1
|
Costa MI, Cerletti M, Paggi RA, Frecha SD, Zoratti V, Latorre LL, De Castro RE, Giménez MI. Rhomboid proteases: key players at the cell surface within haloarchaea. Front Microbiol 2025; 16:1547649. [PMID: 40226099 PMCID: PMC11985538 DOI: 10.3389/fmicb.2025.1547649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Rhomboid proteases are intramembrane serine proteases that play a key role in regulating membrane proteins across all domains of life. However, their function in archaea remains poorly understood. The model halophilic archaeon Haloferax volcanii encodes two rhomboid homologs, rho1 (HVO_1474) and rho2 (HVO_0727). Previous studies indicated that the deletion of rho2 resulted in mild alterations in motility, adhesion, biofilm formation, and cell morphology, suggesting potential functional compensation by rho1. Materials and methods To investigate the role of these proteases, we generated single (Δrho1) and double (Δrho1 Δrho2) deletion mutants. Phenotypic characterization included viability assays, motility tests, adhesion and biofilm formation studies, as well as morphological analysis using microscopy. Functional overlap between rho1 and rho2 was evaluated through genetic complementation/overexpression experiments in which each gene was expressed in trans in the mutant backgrounds. Results Both Δrho1 and Δrho1 Δrho2 mutants were viable, indicating that these genes are not essential in H. volcanii. The Δrho1 mutant exhibited increased motility, enhanced biofilm formation, reduced adhesion to glass surfaces, and significant morphological alterations, particularly in trace element-deficient conditions. The double mutant (Δrho1 Δrho2) showed increased adhesion to surfaces, mild motility reduction, and fewer morphological abnormalities compared to Δrho1. Complementation assays revealed that both rho1 and rho2 could restore motility in Δrho2 and adhesion in Δrho1. However, only rho1 was able to complement the morphological defects, suggesting a degree of functional divergence between these homologs. Discussion This work highlights the role of rhomboid proteases in regulating critical cell surface processes in H. volcanii, including biofilm formation, surface adhesion, and cell shape determination. The ability of rho1 and rho2 to compensate for each other in certain functions while maintaining distinct roles underscores a complex regulatory interplay. Future research will focus on identifying natural substrates and elucidating the molecular mechanisms underlying rhomboid protease function in haloarchaea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - María Inés Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| |
Collapse
|
2
|
Luenenschloss A, Ter Veld F, Albaum SP, Neddermann TM, Wendisch VF, Poetsch A. Functional Genomics Uncovers Pleiotropic Role of Rhomboids in Corynebacterium glutamicum. Front Microbiol 2022; 13:771968. [PMID: 35265054 PMCID: PMC8899591 DOI: 10.3389/fmicb.2022.771968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
The physiological role of ubiquitous rhomboid proteases, membrane-integral proteins that cleave their substrates inside the lipid bilayer, is still ill-defined in many prokaryotes. The two rhomboid genes cg0049 and cg2767 of Corynebacterium glutamicum were mutated and it was the aim of this study to investigate consequences in respect to growth phenotype, stress resistance, transcriptome, proteome, and lipidome composition. Albeit increased amount of Cg2767 upon heat stress, its absence did not change the growth behavior of C. glutamicum during exponential and stationary phase. Quantitative shotgun mass spectrometry was used to compare the rhomboid mutant with wild type strain and revealed that proteins covering diverse cellular functions were differentially abundant with more proteins affected in the stationary than in the exponential growth phase. An observation common to both growth phases was a decrease in ribosomal subunits and RNA polymerase, differences in iron uptake proteins, and abundance changes in lipid and mycolic acid biosynthesis enzymes that suggested a functional link of rhomboids to cell envelope lipid biosynthesis. The latter was substantiated by shotgun lipidomics in the stationary growth phase, where in a strain-dependent manner phosphatidylglycerol, phosphatidic acid, diacylglycerol and phosphatidylinositol increased irrespective of cultivation temperature.
Collapse
Affiliation(s)
| | - Frank Ter Veld
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stefan P Albaum
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias M Neddermann
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany.,Department of Marine Biology, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion. Microorganisms 2022; 10:microorganisms10010114. [PMID: 35056563 PMCID: PMC8778405 DOI: 10.3390/microorganisms10010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.
