599764 PMCID: PMC11599155 DOI: 10.3390/v16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that are part the human genome and are normally silenced through epigenetic mechanisms. However, HERVs can be induced by various host and environmental factors, including viral infection, and transcriptionally active HERVs have been implicated in various physiological processes. In this review, we summarize mounting evidence of transactivation of HERVs by a wide range of DNA and RNA viruses. Though a mechanistic understanding of this phenomenon and the biological implications are still largely missing, the link between exogenous and endogenous viruses is intriguing. Considering the increasing recognition of the role of viral infections in disease, understanding these interactions provides novel insights into human health.
Collapse
Affiliation(s)
| | | | - Maria Tokuyama
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Brunel J, Paganini J, Galloux M, Charvet B, Perron H. HERV-W ENV transcription in B cells predicting symptomatic COVID-19 and risk for long COVID can express a full-length protein despite stop codon in mRNA from chromosome X via a ribosome readthrough. Microbes Infect 2024:105431. [PMID: 39419470 DOI: 10.1016/j.micinf.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The human genome comprises 8 % of endogenous retroviruses (HERVs). Though HERVS contribute to physiological functions, copies retained pathogenic potential. The HERV-W ENV protein was shown expressed in patients with worse COVID-19 symptoms and post-COVID syndrome. A significant detection of the mRNA encoding HERV-W ENV from patients with COVID-19 in B cells from RNAseq reads obtained from peripheral blond mononuclear cells. This data stratified with increased COVID-19 symptoms or with post-acute sequelae of COVID-19 (long COVID) after 3 months. The HERV-W ENV-U3R RNA was confirmed to display the best alignment with chromosome X ERVWE2 locus. However, a stop codon precluding its translation was re-addressed after recent understandings of ribosome readthrough mechanisms. Experimental results evidenced that this HERV gene can effectively express a full-length protein in the presence of molecules allowing translation via a readthrough mechanism at the ribosome level. Results not only confirm HERV-W ENV RNA origin in these patients but show for the first time how a defective HERV copy can be translated into a complete protein when specific factors make it possible at the ribosome level. The present proof of concept now requires further studies to identify the factors involved in this newly understood mechanism, following SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Joanna Brunel
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France
| | | | | | | | - Hervé Perron
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
9
|
Pizzioli E, Minutolo A, Balestrieri E, Matteucci C, Magiorkinis G, Horvat B. Crosstalk between human endogenous retroviruses and exogenous viruses. Microbes Infect 2024:105427. [PMID: 39349096 DOI: 10.1016/j.micinf.2024.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections of human germ-line cells, which are mostly silenced during evolution, but could be de-repressed and play a pathological role. Infection with some exogenous viruses, including herpesviruses, HIV-1 and SARS-CoV-2, was demonstrated to induce the expression of HERV RNAs and proteins.
Collapse
Affiliation(s)
- Edoardo Pizzioli
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
10
|
Bao C, Gao Q, Xiang H, Shen Y, Chen Q, Gao Q, Cao Y, Zhang M, He W, Mao L. Human endogenous retroviruses and exogenous viral infections. Front Cell Infect Microbiol 2024; 14:1439292. [PMID: 39397863 PMCID: PMC11466896 DOI: 10.3389/fcimb.2024.1439292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
The human genome harbors many endogenous retroviral elements, known as human endogenous retroviruses (HERVs), which have been integrated into the genome during evolution due to infections by exogenous retroviruses. Accounting for up to 8% of the human genome, HERVs are tightly regulated by the host and are implicated in various physiological and pathological processes. Aberrant expression of HERVs has been observed in numerous studies on exogenous viral infections. In this review, we focus on elucidating the potential roles of HERVs during various exogenous viral infections and further discuss their implications in antiviral immunity.
Collapse
Affiliation(s)
- Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuxuan Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuanfei Cao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Mengyu Zhang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Wenyuan He
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
11
|
Wang C, Zhang H, Lu W, Zhan Y. The EBV connection: a severe case of GFAP-A with central hypoventilation unresponsive to IVIG and literature review. Eur J Med Res 2024; 29:415. [PMID: 39135139 PMCID: PMC11320868 DOI: 10.1186/s40001-024-01926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Glial fibrillary acidic protein astrocytopathy (GFAP-A) pathogenesis remains uncertain, with potential viral involvement. More clinical cases are needed to deepen our understanding of this disease, along with the exploration of more effective treatment options to provide clinicians with additional choices. METHODS We report a severe case of GFAP-A secondary to EBV infection, characterized predominantly by central respiratory failure. Additionally, we conducted a literature review summarizing the characteristics of GFAP-IgG-positive patients associated with EBV infection. RESULTS Among the 13 patients identified, fever (92.3%) and headache (84.6%) were the most common initial symptoms, while urinary dysfunction was universally present in all patients. Over half of the patients with altered consciousness required endotracheal intubation (7/11, 63.6%), with only one individual experiencing complete resolution without any residual sequela. Only two patients (16.7%) displayed the classic feature of periventricular enhancement on neuroimaging, whereas T2-FLAIR hyperintensities were more prevalent. All patients tested positive for GFAP-IgG in CSF, and 91.7% (11/12) had detectable serum GFAP-IgG antibodies. Three patients (23.1%) achieved full recovery solely through antiviral therapy. In patients receiving various immunotherapies, 60% (6/10) still had residual sequelae. CONCLUSION EBV infection may contribute to the pathogenesis of GFAP-A. GFAP antibody testing is recommended for diagnostic evaluation in cases of central nervous system viral infections presenting with respiratory insufficiency. For severe GFAP-A patients, Protein A immunoadsorption (Protein A IA).
Collapse
Affiliation(s)
- Changlun Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Zhan
- Department of Neurology, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
13
|
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B. How to and should we target EBV in MS? Expert Rev Clin Immunol 2024; 20:703-714. [PMID: 38477887 DOI: 10.1080/1744666x.2024.2328739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.
Collapse
Affiliation(s)
- Svetlana Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Hicar
- Department of Pediatrics Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
14
|
Perron H. A tale of a hidden family of genetic immigrants. Microbes Infect 2024:105387. [PMID: 38944111 DOI: 10.1016/j.micinf.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Though not usual for the editors of a scientific journal to ask that a story be told to its readers, this special issue is offering an opportunity to pay tribute to all those who have made it possible for a long scientific journey to open up many research avenues, to access the discoveries of what was not known and to the understanding of what was unveiled in the field of human endogenous retroviruses. In particular, and beyond a simple fortuitous association, to show their pathogenic involvement in certain diseases whose causality has been the subject of numerous and variable hypotheses.
