1
|
Garibaldi-Ríos AF, Figuera LE, Zúñiga-González GM, Gómez-Meda BC, García-Verdín PM, Carrillo-Dávila IA, Gutiérrez-Hurtado IA, Torres-Mendoza BM, Gallegos-Arreola MP. In Silico Identification of Dysregulated miRNAs Targeting KRAS Gene in Pancreatic Cancer. Diseases 2024; 12:152. [PMID: 39057123 PMCID: PMC11276408 DOI: 10.3390/diseases12070152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is highly lethal, with KRAS mutations in up to 95% of cases. miRNAs inversely correlate with KRAS expression, indicating potential as biomarkers. This study identified miRNAs targeting KRAS and their impact on PC characteristics using in silico methods. dbDEMC identified dysregulated miRNAs in PC; TargetScan, miRDB, and PolymiRTS 3.0 identified miRNAs specific for the KRAS gene; and OncomiR evaluated the association of miRNAs with clinical characteristics and survival in PC. The correlation between miRNAs and KRAS was analysed using ENCORI/starBase. A total of 210 deregulated miRNAs were identified in PC (116 overexpressed and 94 underexpressed). In total, 16 of them were involved in the regulation of KRAS expression and 9 of these (hsa-miR-222-3p, hsa-miR-30a-5p, hsa-miR-30b-5p, hsa-miR-30e-5p, hsa-miR-377-3p, hsa-miR-495-3p, hsa-miR-654-3p, hsa-miR-877-5p and hsa-miR-885-5p) were associated with the clinical characteristics of the PC. Specifically, the overexpression of hsa-miR-30a-5p was associated with PC mortality, and hsa-miR-30b-5p, hsa-miR-377-3p, hsa-miR-495-3p, and hsa-miR-885-5p were associated with survival. Correlation analysis revealed that the expression of 10 miRNAs is correlated with KRAS expression. The dysregulated miRNAs identified in PC may regulate KRAS and some are associated with clinically relevant features, highlighting their potential as biomarkers and therapeutic targets in PC treatment. However, experimental validation is required for confirmation.
Collapse
Affiliation(s)
- Asbiel Felipe Garibaldi-Ríos
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Guillermo Moisés Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico;
| | - Belinda Claudia Gómez-Meda
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Patricia Montserrat García-Verdín
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Irving Alejandro Carrillo-Dávila
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Itzae Adonai Gutiérrez-Hurtado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias Humanas y Retrovirus, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
- Departamento de Disciplinas Filosófico-Metodológicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
| |
Collapse
|
2
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Tonyan ZN, Barbitoff YA, Nasykhova YA, Danilova MM, Kozyulina PY, Mikhailova AA, Bulgakova OL, Vlasova ME, Golovkin NV, Glotov AS. Plasma microRNA Profiling in Type 2 Diabetes Mellitus: A Pilot Study. Int J Mol Sci 2023; 24:17406. [PMID: 38139235 PMCID: PMC10744218 DOI: 10.3390/ijms242417406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin resistance and β-cell dysfunction and leading to many micro- and macrovascular complications. In this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the same group of patients depending on body mass index and identified differential expression of miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.
Collapse
Affiliation(s)
- Ziravard N. Tonyan
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Maria M. Danilova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Polina Y. Kozyulina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Anastasiia A. Mikhailova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Olga L. Bulgakova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Margarita E. Vlasova
- St. Martyr George City Hospital, 194354 St. Petersburg, Russia; (M.E.V.); (N.V.G.)