Collapse
|
4
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
5
|
Belardinelli JM, Stevens CM, Li W, Tan YZ, Jones V, Mancia F, Zgurskaya HI, Jackson M. The MmpL3 interactome reveals a complex crosstalk between cell envelope biosynthesis and cell elongation and division in mycobacteria. Sci Rep 2019; 9:10728. [PMID: 31341202 PMCID: PMC6656915 DOI: 10.1038/s41598-019-47159-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023] Open
Abstract
Integral membrane transporters of the Mycobacterial Membrane Protein Large (MmpL) family and their interactome play important roles in the synthesis and export of mycobacterial outer membrane lipids. Despite the current interest in the mycolic acid transporter, MmpL3, from the perspective of drug discovery, the nature and biological significance of its interactome remain largely unknown. We here report on a genome-wide screening by two-hybrid system for MmpL3 binding partners. While a surprisingly low number of proteins involved in mycolic acid biosynthesis was found to interact with MmpL3, numerous enzymes and transporters participating in the biogenesis of peptidoglycan, arabinogalactan and lipoglycans, and the cell division regulatory protein, CrgA, were identified among the hits. Surface plasmon resonance and co-immunoprecipitation independently confirmed physical interactions for three proteins in vitro and/or in vivo. Results are in line with the focal localization of MmpL3 at the poles and septum of actively-growing bacilli where the synthesis of all major constituents of the cell wall core are known to occur, and are further suggestive of a role for MmpL3 in the coordination of new cell wall deposition during cell septation and elongation. This novel aspect of the physiology of MmpL3 may contribute to the extreme vulnerability and high therapeutic potential of this transporter.
Collapse
Affiliation(s)
- Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Casey M Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Yong Zi Tan
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Helen I Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
6
|
Arutyunova E, Jiang Z, Yang J, Kulepa AN, Young HS, Verhelst S, O’Donoghue AJ, Lemieux MJ. An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases. Biol Chem 2018; 399:1389-1397. [DOI: 10.1515/hsz-2018-0255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
Abstract
AbstractRhomboids are ubiquitous intramembrane serine proteases that cleave transmembrane substrates. Their functions include growth factor signaling, mitochondrial homeostasis, and parasite invasion. A recent study revealed that theEscherichia colirhomboid protease EcGlpG is essential for its extraintestinal pathogenic colonization within the gut. Crystal structures of EcGlpG and theHaemophilus influenzaerhomboid protease HiGlpG have deciphered an active site that is buried within the lipid bilayer but exposed to the aqueous environment via a cavity at the periplasmic face. A lack of physiological transmembrane substrates has hampered progression for understanding their catalytic mechanism and screening inhibitor libraries. To identify a soluble substrate for use in the study of rhomboid proteases, an array of internally quenched peptides were assayed with HiGlpG, EcGlpG and PsAarA fromProvidencia stuartti. One substrate was identified that was cleaved by all three rhomboid proteases, with HiGlpG having the highest cleavage efficiency. Mass spectrometry analysis determined that all enzymes hydrolyze this substrate between norvaline and tryptophan. Kinetic analysis in both detergent and bicellular systems demonstrated that this substrate can be cleaved in solution and in the lipid environment. The substrate was subsequently used to screen a panel of benzoxazin-4-one inhibitors to validate its use in inhibitor discovery.