Collapse
Affiliation(s)
- Hervé Perron
- GeNeuro, 3 chemin du Pré-Fleuri, 1228 Plan-les-ouates, Geneva, Switzerland; Geneuro-Innovation, 60A, Avenue Rockefeller, 69008 Lyon, France.
| |
Collapse
|
15
|
Gruchot J, Reiche L, Werner L, Herrero F, Schira-Heinen J, Meyer U, Küry P. Molecular dissection of HERV-W dependent microglial- and astroglial cell polarization. Microbes Infect 2024:105382. [PMID: 38944109 DOI: 10.1016/j.micinf.2024.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The endogenous retrovirus type W (HERV-W) is a human-specific entity, which was initially discovered in multiple sclerosis (MS) patient derived cells. We initially found that the HERV-W envelope (ENV) protein negatively affects oligodendrogenesis and controls microglial cell polarization towards a myelinated axon associated and damaging phenotype. Such first functional assessments were conducted ex vivo, given the human-specific origin of HERV-W. Recent experimental evidence gathered on a novel transgenic mouse model, mimicking activation and expression of the HERV-W ENV protein, revealed that all glial cell types are impacted and that cellular fates, differentiation, and functions were changed. In order to identify HERV-W-specific signatures in glial cells, the current study analyzed the transcriptome of ENV protein stimulated microglial- and astroglial cells and compared the transcriptomic signatures to lipopolysaccharide (LPS) stimulated cells, owing to the fact that both ligands can activate toll-like receptor-4 (TLR-4). Additionally, a comparison between published disease associated glial signatures and the transcriptome of HERV-W ENV stimulated glial cells was conducted. We, therefore, provide here for the first time a detailed molecular description of specific HERV-W ENV evoked effects on those glial cell populations that are involved in smoldering neuroinflammatory processes relevant for progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joel Gruchot
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Laura Reiche
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Luisa Werner
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Vetsuisse, Zürich, Switzerland
| | - Jessica Schira-Heinen
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Vetsuisse, Zürich, Switzerland; Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Patrick Küry
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany; Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Adler GL, Le K, Fu Y, Kim WS. Human Endogenous Retroviruses in Neurodegenerative Diseases. Genes (Basel) 2024; 15:745. [PMID: 38927681 PMCID: PMC11202925 DOI: 10.3390/genes15060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are DNA transposable elements that have integrated into the human genome via an ancestral germline infection. The potential importance of HERVs is underscored by the fact that they comprise approximately 8% of the human genome. HERVs have been implicated in the pathogenesis of neurodegenerative diseases, a group of CNS diseases characterized by a progressive loss of structure and function of neurons, resulting in cell death and multiple physiological dysfunctions. Much evidence indicates that HERVs are initiators or drivers of neurodegenerative processes in multiple sclerosis and amyotrophic lateral sclerosis, and clinical trials have been designed to target HERVs. In recent years, the role of HERVs has been explored in other major neurodegenerative diseases, including frontotemporal dementia, Alzheimer's disease and Parkinson's disease, with some interesting discoveries. This review summarizes and evaluates the past and current research on HERVs in neurodegenerative diseases. It discusses the potential role of HERVs in disease manifestation and neurodegeneration. It critically reviews antiretroviral strategies used in the therapeutic intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabrielle L. Adler
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kelvin Le
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
18
|
Tarlinton R, Tanasescu R, Shannon-Lowe C, Gran B. Ocrelizumab B cell depletion has no effect on HERV RNA expression in PBMC in MS patients. Mult Scler Relat Disord 2024; 86:105597. [PMID: 38598954 DOI: 10.1016/j.msard.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
19
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
21
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
22
|
Liu EN, Yang JH, Patel L, Arora J, Gooding A, Ellis R, Graves JS. Longitudinal analysis and treatment of neuropsychiatric symptoms in post-acute sequelae of COVID-19. J Neurol 2023; 270:4661-4672. [PMID: 37493802 PMCID: PMC10910663 DOI: 10.1007/s00415-023-11885-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Persistent neuropsychiatric symptoms following acute COVID-19 infection are frequently reported. These include anxiety, depression, difficulty concentrating, fatigue, and insomnia. The longitudinal evolution of this neuropsychiatric burden is poorly understood and clinical guidelines concerning treatment are lacking. OBJECTIVE We sought to describe the longitudinal evolution of neuropsychiatric symptoms in the post-acute sequelae of COVID-19 (PASC) syndrome and examine symptom treatment at a single center. METHODS Consecutive participants experiencing persistent neurologic symptoms after acute COVID-19 infection were recruited from October 2020 to July 2022. Data collected included COVID-19 infection history, neurological exam and review of systems, Montreal Cognitive Assessment (MoCA), and self-reported surveys concerning neuropsychiatric symptoms and treatment. Data were collected at baseline and at 1-year follow-up. RESULTS A total of 106 participants (mean age 48.6, females 67%) were included in the study. At 1-year follow-up, 72.5% of participants reported at least one neuropsychiatric symptom. Over half (52.5%) of participants reported persistent fatigue. At baseline, 38.8% of all participants had met the established MoCA cut-off score of < 26 for mild cognitive impairment; this decreased to 20.0% at 1 year. COVID-19 infection severity was associated with neuro-PASC symptoms (including fatigue and anxiety) at 1 year. Overall, 29% of participants started at least one new medication for COVID-19-associated neuropsychiatric symptoms. Of the participants who started new medications, fatigue was the most common indication (44.8%) followed by insomnia (27.6%). CONCLUSIONS Neuropsychiatric symptoms related to neuro-PASC improve over time but can persist for over a year post-recovery. Most treatment modalities targeted neuro-PASC fatigue.