| | - Nikita V. Golovkin
- St. Martyr George City Hospital, 194354 St. Petersburg, Russia; (M.E.V.); (N.V.G.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| |
Collapse
|
4
|
Tümerdem BŞ, Akbaba TH, Batu ED, Akkaya-Ulum YZ, Mutlu P, Ozen S, Balci-Peynircioğlu B. Drug metabolism and inflammation related distinct miRNA signature of colchicine resistant familial Mediterranean fever patients. Int Immunopharmacol 2023; 124:111011. [PMID: 37844462 DOI: 10.1016/j.intimp.2023.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVE Colchicine is the primary treatment for familial Mediterranean fever (FMF). Although colchicine is safe and effective in FMF patients, around 5-10% of patients show resistance to the drug. This study investigates the possibility of a link between colchicine resistance and the distinct miRNA profiles in colchicine resistant FMF patients. METHODS Differentially expressed miRNAs in colchicine resistant FMF patients were detected by Affymetrix 4.0 miRNA array analysis. These miRNAs were then categorized based on the role of their target genes in drug metabolism and inflammation related pathways. qRT-PCR was used to validate candidate miRNAs selected by Enrichr, a gene enrichment analysis system based on the relevance of possible target genes in drug metabolism pathways. Expression levels of these miRNAs' potential target genes were investigated by qRT-PCR. Then, a colchicine resistant hepatoblastoma cell line (HEPG2) was established, and the differentially expressed miRNAs and genes identified in patients were also analyzed in this colchicine-resistant cell line. RESULTS 25 differentially expressed miRNAs were detected in colchicine resistant FMF patients. miR-183-5p, miR-15b-5p, miR-505-5p, and miR-125a-5p were identified to be associated with drug resistance and inflammatory pathways and thus chosen for further validation. miR-183-5p, miR-15b-5p, miR-505-5p miRNAs showed significantly differential expression in qRT-PCR. NFKB1, NR3C1, PPARα - drug absorption, distribution, metabolism, and excretion (ADME) genes were predicted to be targeted by these miRNAs. Among these targets, NFKB1 and NR3C1 were differentially over expressed in colchicine resistant FMF patients. These findings were validated in the colchicine resistant hepatoblastoma cell line (HEPG2). CONCLUSION This is the first study evaluating the role of miRNAs in colchicine resistant patients with FMF. Their differential expression may result in resistance to standard colchicine treatment by affecting the expression of genes that take place in drug absorption, distribution, metabolism, and excretion (ADME) or nuclear receptors that regulate ADME genes, thus potentially playing a role in both drug metabolism and inflammation.
Collapse
Affiliation(s)
- Bilgesu Şafak Tümerdem
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ezgi Deniz Batu
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Pelin Mutlu
- Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Seza Ozen
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
5
|
Alinejad T, Modarressi S, Sadri Z, Hao Z, Chen CS. Diagnostic applications and therapeutic option of Cascade CRISPR/Cas in the modulation of miRNA in diverse cancers: promises and obstacles. J Cancer Res Clin Oncol 2023; 149:9557-9575. [PMID: 37222810 PMCID: PMC10423114 DOI: 10.1007/s00432-023-04747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology is a molecular tool specific to sequences for engineering genomes. Among diverse clusters of Cas proteins, the class 2/type II CRISPR/Cas9 system, despite several challenges, such as off-target effects, editing efficiency, and efficient delivery, has shown great promise for driver gene mutation discovery, high-throughput gene screening, epigenetic modulation, nucleic acid detection, disease modeling, and more importantly for therapeutic purposes. CRISPR-based clinical and experimental methods have applications across a wide range of areas, especially for cancer research and, possibly, anticancer therapy. On the other hand, given the influential role of microRNAs (miRNAs) in the regulations of cellular division, carcinogenicity, tumorigenesis, migration/invasion, and angiogenesis in diverse normal and pathogenic cellular processes, in different stages of cancer, miRNAs are either oncogenes or tumor suppressors, according to what type of cancer they are involved in. Hence, these noncoding RNA molecules are conceivable biomarkers for diagnosis and therapeutic targets. Moreover, they are suggested to be adequate predictors for cancer prediction. Conclusive evidence proves that CRISPR/Cas system can be applied to target small non-coding RNAs. However, the majority of studies have highlighted the application of the CRISPR/Cas system for targeting protein-coding regions. In this review, we specifically discuss diverse applications of CRISPR-based tools for probing miRNA gene function and miRNA-based therapeutic involvement in different types of cancers.
Collapse
Affiliation(s)
- Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Shabnam Modarressi
- Department of Food Microbiology, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C. Copenhagen, Denmark
| | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX USA
| | - Zuo Hao
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Cheng Shui Chen
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| |
Collapse
|
6
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
7
|
You J, Xia H, Huang Z, He R, Zhao X, Chen J, Liu S, Xu Y, Cui Y. Research progress of circulating non-coding RNA in diagnosis and treatment of hepatocellular carcinoma. Front Oncol 2023; 13:1204715. [PMID: 37546394 PMCID: PMC10400719 DOI: 10.3389/fonc.2023.1204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor that carries a significant risk of morbidity and mortality. This type of cancer is prevalent in Asia due to the widespread presence of risk factors. Unfortunately, HCC often goes undetected until it has reached an advanced stage, making early detection and treatment critical for better outcomes. Alpha-fetoprotein (AFP) is commonly used in clinical practice for diagnosing HCC, but its sensitivity and specificity are limited. While surgery and liver transplantation are the main radical treatments, drug therapy and local interventions are better options for patients with advanced HCC. Accurately assessing treatment efficacy and adjusting plans in a timely manner can significantly improve the prognosis of HCC. Non-coding RNA gene transcription products cannot participate in protein production, but they can regulate gene expression and protein function through the regulation of transcription and translation processes. These non-coding RNAs have been found to be associated with tumor development in various types of tumors. Noncoding RNA released by tumor or blood cells can circulate in the blood and serve as a biomarker for diagnosis, prognosis, and efficacy assessment. This article explores the unique role of circulating noncoding RNA in HCC from various perspectives.