Collapse
|
7
|
Costa MI, Cerletti M, Paggi RA, Trötschel C, De Castro RE, Poetsch A, Giménez MI. Haloferax volcanii Proteome Response to Deletion of a Rhomboid Protease Gene. J Proteome Res 2018; 17:961-977. [PMID: 29301397 DOI: 10.1021/acs.jproteome.7b00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are conserved intramembrane serine proteases involved in cell signaling processes. Their role in prokaryotes is scarcely known and remains to be investigated in Archaea. We previously constructed a rhomboid homologue deletion mutant (ΔrhoII) in Haloferax volcanii, which showed reduced motility, increased novobiocin sensitivity, and an N- glycosylation defect. To address the impact of rhoII deletion on H. volcanii physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. A total of 1847 proteins were identified (45.8% of H. volcanii predicted proteome), from which 103 differed in amount. Additionally, the mutant strain evidenced 99 proteins with altered electrophoretic migration, which suggested differential post-translational processing/modification. Integral membrane proteins that evidenced variations in concentration, electrophoretic migration, or semitryptic cleavage in the mutant were considered as potential RhoII targets. These included a PrsW protease homologue (which was less stable in the mutant strain), a predicted halocyanin, and six integral membrane proteins potentially related to the mutant glycosylation (S-layer glycoprotein, Agl15) and cell adhesion/motility (flagellin1, HVO_1153, PilA1, and PibD) defects. This study investigated for the first time the impact of a rhomboid protease on the whole proteome of an organism.
Collapse
Affiliation(s)
- Mariana I Costa
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Christian Trötschel
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Ansgar Poetsch
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University , Plymouth PL4 8AA, United Kingdom
| | - María I Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| |
Collapse
|
8
|
Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2200-2209. [PMID: 28460881 DOI: 10.1016/j.bbamcr.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Rhomboids are intramembrane serine proteases that cleave the transmembrane helices of substrate proteins, typically releasing luminal/extracellular domains from the membrane. They are conserved in all branches of life and there is a growing recognition of their association with a wide range of human diseases. Human rhomboids, for example, have been implicated in cancer, metabolic disease and neurodegeneration, while rhomboids in apicomplexan parasites appear to contribute to their invasion of host cells. Recent advances in our knowledge of the structure and the enzyme function of rhomboids, and increasing efforts to identify specific inhibitors, are beginning to provide important insight into the prospect of rhomboids becoming future therapeutic targets. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ulrike Künzel
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
9
|
El Khatib M, Tran QT, Nasrallah C, Lopes J, Bolla JM, Vivaudou M, Pagès JM, Colletier JP. Providencia stuartii form biofilms and floating communities of cells that display high resistance to environmental insults. PLoS One 2017; 12:e0174213. [PMID: 28334028 PMCID: PMC5363852 DOI: 10.1371/journal.pone.0174213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Biofilms are organized communities of bacterial cells that are responsible for the majority of human chronic bacterial infections. Providencia stuartii is a Gram-negative biofilm-forming bacterium involved in high incidence of urinary tract infections in catheterized patients. Yet, the structuration of these biofilms, and their resistance to environmental insults remain poorly understood. Here, we report on planktonic cell growth and biofilm formation by P. stuartii, in conditions that mimic its most common pathophysiological habitat in humans, i.e. the urinary tract. We observed that, in the planktonic state, P. stuartii forms floating communities of cells, prior to attachment to a surface and subsequent adoption of the biofilm phenotype. P. stuartii planktonic and biofilm cells are remarkably resistant to calcium, magnesium and to high concentrations of urea, and show the ability to grow over a wide range of pHs. Experiments conducted on a P. stuartii strain knocked-out for the Omp-Pst2 porin sheds light on the role it plays in the early stages of growth, as well as in the adaptation to high concentration of urea and to varying pH.