Collapse
Affiliation(s)
- Emilie N Liu
- Department of Neurosciences, University of California, San Diego, USA.
| | - Jennifer H Yang
- Department of Neurosciences, University of California, San Diego, USA
- Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Lucas Patel
- Department of Neurosciences, University of California, San Diego, USA
| | - Jasmine Arora
- Department of Neurosciences, University of California, San Diego, USA
| | - Amanda Gooding
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Ronald Ellis
- Department of Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Jennifer S Graves
- Department of Neurosciences, University of California, San Diego, USA
- Rady Children's Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
23
|
Gruchot J, Lewen I, Dietrich M, Reiche L, Sindi M, Hecker C, Herrero F, Charvet B, Weber-Stadlbauer U, Hartung HP, Albrecht P, Perron H, Meyer U, Küry P. Transgenic expression of the HERV-W envelope protein leads to polarized glial cell populations and a neurodegenerative environment. Proc Natl Acad Sci U S A 2023; 120:e2308187120. [PMID: 37695891 PMCID: PMC10515160 DOI: 10.1073/pnas.2308187120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Isabel Lewen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Mustafa Sindi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
| | | | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
- Neuroscience Center Zurich, University of Zürich and ETH Zürich, CH-8057Zürich, Switzerland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, NSW 2050Sydney, Australia
- Department of Neurology, Palacky University Olomouc, 77146Olomouc, Czech Republic
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | | | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
- Neuroscience Center Zurich, University of Zürich and ETH Zürich, CH-8057Zürich, Switzerland
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
- Department of Neurology, University of Bern, CH-3010Bern, Switzerland
| |
Collapse
|
24
|
Tovo PA, Galliano I, Parodi E, Calvi C, Gambarino S, Licciardi F, Dini M, Montanari P, Branca M, Ramenghi U, Bergallo M. Children with Chronic Immune Thrombocytopenia Exhibit High Expression of Human Endogenous Retroviruses TRIM28 and SETDB1. Genes (Basel) 2023; 14:1569. [PMID: 37628621 PMCID: PMC10454145 DOI: 10.3390/genes14081569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic immune thrombocytopenia (CITP) is an autoimmune disease whose underlying biologic mechanisms remain elusive. Human endogenous retroviruses (HERVs) derive from ancestral infections and constitute about 8% of our genome. A wealth of clinical and experimental studies highlights their pivotal pathogenetic role in autoimmune diseases. Epigenetic mechanisms, such as those modulated by TRIM28 and SETDB1, are involved in HERV activation and regulation of immune response. We assessed, through a polymerase chain reaction real-time Taqman amplification assay, the transcription levels of pol genes of HERV-H, HERV-K, and HERV-W; env genes of Syncytin (SYN)1, SYN2, and HERV-W; as well as TRIM28 and SETDB1 in whole blood from 34 children with CITP and age-matched healthy controls (HC). The transcriptional levels of all HERV sequences, with the exception of HERV-W-env, were significantly enhanced in children with CITP as compared to HC. Patients on eltrombopag treatment exhibited lower expression of SYN1, SYN2, and HERV-W-env as compared to untreated patients. The mRNA concentrations of TRIM28 and SETDB1 were significantly higher and were positively correlated with those of HERVs in CITP patients. The over-expressions of HERVs and TRIM28/SETDB1 and their positive correlations in patients with CITP are suggestive clues of their contribution to the pathogenesis of the disease and support innovative interventions to inhibit HERV and TRIM28/SETDB1 expressions in patients unresponsive to standard therapies.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (P.-A.T.); (U.R.)
| | - Ilaria Galliano
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Emilia Parodi
- Pediatric and Neonatology Unit, Ordine Mauriziano Hospital, Largo Filippo Turati 62, 10128 Turin, Italy;
| | - Cristina Calvi
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Francesco Licciardi
- Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy;
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Paola Montanari
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Margherita Branca
- Postgraduate School of Pediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (P.-A.T.); (U.R.)
- Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy;
- Postgraduate School of Pediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Massimiliano Bergallo
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| |
Collapse
|
25
|
Tamouza R, Meyer U, Lucas A, Richard JR, Nkam I, Pinot A, Djonouma N, Boukouaci W, Charvet B, Pierquin J, Brunel J, Fourati S, Rodriguez C, Barau C, Le Corvoisier P, El Abdellati K, De Picker L, Perron H, Leboyer M. Patients with psychosis spectrum disorders hospitalized during the COVID-19 pandemic unravel overlooked SARS-CoV-2 past infection clustering with HERV-W ENV expression and chronic inflammation. Transl Psychiatry 2023; 13:272. [PMID: 37524719 PMCID: PMC10390536 DOI: 10.1038/s41398-023-02575-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Epidemiology has repeatedly associated certain infections with a risk of further developing psychiatric diseases. Such infections can activate retro-transposable genetic elements (HERV) known to trigger immune receptors and impair synaptic plasticity of neuroreceptors. Since the HERV-W ENV protein was recently shown to co-cluster with pro-inflammatory cytokines in a subgroup of patients with schizophrenia or bipolar disorder, we questioned the influence of the COVID-19 pandemic on patients with psychosis spectrum disorders (PSD). Present results revealed that (i) SARS-CoV-2 serology shows high prevalence and titers of antibodies in PSD, (ii) HERV-W ENV is detected in seropositive individuals only and (iii) SARS-CoV-2 and HERV-W ENV positivity co-clustered with high serum levels of pro-inflammatory cytokines in psychotic patients. These results thus suggest that SARS-CoV-2 infection in many patients with psychotic disorders now admitted in the psychiatry department did not cause severe COVID-19. They also confirm the previously reported association of elevated serum pro-inflammatory cytokines and HERV-W ENV in a subgroup of psychotic patients. In the context of the COVID-19 pandemic, this cluster is only found in SARS-CoV-2 seropositive PSD cases, suggesting a dominant influence of this virus on HERV-W ENV and cytokine expression, and/or patients' greater susceptibility to SARS-CoV-2 infection. Further investigation on an interplay between this viral infection and the clinical evolution of such PSD patients is needed. However, this repeatedly defined subgroup of psychotic patients with a pro-inflammatory phenotype and HERV expression calls for a differential therapeutic approach in psychoses, therefore for further precision medicine development.
Collapse
Affiliation(s)
- Ryad Tamouza
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, F-94010, France.
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.