Collapse
Affiliation(s)
- Junqi You
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiali Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sidi Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Sabbaghian A, Mussack V, Kirchner B, Bui MLU, Kalani MR, Pfaffl MW, Golalipour M. A panel of blood-derived miRNAs with a stable expression pattern as a potential pan-cancer detection signature. Front Mol Biosci 2022; 9:1030749. [PMID: 36589227 PMCID: PMC9798419 DOI: 10.3389/fmolb.2022.1030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: MicroRNAs have a significant role in the regulation of the transcriptome. Several miRNAs have been proposed as potential biomarkers in different malignancies. However, contradictory results have been reported on the capability of miRNA biomarkers in cancer detection. The human biological clock involves molecular mechanisms that regulate several genes over time. Therefore, the sampling time becomes one of the significant factors in gene expression studies. Method: In the present study, we have tried to find miRNAs with minimum fluctuation in expression levels at different time points that could be more accurate candidates as diagnostic biomarkers. The small RNA-seq raw data of ten healthy individuals across nine-time points were analyzed to identify miRNAs with stable expression. Results: We have found five oscillation patterns. The stable miRNAs were investigated in 779 small-RNA-seq datasets of eleven cancer types. All miRNAs with the highest differential expression were selected for further analysis. The selected miRNAs were explored for functional pathways. The predominantly enriched pathways were miRNA in cancer and the P53-signaling pathway. Finally, we have found seven miRNAs, including miR-142-3p, miR-199a-5p, miR-223-5p, let-7d-5p, miR-148b-3p, miR-340-5p, and miR-421. These miRNAs showed minimum fluctuation in healthy blood and were dysregulated in the blood of eleven cancer types. Conclusion: We have found a signature of seven stable miRNAs which dysregulate in several cancer types and may serve as potential pan-cancer biomarkers.
Collapse
Affiliation(s)
- Amir Sabbaghian
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Maria L. U. Bui
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Mohammad Reza Kalani
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Masoud Golalipour
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
- Cellular and Molecular Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
9
|
Comprehensive analysis of ceRNA networks to determine genes related to prognosis, overall survival, and immune infiltration in clear cell renal carcinoma. Comput Biol Med 2021; 141:105043. [PMID: 34839901 DOI: 10.1016/j.compbiomed.2021.105043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the common subtypes of kidney cancer. Circular RNAs (circRNAs) act as competing endogenous RNAs (ceRNAs) to affect the expression of microRNAs (miRNAs), and hence the expression of genes involved in the development and progression of ccRCC. However, these interactions have not been sufficiently explored. METHODS The differential expression of circRNAs (DEC) was extracted from the GEO database, and the expression of circRNAs was analyzed by the Limma R package. The interaction of miRNAs with circRNAs was predicted using (cancer-specific circRNA database) CSCD and circinteractome database. The genes affected by the miRNAs were predicted by miRwalk version 3, and the differential expression was retrieved using TCGA. Functional enrichment was assessed and a PPI network was created using DAVID and Cytoscape, respectively. The genes with significant interactions (hub-genes) were screened, and the total survival rate of ccRCC patients was extracted from the Gene Expression Profiling Interactive Analysis (GEPIA) database. To confirm the expression of OS genes we used the Immunohistochemistry (IHC) data and TCGA database. The correlation between gene expression and immune cell infiltration was investigated using TIMER2.0. Finally, potential drug candidates were predicted by the cMAP database. RESULTS Four DECs (hsa_circ_0003340, hsa_circ_0007836, hsa_circ_0020303, and hsa_circ_0001873) were identified, along with 11 interacting miRNAs (miR-1224-3p, miR-1294, miR-1205, miR-1231, miR-615-5p, miR-940, miR-1283, and miR-1305). These miRNAs were predicted to affect 1282 target genes, and function enrichment was used to identify the genes involved in cancer biology. 18 hub-genes (CCR1, VCAM1, NCF2, LAPTM5, NCKAP1L, CTSS, BTK, LILRB2, CD53, MPEG1, C3AR1, GPR183, C1QA, C1QC, P2RY8, LY86, CYBB, and IKZF1) were identified from a PPI network. VCAM1, NCF2, CTSS, LILRB2, MPEG1, C3AR1, P2RY8, and CYBB could affect the survival of ccRCC patients. The hub-gene expression was correlated with tumor immune cell infiltration and patient prognosis. Two potantial drug candidates, naphazoline and lithocholic acid could play a role in ccRCC therapy, as well other cancers. CONCLUSION This bioinformatics analysis brings a new insight into the role of circRNA/miRNA/mRNA interactions in ccRCC pathogenesis, prognosis, and possible drug treatment or immunotherapy.