Collapse
Affiliation(s)
- Mariam El Khatib
- Institut de Biologie Structurale, Université Grenoble Alpes – Commissariat à l’Énergie Atomique – Centre National de la Recherche Scientifique, Grenoble, France
| | - Que-Tien Tran
- School of Biophysics, Jacobs University of Bremen, Bremen, Germany
| | - Chady Nasrallah
- Institut de Biologie Structurale, Université Grenoble Alpes – Commissariat à l’Énergie Atomique – Centre National de la Recherche Scientifique, Grenoble, France
| | - Julie Lopes
- Institut de Biologie Structurale, Université Grenoble Alpes – Commissariat à l’Énergie Atomique – Centre National de la Recherche Scientifique, Grenoble, France
| | - Jean-Michel Bolla
- Équipe Transporteurs Membranaires, Chimiorésistance et Drug-Design, Université Aix-Marseille – Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Michel Vivaudou
- Institut de Biologie Structurale, Université Grenoble Alpes – Commissariat à l’Énergie Atomique – Centre National de la Recherche Scientifique, Grenoble, France
| | - Jean-Marie Pagès
- Équipe Transporteurs Membranaires, Chimiorésistance et Drug-Design, Université Aix-Marseille – Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Université Grenoble Alpes – Commissariat à l’Énergie Atomique – Centre National de la Recherche Scientifique, Grenoble, France
- * E-mail:
| |
Collapse
|
10
|
Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016; 60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023]
Abstract
Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
11
|
Dogga SK, Soldati-Favre D. Biology of rhomboid proteases in infectious diseases. Semin Cell Dev Biol 2016; 60:38-45. [PMID: 27567708 DOI: 10.1016/j.semcdb.2016.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Rhomboids are a well-conserved class of intramembrane serine proteases found in all kingdoms of life, sharing a conserved core structure of at least six transmembrane (TM) domains that contain the catalytic serine-histidine dyad. The rhomboid proteases, which cleave membrane embedded substrates within their TM domains, are emerging as an important group of enzymes controlling a myriad of biological processes. These enzymes are found in a wide variety of pathogens manifesting important roles in their pathological processes. Accordingly, they have received considerable attention as potential targets for pharmacological intervention over the past few years. This review provides a general update on rhomboid proteases and their roles in pathogenesis of human infectious agents.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
12
|
Novick PA, Carmona NM, Trujillo M. Evolutionary dynamics of rhomboid proteases in Streptomycetes. BMC Res Notes 2015; 8:234. [PMID: 26054641 PMCID: PMC4467639 DOI: 10.1186/s13104-015-1205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/08/2015] [Indexed: 11/13/2022] Open
Abstract
Background Proteolytic enzymes are ubiquitous and active in a myriad of biochemical pathways. One type, the rhomboids are intramembrane serine proteases that release their products extracellularly. These proteases are present in all forms of life and their function is not fully understood, although some evidence suggests they participate in cell signaling. Streptomycetes are prolific soil bacteria with diverse physiological and metabolic properties that respond to signals from other cells and from the environment. In the present study, we investigate the evolutionary dynamics of rhomboids in Streptomycetes, as this can shed light into the possible involvement of rhomboids in the complex lifestyles of these bacteria. Results Analysis of Streptomyces genomes revealed that they harbor up to five divergent putative rhomboid genes (arbitrarily labeled families A–E), two of which are orthologous to rhomboids previously described in Mycobacteria. Characterization of each of these rhomboid families reveals that each group is distinctive, and has its own evolutionary history. Two of the Streptomyces rhomboid families are highly conserved across all analyzed genomes suggesting they are essential. At least one family has been horizontally transferred, while others have been lost in several genomes. Additionally, the transcription of the four rhomboid genes identified in Streptomyces coelicolor, the model organism of this genus, was verified by reverse transcription. Conclusions Using phylogenetic and genomic analysis, this study demonstrates the existence of five distinct families of rhomboid genes in Streptomycetes. Families A and D are present in all nine species analyzed indicating a potentially important role for these genes. The four rhomboids present in S. coelicolor are transcribed suggesting they could participate in cellular metabolism. Future studies are needed to provide insight into the involvement of rhomboids in Streptomyces physiology. We are currently constructing knock out (KO) mutants for each of the rhomboid genes from S. coelicolor and will compare the phenotypes of the KOs to the wild type strain.
Collapse
Affiliation(s)
- Peter A Novick
- Biological Sciences and Geology Department, Queensborough Community College, City University of New York, Bayside, NY, USA.
| | - Naydu M Carmona
- Biological Sciences and Geology Department, Queensborough Community College, City University of New York, Bayside, NY, USA.
| | - Monica Trujillo
- Biological Sciences and Geology Department, Queensborough Community College, City University of New York, Bayside, NY, USA.
| |
Collapse
|
13
|
Giménez MI, Cerletti M, De Castro RE. Archaeal membrane-associated proteases: insights on Haloferax volcanii and other haloarchaea. Front Microbiol 2015; 6:39. [PMID: 25774151 PMCID: PMC4343526 DOI: 10.3389/fmicb.2015.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
The function of membrane proteases range from general house-keeping to regulation of cellular processes. Although the biological role of these enzymes in archaea is poorly understood, some of them are implicated in the biogenesis of the archaeal cell envelope and surface structures. The membrane-bound ATP-dependent Lon protease is essential for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least two different proteases are needed in this archaeon to accomplish the posttranslational modifications of the S-layer glycoprotein. The rhomboid protease RhoII is involved in the N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two different signal peptidase I homologs exist in H. volcanii, Sec11a and Sec11b, which likely play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin precursors, being essential for the biogenesis and function of the archaellum and other cell surface structures in H. volcanii.