- Fondation FondaMental, Créteil, France.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Alexandre Lucas
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), We-Met Platform, Inserm UMR1297 and Université Paul Sabatier, Toulouse, France
| | - Jean Romain Richard
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Irène Nkam
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, F-94010, France
| | - Armand Pinot
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, F-94010, France
| | - Ndilyam Djonouma
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, F-94010, France
| | - Wahid Boukouaci
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Benjamin Charvet
- GeNeuro, 18, chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Justine Pierquin
- GeNeuro, 18, chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Joanna Brunel
- GeNeuro, 18, chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Slim Fourati
- Virology Unit, Department of Prevention, Diagnosis and Treatment of Infections, Hôpital Henri Mondor (AP-HP) and Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France
| | - Christophe Rodriguez
- Virology Unit, Department of Prevention, Diagnosis and Treatment of Infections, Hôpital Henri Mondor (AP-HP) and Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris-Est, Créteil, France
| | - Caroline Barau
- APHP, Hôpital Henri Mondor, Plateforme de Ressources Biologiques, F94010, Créteil, France
| | - Philippe Le Corvoisier
- Université Paris Est Créteil, Centre Investigation Clinique, CIC Henri Mondor, Créteil, F94010, France
| | - Kawtar El Abdellati
- CAPRI, University of Antwerp, Antwerp, Belgium
- University Psychiatric Centre, Duffel, Belgium
- ECNP Immuno-NeuroPsychiatry Network, Utrecht, The Netherlands
| | - Livia De Picker
- CAPRI, University of Antwerp, Antwerp, Belgium
- University Psychiatric Centre, Duffel, Belgium
- ECNP Immuno-NeuroPsychiatry Network, Utrecht, The Netherlands
| | - Hervé Perron
- GeNeuro, 18, chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Marion Leboyer
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, F-94010, France
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Fondation FondaMental, Créteil, France
| |
Collapse
|
26
|
Dawson T, Rentia U, Sanford J, Cruchaga C, Kauwe JSK, Crandall KA. Locus specific endogenous retroviral expression associated with Alzheimer's disease. Front Aging Neurosci 2023; 15:1186470. [PMID: 37484691 PMCID: PMC10359044 DOI: 10.3389/fnagi.2023.1186470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Human endogenous retroviruses (HERVs) are transcriptionally-active remnants of ancient retroviral infections that may play a role in Alzheimer's disease. Methods We combined two, publicly available RNA-Seq datasets with a third, novel dataset for a total cohort of 103 patients with Alzheimer's disease and 45 healthy controls. We use telescope to perform HERV quantification for these samples and simultaneously perform gene expression analysis. Results We identify differentially expressed genes and differentially expressed HERVs in Alzheimer's disease patients. Differentially expressed HERVs are scattered throughout the genome; many of them are members of the HERV-K superfamily. A number of HERVs are correlated with the expression of dysregulated genes in Alzheimer's and are physically proximal to genes which drive disease pathways. Discussion Dysregulated expression of ancient retroviral insertions in the human genome are present in Alzheimer's disease and show localization patterns that may explain how these elements drive pathogenic gene expression.
Collapse
Affiliation(s)
- Tyson Dawson
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Uzma Rentia
- Computational Biology Institute, The George Washington University, Washington, DC, United States
| | - Jessie Sanford
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Keith A. Crandall
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| |
Collapse
|
27
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
28
|
Ansari S, Gupta N, Verma R, Singh ON, Gupta J, Kumar A, Yadav MK, Binayke A, Tiwari M, Periwal N, Sood V, Mani S, Awasthi A, Shalimar, Nayak B, Ranjith‐Kumar CT, Surjit M. Antiviral activity of the human endogenous retrovirus‐R envelope protein against SARS‐CoV‐2. EMBO Rep 2023; 24:e55900. [PMCID: PMC10328075 DOI: 10.15252/embr.202255900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 09/29/2023] Open
Abstract
Coronavirus‐induced disease‐19 (COVID‐19), caused by SARS‐CoV‐2, is still a major global health challenge. Human endogenous retroviruses (HERVs) represent retroviral elements that were integrated into the ancestral human genome. HERVs are important in embryonic development as well as in the manifestation of diseases, including cancer, inflammation, and viral infections. Here, we analyze the expression of several HERVs in SARS‐CoV‐2‐infected cells and observe increased activity of HERV‐E, HERV‐V, HERV‐FRD, HERV‐MER34, HERV‐W, and HERV‐K‐HML2. In contrast, the HERV‐R envelope is downregulated in cell‐based models and PBMCs of COVID‐19 patients. Overexpression of HERV‐R inhibits SARS‐CoV‐2 replication, suggesting its antiviral activity. Further analyses demonstrate the role of the extracellular signal‐regulated kinase (ERK) in regulating HERV‐R antiviral activity. Lastly, our data indicate that the crosstalk between ERK and p38 MAPK controls the synthesis of the HERV‐R envelope protein, which in turn modulates SARS‐CoV‐2 replication. These findings suggest the role of the HERV‐R envelope as a prosurvival host factor against SARS‐CoV‐2 and illustrate a possible advantage of integration and evolutionary maintenance of retroviral elements in the human genome.
Collapse
Affiliation(s)
- Shabnam Ansari
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Nidhi Gupta
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
- Present address:
Department of BiochemistryAll India Institute of Medical SciencesNew DelhiIndia
| | - Rohit Verma
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Oinam N Singh
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Jyoti Gupta
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Amit Kumar
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Mukesh Kumar Yadav
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Akshay Binayke
- Immunobiology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Mahima Tiwari
- Translational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Neha Periwal
- Department of Biochemistry, School of Chemical and Life SciencesJamia Hamdard UniversityNew DelhiIndia
| | - Vikas Sood
- Department of Biochemistry, School of Chemical and Life SciencesJamia Hamdard UniversityNew DelhiIndia
| | - Shailendra Mani
- Translational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Amit Awasthi
- Immunobiology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Shalimar
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Baibaswata Nayak
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - CT Ranjith‐Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha UniversityNew DelhiIndia
| | - Milan Surjit
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
29
|
Zhang Y, Lyu H, Guo R, Cao X, Feng J, Jin X, Lu W, Zhao M. Epstein‒Barr virus-associated cellular immunotherapy. Cytotherapy 2023:S1465-3249(23)00099-3. [PMID: 37149797 DOI: 10.1016/j.jcyt.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Epstein‒Barr virus (EBV) is a human herpes virus that is saliva-transmissible and universally asymptomatic. It has been confirmed that more than 90% of the population is latently infected with EBV for life. EBV can cause a variety of related cancers, such as nasopharyngeal carcinoma, diffuse large B-cell lymphoma, and Burkitt lymphoma. Currently, many clinical studies have demonstrated that EBV-specific cytotoxic T lymphocytes and other cell therapies can be safely and effectively transfused to prevent and treat some diseases caused by EBV. This review will mainly focus on discussing EBV-specific cytotoxic T lymphocytes and will touch on therapeutic EBV vaccines and chimeric antigen receptor T-cell therapy briefly.