Collapse
|
10
|
Jiang HG, Dai CH, Xu YP, Jiang Q, Xia XB, Shu Y, Li J. Four plasma miRNAs act as biomarkers for diagnosis and prognosis of non-small cell lung cancer. Oncol Lett 2021; 22:792. [PMID: 34630703 DOI: 10.3892/ol.2021.13053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies have reported that the aberrant expression of circulating microRNAs (miRNAs/miRs) can be used as diagnostic and prognostic markers in non-small cell lung cancer (NSCLC). The present study aimed to assess the diagnostic and prognostic predictive values of four plasma miRNAs for NSCLC. A total of 12 candidate miRNAs were selected that have previously been reported to be aberrantly expressed in NSCLC, and their plasma levels in the training set were detected via reverse transcription-quantitative PCR analysis. The screened out miRNAs were further validated in the testing set. The area under the curve (AUC) of the receiver operating characteristic curve was constructed to evaluate diagnostic performance. Kaplan-Meier survival analysis was performed to assess the association between the plasma miRNA levels and disease-free survival (DFS) time. The results demonstrated that 4/12 plasma miRNAs (miR-210, miR-1290, miR-150 and miR-21-5p) were highly expressed in patients with NSCLC compared with their expression levels in patients with benign lung disease (BLD) and healthy controls in the training and testing sets, respectively. The AUC values of the four-miRNA panel were 0.96 and 0.93 in the training and testing sets, respectively, for distinguishing patients with NSCLC from healthy controls, which were similar to the AUC values for distinguishing patients with NSCLC from patients with BLD (0.96 and 0.94). The AUC values of the four-miRNA panel in patients with stage I NSCLC were comparable to that of patients with stage II-III NSCLC (0.942 and 0.965). Patients with high plasma levels of miR-210 and miR-150 had worse DFS than those with low plasma levels of these miRNAs. In addition, patients whose plasma levels of the four miRNAs decreased by >50% after surgery exhibited a good DFS. Taken together, the results of the present study suggest that these four miRNAs (miR-210, miR-1290, miR-150 and miR-21-5p) act as useful biomarkers for early diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- He-Guo Jiang
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chun-Hua Dai
- Department of Radiotherapy, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ya-Ping Xu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qian Jiang
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xian-Bin Xia
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Shu
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
11
|
Zhu WJ, Chen BJ, Zhu YY, Sun L, Zhang YC, Liu H, Luo FM. Increased microRNA-30a levels in bronchoalveolar lavage fluid as a diagnostic biomarker for lung cancer. PeerJ 2021; 9:e11528. [PMID: 34178448 PMCID: PMC8197034 DOI: 10.7717/peerj.11528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background MicroRNA-30a (miRNA-30a) levels have been shown to increase in the plasma of lung cancer patients. Herein, we evaluated the miRNA-30a levels in the bronchoalveolar lavage fluid (BALF) of lung cancer patients as a potential biomarker for lung cancer diagnosis. Methods BALF miRNA-30a expression of 174 subjects was quantified using quantitative real-time reverse transcription-polymerase chain reaction and compared between lung cancer patients and control patients with benign lung diseases. Moreover, its diagnostic value was evaluated by performing receiver operating characteristic (ROC) curve analysis. Results The relative BALF miRNA-30a expression was significantly higher in the lung cancer patients than in the controls (0.74 ± 0.55 versus 0.07 ± 0.48, respectively, p < 0.001) as well as in lung cancer patients with stage I–IIA disease than in those with stage IIB–IV disease (0.98 ± 0.64 versus 0.66 ± 0.54, respectively, p < 0.05). Additionally, miRNA-30a distinguished benign lung diseases from lung cancers, with an area under the ROC curve (AUC) of 0.822. ROC analysis also revealed an AUC of 0.875 for the Youden index-based optimal cut-off points for stage I–IIA adenocarcinoma. Thus, increased miRNA-30a levels in BALF may be a useful biomarker for non-small-cell lung cancer diagnosis.