Collapse
Affiliation(s)
- María I Giménez
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| |
Collapse
|
14
|
Parente J, Casabuono A, Ferrari MC, Paggi RA, De Castro RE, Couto AS, Giménez MI. A rhomboid protease gene deletion affects a novel oligosaccharide N-linked to the S-layer glycoprotein of Haloferax volcanii. J Biol Chem 2014; 289:11304-11317. [PMID: 24596091 DOI: 10.1074/jbc.m113.546531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.
Collapse
Affiliation(s)
- Juliana Parente
- From the Centro de Investigación en Hidratos de Carbono, Departamento de Química Orgánica, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina and
| | - Adriana Casabuono
- From the Centro de Investigación en Hidratos de Carbono, Departamento de Química Orgánica, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina and
| | - María Celeste Ferrari
- the Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Funes 3250 4to nivel, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Roberto Alejandro Paggi
- the Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Funes 3250 4to nivel, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Rosana Esther De Castro
- the Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Funes 3250 4to nivel, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Alicia Susana Couto
- From the Centro de Investigación en Hidratos de Carbono, Departamento de Química Orgánica, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina and
| | - María Inés Giménez
- the Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, Funes 3250 4to nivel, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
15
|
Untangling structure-function relationships in the rhomboid family of intramembrane proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2862-72. [PMID: 24099005 DOI: 10.1016/j.bbamem.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 05/04/2013] [Indexed: 12/30/2022]
Abstract
Rhomboid proteases are a family of integral membrane proteins that have been implicated in critical regulatory roles in a wide array of cellular processes and signaling events. The determination of crystal structures of the prokaryotic rhomboid GlpG from Escherichia coli and Haemophilus influenzae has ushered in an era of unprecedented understanding into molecular aspects of intramembrane proteolysis by this fascinating class of protein. A combination of structural studies by X-ray crystallography, and biophysical and spectroscopic analyses, combined with traditional enzymatic and functional analysis has revealed fundamental aspects of rhomboid structure, substrate recognition and the catalytic mechanism. This review summarizes these remarkable advances by examining evidence for the proposed catalytic mechanism derived from inhibitor co-crystal structures, conflicting models of rhomboid-substrate interaction, and recent work on the structure and function of rhomboid cytosolic domains. In addition to exploring progress on aspects of rhomboid structure, areas for future research and unaddressed questions are emphasized and highlighted. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
|
16
|
Rather P. Role of rhomboid proteases in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2849-54. [PMID: 23518036 DOI: 10.1016/j.bbamem.2013.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 11/20/2022]
Abstract
The first member of the rhomboid family of intramembrane serine proteases in bacteria was discovered almost 20years ago. It is now known that rhomboid proteins are widely distributed in bacteria, with some bacteria containing multiple rhomboids. At the present time, only a single rhomboid-dependent function in bacteria has been identified, which is the cleavage of TatA in Providencia stuartii. Mutational analysis has shown that loss of the GlpG rhomboid in Escherichia coli alters cefotaxime resistance, loss of the YqgP (GluP) rhomboid in Bacillus subtilis alters cell division and glucose uptake, and loss of the MSMEG_5036 and MSMEG_4904 genes in Mycobacterium smegmatis results in altered colony morphology, biofilm formation and antibiotic susceptibilities. However, the cellular substrates for these proteins have not been identified. In addition, analysis of the rhombosortases, together with their possible Gly-Gly CTERM substrates, may shed new light on the role of these proteases in bacteria. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Philip Rather
- Department of Microbiology and Immunology, 3001 Rollins Research Bldg, Emory University School of Medicine, Atlanta, GA 30322, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|