Collapse
Affiliation(s)
- Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, China.
| | - Hairong Lyu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Juan Feng
- Tianjin Jizhou District People's Hospital, Tianjin, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
30
|
Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal 2023; 21:68. [PMID: 37016404 PMCID: PMC10071245 DOI: 10.1186/s12964-023-01085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
31
|
Grandi N, Erbì MC, Scognamiglio S, Tramontano E. Human Endogenous Retrovirus (HERV) Transcriptome Is Dynamically Modulated during SARS-CoV-2 Infection and Allows Discrimination of COVID-19 Clinical Stages. Microbiol Spectr 2023; 11:e0251622. [PMID: 36602345 PMCID: PMC9927238 DOI: 10.1128/spectrum.02516-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 infection is known to trigger an important inflammatory response, which has a major role in COVID-19 pathogenesis. In infectious and inflammatory contexts, the modulation of human endogenous retroviruses (HERV) has been broadly reported, being able to further sustain innate immune responses due to the expression of immunogenic viral transcripts, including double-stranded DNA (dsRNA), and eventually, immunogenic proteins. To gain insights on this poorly characterized interplay, we performed a high-throughput expression analysis of ~3,300 specific HERV loci in the peripheral blood mononuclear cells (PBMCs) of 10 healthy controls and 16 individuals being either convalescent after the infection (6) or retesting positive after convalescence (10) (Gene Expression Onmibus [GEO] data set GSE166253). Results showed that the exposure to SARS-CoV-2 infection modulates HERV expression according to the disease stage and reflecting COVID-19 immune signatures. The differential expression analysis between healthy control (HC) and COVID-19 patients allowed us to identify a total of 282 differentially expressed HERV loci (deHERV) in the individuals exposed to SARS-CoV-2 infection, independently from the clinical form. In addition, 278 and 60 deHERV loci that were specifically modulated in individuals convalescent after COVID19 infection (C) and patients that retested positive to SARS-CoV-2 after convalescence (RTP) as individually compared to HC, respectively, as well as 164 deHERV loci between C and RTP patients were identified. The identified HERV loci belonged to 36 different HERV groups, including members of all three classes. The present study provides an exhaustive picture of the HERV transcriptome in PBMCs and its dynamic variation in the presence of COVID-19, revealing specific modulation patterns according to the infection stage that can be relevant to the disease clinical manifestation and outcome. IMPORTANCE We report here the first high-throughput analysis of HERV loci expression along SARS-CoV-2 infection, as performed with peripheral blood mononuclear cells (PBMCs). Such cells are not directly infected by the virus but have a crucial role in the plethora of inflammatory and immune events that constitute a major hallmark of COVID-19 pathogenesis. Results provide a novel and exhaustive picture of HERV expression in PBMCs, revealing specific modulation patterns according to the disease condition and the concomitant immune activation. To our knowledge, this is the first set of deHERVs whose expression is dynamically modulated across COVID-19 stages, confirming a tight interplay between HERV and cellular immunity and revealing specific transcriptional signatures that can have an impact on the disease clinical manifestation and outcome.
Collapse
Affiliation(s)
- Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Chiara Erbì
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Sante Scognamiglio
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
32
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
33
|
Tovo PA, Garazzino S, Savino F, Daprà V, Pruccoli G, Dini M, Filisetti G, Funiciello E, Galliano I, Bergallo M. Expressions of Type I and III Interferons, Endogenous Retroviruses, TRIM28, and SETDB1 in Children with Respiratory Syncytial Virus Bronchiolitis. Curr Issues Mol Biol 2023; 45:1197-1217. [PMID: 36826024 PMCID: PMC9954910 DOI: 10.3390/cimb45020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Interferons (IFNs) and IFN-stimulated genes (ISGs) play essential roles for the control of viral infections. Their expression in infants with respiratory syncytial virus (RSV) bronchiolitis is poorly defined. Human endogenous retroviruses (HERVs) represent 8% of our genome and modulate inflammatory and immune reactions. TRIM28 and SETDB1 participate in the epigenetic regulation of genes involved in the immune response, including IFNs and HERVs. No study has explored the expression of HERVs, TRIM28, and SETDB1 during RSV bronchiolitis. We assessed, through a PCR real-time Taqman amplification assay, the transcription levels of six IFN-I ISGs, four IFNλs, the pol genes of HERV-H, -K, and -W families, the env genes of Syncytin (SYN)1 and SYN2, and of TRIM28/SETDB1 in whole blood from 37 children hospitalized for severe RSV bronchiolitis and in healthy children (HC). The expression of most IFN-I ISGs was significantly higher in RSV+ patients than in age-matched HC, but it was inhibited by steroid therapy. The mRNA concentrations of IFN-λs were comparable between patients and age-matched HC. This lack of RSV-driven IFN-III activation may result in the defective protection of the airway mucosal surface leading to severe bronchiolitis. The expression of IFN-III showed a positive correlation with age in HC, that could account for the high susceptibility of young children to viral respiratory tract infections. The transcription levels of every HERV gene were significantly lower in RSV+ patients than in HC, while the expressions of TRIM28/SETDB1 were overlapping. Given the negative impact of HERVs and the positive effects of TRIM28/SETDB1 on innate and adaptive immune responses, the downregulation of the former and the normal expression of the latter may contribute to preserving immune functions against infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| | - Silvia Garazzino
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Valentina Daprà
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giulia Pruccoli
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Maddalena Dini
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giacomo Filisetti
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Elisa Funiciello
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
34
|
Endogenous Retroviruses as Modulators of Innate Immunity. Pathogens 2023; 12:pathogens12020162. [PMID: 36839434 PMCID: PMC9963469 DOI: 10.3390/pathogens12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Endogenous retroviruses (ERVs), or LTR retrotransposons, are a class of transposable elements that are highly represented in mammalian genomes. Human ERVs (HERVs) make up roughly 8.3% of the genome and over the course of evolution, HERV elements underwent positive selection and accrued mutations that rendered them non-infectious; thereby, the genome could co-opt them into constructive roles with important biological functions. In the past two decades, with the help of advances in sequencing technology, ERVs are increasingly considered to be important components of the innate immune response. While typically silenced, expression of HERVs can be induced in response to traumatic, toxic, or infection-related stress, leading to a buildup of viral transcripts and under certain circumstances, proteins, including functionally active reverse transcriptase and viral envelopes. The biological activity of HERVs in the context of the innate immune response can be based on the functional effect of four major viral components: (1) HERV LTRs, (2) HERV-derived RNAs, (3) HERV-derived RNA:DNA duplexes and cDNA, and (4) HERV-derived proteins and ribonucleoprotein complexes. In this review, we will discuss the implications of HERVs in all four contexts in relation to innate immunity and their association with various pathological disease states.