Collapse
Affiliation(s)
- Wen-Jun Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Bo-Jiang Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Ying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Sun
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Chen Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Huan Liu
- Department of General Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Feng-Ming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Peng D, Hou ZL, Zhang HX, Zhang S, Zhang SM, Lin RY, Xing ZC, Yuan Y, Yang KY, Wang JX. Microarray Expression Profile and Analysis of Circular RNA Regulatory Network in Pulmonary Thromboembolism. Int J Gen Med 2021; 14:1239-1249. [PMID: 33859492 PMCID: PMC8043787 DOI: 10.2147/ijgm.s304199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background Pulmonary thromboembolism (PTE) is a common disease which may be a serious condition and has high mortality. Recently, it has been shown that circRNAs play an important role in the development of various diseases, including thromboembolic disease. However, circRNAs expression profiling is not clear in PTE, this study aims to identify the circRNAs expressed in PTE and to elucidate their possible role in pathophysiology of PTE. Methods A total of 5 patients with CTPA-confirmed PTE and 5 healthy controls were recruited for the present study. The circRNAs expression profile was analyzed by microarray. Results In total, 256 differentially expressed circRNAs (up 142, down114) and 1162 mRNA (up 446, down 716) were summarized by analyzing the circRNAs microarray data. The top 3 up-regulated and 3 down-regulated circRNAs were validated by Real-Time Polymerase Chain Reaction (qRT-PCR). Two differentially expressed circRNAs (hsa_circ_0000891, hsa_circ_0043506) were selected for further analysis. Finally, we construct a circRNA-miRNA-mRNA ceRNA network with a bioinformatic prediction tool. Pathway analysis shows that the enriched mRNAs targets take part in Protein processing in endoplasmic reticulum, Systemic lupus erythematosus, Endocytosis, Spliceosome, HTLV-I infection and Ubiquitin mediated proteolysis. Conclusion Our findings indicated that aberrantly expressed circRNAs (hsa_circ_0000891, hsa_circ_0043506) may be involved in the development of PTE.
Collapse
Affiliation(s)
- Dan Peng
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zi-Liang Hou
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong-Xia Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shu-Ming Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rui-Yan Lin
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhen-Chuan Xing
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuan Yuan
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Kai-Yuan Yang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jin-Xiang Wang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Wang XJ, Gao J, Wang Z, Yu Q. Identification of a Potentially Functional microRNA-mRNA Regulatory Network in Lung Adenocarcinoma Using a Bioinformatics Analysis. Front Cell Dev Biol 2021; 9:641840. [PMID: 33681226 PMCID: PMC7930498 DOI: 10.3389/fcell.2021.641840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a common lung cancer with a high mortality, for which microRNAs (miRNAs) play a vital role in its regulation. Multiple messenger RNAs (mRNAs) may be regulated by miRNAs, involved in LUAD tumorigenesis and progression. However, the miRNA-mRNA regulatory network involved in LUAD has not been fully elucidated. METHODS Differentially expressed miRNAs and mRNA were derived from the Cancer Genome Atlas (TCGA) dataset in tissue samples and from our microarray data in plasma (GSE151963). Then, common differentially expressed (Co-DE) miRNAs were obtained through intersected analyses between the above two datasets. An overlap was applied to confirm the Co-DEmRNAs identified both in targeted mRNAs and DEmRNAs in TCGA. A miRNA-mRNA regulatory network was constructed using Cytoscape. The top five miRNA were identified as hub miRNA by degrees in the network. The functions and signaling pathways associated with the hub miRNA-targeted genes were revealed through Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The key mRNAs in the protein-protein interaction (PPI) network were identified using the STRING database and CytoHubba. Survival analyses were performed using Gene Expression Profiling Interactive Analysis (GEPIA). RESULTS The miRNA-mRNA regulatory network consists of 19 Co-DEmiRNAs and 760 Co-DEmRNAs. The five miRNAs (miR-539-5p, miR-656-3p, miR-2110, let-7b-5p, and miR-92b-3p) in the network were identified as hub miRNAs by degrees (>100). The 677 Co-DEmRNAs were targeted mRNAs from the five hub miRNAs, showing the roles in the functional analyses of the GO analysis and KEGG pathways (inclusion criteria: 836 and 48, respectively). The PPI network and Cytoscape analyses revealed that the top ten key mRNAs were NOTCH1, MMP2, IGF1, KDR, SPP1, FLT1, HGF, TEK, ANGPT1, and PDGFB. SPP1 and HGF emerged as hub genes through survival analysis. A high SPP1 expression indicated a poor survival, whereas HGF positively associated with survival outcomes in LUAD. CONCLUSION This study investigated a miRNA-mRNA regulatory network associated with LUAD, exploring the hub miRNAs and potential functions of mRNA in the network. These findings contribute to identify new prognostic markers and therapeutic targets for LUAD patients in clinical settings.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Gao