Collapse
|
35
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
36
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:16071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
37
|
Rangel SC, da Silva MD, da Silva AL, dos Santos JDMB, Neves LM, Pedrosa A, Rodrigues FM, Trettel CDS, Furtado GE, de Barros MP, Bachi ALL, Romano CM, Nali LHDS. Human endogenous retroviruses and the inflammatory response: A vicious circle associated with health and illness. Front Immunol 2022; 13:1057791. [PMID: 36518758 PMCID: PMC9744114 DOI: 10.3389/fimmu.2022.1057791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous retroviral infections that have infected our ancestors' germline cells, underwent endogenization process, and were passed throughout the generations by retrotransposition and hereditary transmission. HERVs comprise 8% of the human genome and are critical for several physiological activities. Yet, HERVs reactivation is involved in pathological process as cancer and autoimmune diseases. In this review, we summarize the multiple aspects of HERVs' role within the human genome, as well as virological and molecular aspects, and their fusogenic property. We also discuss possibilities of how the HERVs are possibly transactivated and participate in modulating the inflammatory response in health conditions. An update on their role in several autoimmune, inflammatory, and aging-related diseases is also presented.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Amanda Lopes da Silva
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucas Melo Neves
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Ana Pedrosa
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, (3004-504), Coimbra, Portugal
| | | | - Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços – S. Martinho do Bispo, Coimbra, Portugal
| | - Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
38
|
Wieland L, Schwarz T, Engel K, Volkmer I, Krüger A, Tarabuko A, Junghans J, Kornhuber ME, Hoffmann F, Staege MS, Emmer A. Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells 2022; 11:cells11223619. [PMID: 36429047 PMCID: PMC9688211 DOI: 10.3390/cells11223619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
The immune pathogenesis of multiple sclerosis (MS) is thought to be triggered by environmental factors in individuals with an unfavorable genetic predisposition. Epstein-Barr virus (EBV) infection is a major risk factor for subsequent development of MS. Human endogenous retroviruses (HERVs) can be activated by EBV, and might be a missing link between an initial EBV infection and the later onset of MS. In this study, we investigated differential gene expression patterns in EBV-immortalized lymphoblastoid B cell lines (LCL) from MS-affected individuals (MSLCL) and controls by using RNAseq and qRT-PCR. RNAseq data from LCL mapped to the human genome and a virtual virus metagenome were used to identify possible biomarkers for MS or disease-relevant risk factors, e.g., the relapse rate. We observed that lytic EBNA-1 transcripts seemed to be negatively correlated with age leading to an increased expression in LCL from younger PBMC donors. Further, HERV-K (HML-2) GAG was increased upon EBV-triggered immortalization. Besides the well-known transactivation of HERV-K18, our results suggest that another six HERV loci are up-regulated upon stimulation with EBV. We identified differentially expressed genes in MSLCL, e.g., several HERV-K loci, ERVMER61-1 and ERV3-1, as well as genes associated with relapses. In summary, EBV induces genes and HERV in LCL that might be suitable as biomarkers for MS or the relapse risk.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Schwarz
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alexander Tarabuko
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jutta Junghans
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Malte E. Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Frank Hoffmann
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-34-5557-7280
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
39
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
40
|
Sedaghat N, Etemadifar M. Revisiting the antiviral theory to explain interferon-beta's effectiveness for relapsing multiple sclerosis. Mult Scler Relat Disord 2022; 67:104155. [PMID: 36116383 DOI: 10.1016/j.msard.2022.104155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Treatments with interferon-beta (IFNβ) - a cytokine with established antiviral effects - were initially considered for multiple sclerosis (MS), as epidemiological data pointed towards a viral etiological agent for it. Later, when no specific agent was found for MS, theories explaining IFNβ's mechanism of action (MOA) relied on anti-inflammatory mechanisms, which did not explain its ineffectiveness for disease progression independent of relapse activity (PIRA) in progressive forms of MS. Now, with new evidence backing the Epstein-Barr virus (EBV) as a conditional agent in MS etiopathogenesis as well as linking the reactivation of a wide range of other Herpesviridae with MS onset/relapse, it may be time to revisit the antiviral theory to explain IFNβ's MOA, look at the evidence from the past two decades from that perspective, and address the paucity of knowledge with new direct studies and discussions.
Collapse
Affiliation(s)
- Nahad Sedaghat
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran.
| | - Masoud Etemadifar
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Enhanced Expression of Human Endogenous Retroviruses, TRIM28 and SETDB1 in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23115964. [PMID: 35682642 PMCID: PMC9180946 DOI: 10.3390/ijms23115964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancestral infections and represent 8% of the human genome. They are no longer infectious, but their activation has been associated with several disorders, including neuropsychiatric conditions. Enhanced expression of HERV-K and HERV-H envelope genes has been found in the blood of autism spectrum disorder (ASD) patients, but no information is available on syncytin 1 (SYN1), SYN2, and multiple sclerosis-associated retrovirus (MSRV), which are thought to be implicated in brain development and immune responses. HERV activation is regulated by TRIM28 and SETDB1, which are part of the epigenetic mechanisms that organize the chromatin architecture in response to external stimuli and are involved in neural cell differentiation and brain inflammation. We assessed, through a PCR realtime Taqman amplification assay, the transcription levels of pol genes of HERV-H, -K, and -W families, of env genes of SYN1, SYN2, and MSRV, as well as of TRIM28 and SETDB1 in the blood of 33 ASD children (28 males, median 3.8 years, 25–75% interquartile range 3.0–6.0 y) and healthy controls (HC). Significantly higher expressions of TRIM28 and SETDB1, as well as of all the HERV genes tested, except for HERV-W-pol, were found in ASD, as compared with HC. Positive correlations were observed between the mRNA levels of TRIM28 or SETDB1 and every HERV gene in ASD patients, but not in HC. Overexpression of TRIM28/SETDB1 and several HERVs in children with ASD and the positive correlations between their transcriptional levels suggest that these may be main players in pathogenetic mechanisms leading to ASD.