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Pulmonary Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Zhuo Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Pathology Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: Biomarkers of disease. Clin Chim Acta 2021; 516:46-54. [PMID: 33485903 DOI: 10.1016/j.cca.2021.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a class of endogenous noncoding single-stranded RNA molecules with approximately 20-24 nucleotides and are associated with a broad range of biological processes. Researchers found that microRNAs are abundant in tissues, and more importantly, there are also trace circulating microRNAs that exist in biological fluids. In recent years, circulating microRNAs had emerged as promising diagnostic and prognostic biomarkers for the noninvasive detection of diseases with high specificity and sensitivity. More importantly, specific microRNA expression signatures reflect not only the existence of early-stage diseases but also the dynamic development of advanced-stage diseases, disease prognosis prediction, and drug resistance. To date, an increasing number of potential miRNA biomarkers have been reported, but their practical application prospects are still unclear. Therefore, microRNAs, as potential diagnostic and prognostic biomarkers in a variety of diseases, need to be updated, as they are of great importance in the diagnosis, prognosis and prediction of therapeutic responses. In this review, we summary our current understanding of microRNAs as potential biomarkers in the major diseases (e.g., cancers and cardio-cerebrovascular diseases), which provide the basis for the design of diagnosis and treatment plan and the improvement of the cure rate.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Qian Li
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xiaoli Dai
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Wujun Chen
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Mansour SA, Farhat AA, Abd El-Zaher AH, Bediwy AS, Abdou SM, Al Saka AA, Zidan AAA. MicroRNA genetic signature in non-small cell lung cancer (NSCLC) Egyptian patients. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2020. [DOI: 10.1186/s43168-020-00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cancer development is associated with deregulated microRNA (miRNA) in body fluids including serum, plasma, and bronchoalveolar lavage (BAL). Early diagnosis and early treatment of lung cancer improve survival and response to treatment. So, finding an easy detectable biomarker is crucially important to improve the disease outcome. So, we analyzed the differential expression of miRNA using microarray both in serum and BAL of 37 non-small cell lung cancer (NSCLC) patients and 30 healthy control subjects (15 non-smokers and 15 smokers).
Results
A total of 32 miRNAs were significantly differentially expressed in serum of NSCLC patients versus controls (13 up-regulated and 19 down-regulated), whereas 14 miRNAs were significantly differentially expressed in BAL of NSCLC patients relative to control (12 upregulated and 2 downregulated). The accuracy of MiRNAs to detect lung cancer patients versus control was 94.3% with a specificity of 97.8% and a sensitivity of 92.3%.
Conclusions
Expression of miRNAs is specific in both serum and BAL of NSCLC patients, indicating that they might be considered easy diagnostic biomarkers for early lung cancer detection.
Collapse
|
16
|
Hong H, Yao S, Zhang Y, Ye Y, Li C, Hu L, Sun Y, Huang HY, Ji H. In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor. PLoS Genet 2020; 16:e1009168. [PMID: 33137086 PMCID: PMC7660552 DOI: 10.1371/journal.pgen.1009168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/12/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the development of various cancers including lung cancer which is one of the devastating diseases worldwide. How miRNAs function in de novo lung tumorigenesis remains largely unknown. We here developed a CRISPR/Cas9-mediated dual guide RNA (dgRNA) system to knockout miRNAs in genetically engineered mouse model (GEMM). Through bioinformatic analyses of human lung cancer miRNA database, we identified 16 downregulated miRNAs associated with malignant progression and performed individual knockout with dgRNA system in KrasG12D/Trp53L/L (KP) mouse model. Using this in vivo knockout screening, we identified miR-30b and miR-146a, which has been previously reported as tumor suppressors and miR-190b, a new tumor-suppressive miRNA in lung cancer development. Over-expression of miR-190b in KP model as well as human lung cancer cell lines significantly suppressed malignant progression. We further found that miR-190b targeted the Hus1 gene and knockout of Hus1 in KP model dramatically suppressed lung tumorigenesis. Collectively, our study developed an in vivo miRNA knockout platform for functionally screening in GEMM and identified miR-190b as a new tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Hui Hong