Collapse
|
42
|
Bu C, Wang Z, Ren Y, Chen D, Jiang SW. Syncytin-1 nonfusogenic activities modulate inflammation and contribute to preeclampsia pathogenesis. Cell Mol Life Sci 2022; 79:290. [PMID: 35536515 PMCID: PMC11073204 DOI: 10.1007/s00018-022-04294-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 11/03/2022]
Abstract
Maternal cellular and humoral immune responses to the allogeneic fetoplacental unit are a normal part of pregnancy adaptation. Overactive or dysregulated immune responses that often manifest as inflammation are considered a key element for the development of preeclampsia. Infiltration and activation of macrophages, nature killer cells, and T lymphocytes are frequently observed in the decidua and placenta associated with preeclampsia. In addition to local inflammation, systemic inflammatory changes including increased levels of TNF-α and interleukins (ILs) are detected in the maternal circulation. Syncytin-1 is an endogenous retroviral envelope protein that mediates the fusion of trophoblasts to form syncytiotrophoblasts, a cellular component carrying out most of placental barrier, exchange, and endocrine functions. In addition to these well-defined fusogenic functions that are known for their close association with preeclampsia, multiple studies indicated that syncytin-1 possesses nonfusogenic activities such as those for cell cycle and apoptosis regulation. Moreover, syncytin-1 expressed by trophoblasts and various types of immune cells may participate in regulation of inflammation in preeclamptic placenta and decidua. This review concentrates on the triangular relationship among inflammation, syncytin-1 nonfusogenic functions, and preeclampsia pathogenesis. Data regarding the reciprocal modulations of inflammation and poor vascularization/hypoxia are summarized. The impacts of syncytin-A (the mouse counterpart of human syncytin-1) gene knockout on placental vascularization and their implications for preeclampsia are discussed. Syncytin-1 expression in immune cells and its significance for inflammation are analyzed in the context of preeclampsia development. Finally, the involvements of syncytin-1 nonfusogenic activities in neuroinflammation and multiple sclerosis are compared to findings from preeclampsia.
Collapse
Affiliation(s)
- Chaozhi Bu
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Zhiwei Wang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
- Center of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, Jiangsu, China
| | - Yongwei Ren
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| |
Collapse
|
43
|
Longoria V, Parcel H, Toma B, Minhas A, Zeine R. Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination. Biomedicines 2022; 10:539. [PMID: 35327341 PMCID: PMC8945692 DOI: 10.3390/biomedicines10030539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and toxin-induced demyelination models. Study selection and data extraction were performed by 3 reviewers, and 28 studies were selected for inclusion. The certainty of evidence was appraised using the Cochrane GRADE approach. In clinical studies, there was low- and moderate-quality evidence that treatment with ~1:1 CBD/THC mixtures as a nabiximols (Sativex®) oromucosal spray reduced numerical rating scale (NRS) scores for spasticity, pain, and sleep disturbance, diminished bladder overactivity, and decreased proinflammatory cytokine and transcription factor expression levels. Preclinical studies demonstrated decreases in disease severity, hindlimb stiffness, motor function, neuroinflammation, and demyelination. Other experimental systems showed the capacity of cannabinoids to promote remyelination in vitro and by electron microscopy. Modest short-term benefits were realized in MS responders to adjunctive therapy with CBD/THC mixtures. Future studies are recommended to investigate the cellular and molecular mechanisms of cannabinoid effects on MS lesions and to evaluate whether medical marijuana can accelerate remyelination and retard the accrual of disability over the long term.
Collapse
Affiliation(s)
- Victor Longoria
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Hannah Parcel
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Bameelia Toma
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Annu Minhas
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Rana Zeine
- School of Natural Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
44
|
Latifi T, Zebardast A, Marashi SM. The role of human endogenous retroviruses (HERVs) in Multiple Sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Mult Scler Relat Disord 2022; 57:103318. [PMID: 35158423 DOI: 10.1016/j.msard.2021.103318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is one of the chronic inflammatory diseases with neurological disability in the central nervous system (CNS). Although the exact cause of MS is still largely unknown, both genetic and environmental factors are thought to play a role in disease risk. Human Endogenous Retroviruses (HERVs) are endogenous viral elements of the human genome whose expression is associated with MS. HERVs are normally silenced or expressed at low levels, although their expression is higher in MS than in the healthy population. Several studies highlighted the plausible interaction between HERVs and other MS risk factors, including viral infection like Epstein-Barr viruses and vitamin D deficiency which may lead to high expression of HERVs in these patients. Understanding how HERVs act in this scenario can improve our understanding towards MS etiology and may lead to the development of antiretroviral therapies in these patients. Here in this review, we try to examine the different HERVs expression implicated in MS and their association with EBV infection and vitamin D status.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Qiao S, Sun QY, Zhang SC, Zhang RR, Wu YJ, Wang ZH, Liu XW. Role of Increased Syncytin-1 Expression in Pathogenesis of Anti-N-Methyl-d-Aspartate Receptor Encephalitis. Neuropsychiatr Dis Treat 2022; 18:1535-1543. [PMID: 35937712 PMCID: PMC9346417 DOI: 10.2147/ndt.s374798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Syncytin-1 may play a role in several neuropsychiatric disorders, but its function in anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is unknown. The purpose of this study was to examine the possible mechanism of action of syncytin-1 in patients with anti-NMDAR encephalitis. PATIENTS AND METHODS Twenty patients with anti-NMDAR encephalitis and eight controls were recruited. The protein levels of syncytin-1 in serum were determined using an enzyme-linked immunosorbent assay, and the transcript levels of syncytin-1 were determined using real-time quantitative PCR. Flow cytometry was used for peripheral blood lymphocyte subset detection. Further, the relationship between syncytin-1 levels and clinical features of anti-NMDAR encephalitis and peripheral blood lymphocyte subsets was analyzed. RESULTS Compared with those in controls, higher syncytin-1 levels and percentage of B cells (CD3-CD19+) were observed in patients with anti-NMDAR encephalitis. Among anti-NMDAR encephalitis patients, the level of syncytin-1 positively correlated with the proportion of B cells and modified Rankin scale score at onset and after immunotherapy and negatively correlated with the proportion of CD3+ T cells. CONCLUSION An increased expression of Syncytin-1 is associated with the pathogenesis of anti-NMDAR encephalitis, providing evidence for elucidating the pathogenesis of the disease and suggesting novel therapeutic targets. Further, this study clarifies the role of syncytin-1 in neuroimmune disorders.