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shun Yao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Yi Ye
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
- Center for Statistical Science, Center for Bioinformatics, Peking University, Beijing, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
17
|
Zhou C, Chen Z, Zhao L, Zhao W, Zhu Y, Liu J, Zhao X. A novel circulating miRNA-based signature for the early diagnosis and prognosis prediction of non-small-cell lung cancer. J Clin Lab Anal 2020; 34:e23505. [PMID: 33463758 PMCID: PMC7676218 DOI: 10.1002/jcla.23505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is a significant public health issue worldwide. The aim of our study was to develop a serum miRNA-based molecular signature for the early detection and prognosis prediction of NSCLC. METHODS The significantly altered circulating miRNAs were profiled in GSE24709. The top ten upregulated miRNAs were miR-432, miR-942, miR-29c-5p, miR-601, miR-613, miR-520d-3p, miR-1261, miR-132-5p, miR-302b, and miR-154-5p, while the top ten downregulated miRNAs were miR-562, miR-18b, miR-9-3p, miR-154-3p, miR-20b, miR-18a, miR-487a, miR-20a, miR-103, and miR-144. Then, the top four upregulated serum miRNAs (miR-432, miR-942, miR-29c-5p, and miR-601) were validated by real-time quantitative PCR. The clinical significance of two candidate serum miRNAs, miR-942 and miR-601, was further explored. RESULTS Our results showed that the expression levels of serum miR-942 and serum miR-601 were significantly upregulated in NSCLC. In addition, serum miR-942 and serum miR-601 showed better performance than CEA, CYFRA21-1, and SCCA for early diagnosis of NSCLC. Combining serum miR-942 and serum miR-601 enhanced the efficacy of detecting early-stage NSCLC. Moreover, high serum miR-942 and serum miR-601 were both associated with adverse clinical variables and poor survival. The NSCLC patients with simultaneously high serum miR-942 and serum miR-601 suffered worst clinical outcome, while those with simultaneously low serum miR-942 and serum miR-601 had most favorable outcome. The multivariate analysis showed that serum miR-942 and serum miR-601 were independent prognostic factors for NSCLC. CONCLUSIONS Taken together, serum miR-942 and serum miR-601 might serve as a promising molecular signature for the early detection and prognosis prediction of NSCLC.
Collapse
Affiliation(s)
- Chengwei Zhou
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Zixuan Chen
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Lili Zhao
- Department of Preventive Health CareThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Weijun Zhao
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Yonggang Zhu
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Jiayuan Liu
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Xiaodong Zhao
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| |
Collapse
|
18
|
Chaniad P, Trakunran K, Geater SL, Keeratichananont W, Thongsuksai P, Raungrut P. Serum miRNAs associated with tumor-promoting cytokines in non-small cell lung cancer. PLoS One 2020; 15:e0241593. [PMID: 33125430 PMCID: PMC7598461 DOI: 10.1371/journal.pone.0241593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor-promoting cytokines are a cause of tumor progression; therefore, identifying key regulatory microRNAs (miRNAs) for controlling their production is important. The aim of this study is to identify promising miRNAs associated with tumor-promoting cytokines in non-small cell lung cancer (NSCLC). We identified circulating miRNAs from 16 published miRNA profiles. The selected miRNAs were validated in the serum of 32 NSCLC patients and compared with 33 patients with other lung diseases and 23 healthy persons using quantitative real-time PCR. The cytokine concentration was investigated using the enzyme-linked immunoassay in the same sample set, with clinical validation of the miRNAs. The correlation between miRNA expression and cytokine concentration was evaluated by Spearman’s rank correlation. For consistent direction, one up-regulated miRNA (miR-145) was found in four studies, and seven miRNAs were reported in three studies. One miRNA (miR-20a) and four miRNAs (miR-25-3p, miR-223, let-7f, and miR-20b) were reported in six and five studies. However, their expression was inconsistent. In the clinical validation, serum miR-145 was significantly down-regulated, whereas serum miR-20a was significantly up-regulated in NSCLC, compared with controls. Regarding serum cytokine, all cytokines [vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and transforming growth factor β (TGF-β)], except tumor necrosis factor-α (TNF-α), had a higher level in NSCLC patients than controls. In addition, we found a moderate correlation between the TGF-β concentration and miR-20a (r = −0.537, p = 0.002) and miR-223 (r = 0.428, p = 0.015) and a weak correlation between the VEGF concentration with miR-20a (r = 0.376, p = 0.037) and miR-223 (r = −0.355, p = 0.046). MiR-145 and miR-20a are potential biomarkers for NSCLC. In addition, the regulation of tumor-promoting cytokine, through miR-20a and miR-223, might be a new therapeutic approach for lung cancer.