Collapse
Affiliation(s)
- Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China.,Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Quan-Ye Sun
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Shan-Chao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Ran-Ran Zhang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yu-Jiao Wu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Zhi-Hao Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xue-Wu Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Institute of Epilepsy, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
46
|
Nali LH, Olival GS, Montenegro H, da Silva IT, Dias-Neto E, Naya H, Spangenberg L, Penalva-de-Oliveira AC, Romano CM. Human endogenous retrovirus and multiple sclerosis: A review and transcriptome findings. Mult Scler Relat Disord 2021; 57:103383. [PMID: 34922254 DOI: 10.1016/j.msard.2021.103383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Multiple Sclerosis is an autoimmune disease with an unknown etiology. Both genetic and environmental factors are believed to trigger MS autoimmunity. Among the environmental factors, infectious agents have been extensively investigated, and the Human Endogenous Retroviruses (HERVs), especially HERV-W, are believed to be associated with MS pathogenesis. HERVs are derived from ancestral infections and comprise around 8% of the human genome. Although most HERVs are silenced, retroviral genes may be expressed with virion formation. There is extensive evidence of the relationship between HERV-W and MS, including higher levels of HERV-W expression in MS patients, HERV-W protein detection in MS plaques, and the HERV-W env protein inducing an inflammatory response in in vitro and in vivo models. Here we discuss possible links of HERVs and the pathogenesis of MS and present new data regarding the diversity of HERVs expression in samples derived from MS patients.
Collapse
Affiliation(s)
- Luiz H Nali
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; Post-graduation Program in Health Sciences, Santo Amaro University, Rua Prof. Enéas de Siqueira Neto, 340, São Paulo 04829-300, Brazil
| | - Guilherme S Olival
- Departamento de Neurologia Santa Casa de Misericórdia de São Paulo, R. Dr. Cesário Mota Júnior, 112, São Paulo 01221-020 Brazil
| | | | - Israel T da Silva
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Hugo Naya
- Unidad de Bioinformática Institut Pasteur de Montevideo, Mataojo 2020, CP11400 Montevideo, Uruguay; Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Av. Gral. Eugenio Garzón 780, CP12900 Montevideo, Uruguay
| | - Lucia Spangenberg
- Unidad de Bioinformática Institut Pasteur de Montevideo, Mataojo 2020, CP11400 Montevideo, Uruguay
| | - Augusto C Penalva-de-Oliveira
- Departamento de Neurologia Santa Casa de Misericórdia de São Paulo, R. Dr. Cesário Mota Júnior, 112, São Paulo 01221-020 Brazil; Departamento de Neurologia, Instituto de Infectologia Emilio Ribas, Avenida Doutor Arnaldo, 165, São Paulo 01246-900, Brazil
| | - Camila M Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo 05403-000, Brazil; Hospital das Clinicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
47
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
49
|
Curty G, Iñiguez LP, Nixon DF, Soares MA, de Mulder Rougvie M. Hallmarks of Retroelement Expression in T-Cells Treated With HDAC Inhibitors. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.756635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A wide spectrum of drugs have been assessed as latency reversal agents (LRA) to reactivate HIV-1 from cellular reservoirs and aid in viral eradication strategies. Histone deacetylase inhibitors (HDACi) have been studied in vitro and in vivo as potential candidates for HIV-1 latency reversion. Suberoylanilide hydroxamic acid (SAHA) and romidepsin (RMD) are two HDACi able to reverse HIV latency, however studies of potential off-target effects on retroelement expression have been limited. Retroelements constitute a large portion of the human genome, and some are considered “fossil viruses” as they constitute remnants of ancient exogenous retroviruses infections. Retroelements are reactivated during certain disease conditions like cancer or during HIV-1 infection. In this study, we analyzed differential expression of retroelements using publicly available RNA-seq datasets (GSE102187 and GSE114883) obtained from uninfected CD4+, and HIV-1 latently infected CD4+ T-cells treated with HDACi (SAHA and RMD). We found a total of 712 and 1,380 differentially expressed retroelements in HIV-1 latently infected cells following a 24-h SAHA and RMD treatment, respectively. Furthermore, we found that 531 retroelement sequences (HERVs and L1) were differentially expressed under both HDACi treatments, while 1,030 HERV/L1 were exclusively regulated by each drug. Despite differences in specific HERV loci expression, the overall pattern at the HERV family level was similar for both treatments. We detected differential expression of full-length HERV families including HERV-K, HERV-W and HERV-H. Furthermore, we analyzed the link between differentially expressed retroelements and nearby immune genes. TRAF2 (TNF receptor) and GBP5 (inflammasome activator) were upregulated in HDACi treated samples and their expression was correlated with nearby HERV (MERV101_9q34.3) and L1 (L1FLnI_1p22.2k, L1FLnI_1p22.2j, L1FLnI_1p22.2i). Our findings suggest that HDACi have an off-target effect on the expression of retroelements and on the expression of immune associated genes in treated CD4+ T-cells. Furthermore, our data highlights the importance of exploring the interaction between HIV-1 and retroelement expression in LRA treated samples to understand their role and impact on “shock and kill” strategies and their potential use as reservoir biomarkers.
Collapse
|
50
|
Morse ZJ, Horwitz MS. Virus Infection Is an Instigator of Intestinal Dysbiosis Leading to Type 1 Diabetes. Front Immunol 2021; 12:751337. [PMID: 34721424 PMCID: PMC8554326 DOI: 10.3389/fimmu.2021.751337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to genetic predisposition, environmental determinants contribute to a complex etiology leading to onset of type 1 diabetes (T1D). Multiple studies have established the gut as an important site for immune modulation that can directly impact development of autoreactive cell populations against pancreatic self-antigens. Significant efforts have been made to unravel how changes in the microbiome function as a contributor to autoimmune responses and can serve as a biomarker for diabetes development. Large-scale longitudinal studies reveal that common environmental exposures precede diabetes pathology. Virus infections, particularly those associated with the gut, have been prominently identified as risk factors for T1D development. Evidence suggests recent-onset T1D patients experience pre-existing subclinical enteropathy and dysbiosis leading up to development of diabetes. The start of these dysbiotic events coincide with detection of virus infections. Thus viral infection may be a contributing driver for microbiome dysbiosis and disruption of intestinal homeostasis prior to T1D onset. Ultimately, understanding the cross-talk between viral infection, the microbiome, and the immune system is key for the development of preventative measures against T1D.
Collapse
Affiliation(s)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|