Collapse
Affiliation(s)
- Pichitpon Chaniad
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Keson Trakunran
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarayut Lucien Geater
- Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Warangkana Keeratichananont
- Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Paramee Thongsuksai
- Department of Pathology Department, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pritsana Raungrut
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- * E-mail:
| |
Collapse
|
19
|
Casey S, Goasdoue K, Miller SM, Brennan GP, Cowin G, O'Mahony AG, Burke C, Hallberg B, Boylan GB, Sullivan AM, Henshall DC, O'Keeffe GW, Mooney C, Bjorkman T, Murray DM. Temporally Altered miRNA Expression in a Piglet Model of Hypoxic Ischemic Brain Injury. Mol Neurobiol 2020; 57:4322-4344. [PMID: 32720074 PMCID: PMC7383124 DOI: 10.1007/s12035-020-02018-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most frequent cause of acquired infant brain injury. Early, clinically relevant biomarkers are required to allow timely application of therapeutic interventions. We previously reported early alterations in several microRNAs (miRNA) in umbilical cord blood at birth in infants with HIE. However, the exact timing of these alterations is unknown. Here, we report serial changes in six circulating, cross-species/bridging biomarkers in a clinically relevant porcine model of neonatal HIE with functional analysis. Six miRNAs—miR-374a, miR-181b, miR-181a, miR-151a, miR-148a and miR-128—were significantly and rapidly upregulated 1-h post-HI. Changes in miR-374a, miR-181b and miR-181a appeared specific to moderate-severe HI. Histopathological injury and five miRNAs displayed positive correlations and were predictive of MRS Lac/Cr ratios. Bioinformatic analysis identified that components of the bone morphogenic protein (BMP) family may be targets of miR-181a. Inhibition of miR-181a increased neurite length in both SH-SY5Y cells at 1 DIV (days in vitro) and in primary cultures of rat neuronal midbrain at 3 DIV. In agreement, inhibition of miR-181a increased expression of BMPR2 in differentiating SH-SY5Y cells. These miRNAs may therefore act as early biomarkers of HIE, thereby allowing for rapid diagnosis and timely therapeutic intervention and may regulate expression of signalling pathways vital to neuronal survival.
Collapse
Affiliation(s)
- Sophie Casey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland.
| | - Kate Goasdoue
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Stephanie M Miller
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Adam G O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - Christopher Burke
- Department of Pathology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard W O'Keeffe
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - Catherine Mooney
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Computer Science, University College Dublin, Dublin, Ireland
| | - Tracey Bjorkman
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Deirdre M Murray
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Predicting chromosome 1p/19q codeletion by RNA expression profile: a comparison of current prediction models. Aging (Albany NY) 2020; 11:974-985. [PMID: 30710490 PMCID: PMC6382420 DOI: 10.18632/aging.101795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chromosome 1p/19q codeletion is increasingly being recognized as the crucial genetic marker for glioma patients and have been included in WHO classification of glioma in 2016. Fluorescent in situ hybridization, a widely used method in detecting 1p/19q status, has some methodological limitations which might influence the clinical management for doctors. Here, we attempted to explore an RNA sequencing computational method to detect 1p/19q status. METHODS We included 692 samples with 1p/19q status information from TCGA cohort as training set and 222 samples with 1p/19q status information from REMBRANDT cohort as validation set. We reviewed and compared five tools: TSPairs, GSVA, PAM, Caret, smoother, with respect to their accuracy, sensitivity and specificity. RESULTS In TCGA cohort, the GSVA method showed the highest accuracy (98.4%) in predicting 1p/19q status (sensitivity=95.5%, specificity=99.6%) and smoother method showed the second-highest accuracy (accuracy=97.8%, sensitivity=96.4%, specificity=98.3%). While in REMBRANDT cohort, smoother method exhibited the highest accuracy (98.6%) (sensitivity= 96.7%, specificity=98.9%) in 1p/19q status prediction. CONCLUSIONS Our independent assessment of five tools revealed that smoother method was selected as the most stable and accurate method in predicting 1p/19q status. This method could be regarded as a potential alternative method for clinical practice in future.
Collapse
|
21
|
Asakura K, Kadota T, Matsuzaki J, Yoshida Y, Yamamoto Y, Nakagawa K, Takizawa S, Aoki Y, Nakamura E, Miura J, Sakamoto H, Kato K, Watanabe SI, Ochiya T. A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy. Commun Biol 2020; 3:134. [PMID: 32193503 PMCID: PMC7081195 DOI: 10.1038/s42003-020-0863-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/19/2020] [Indexed: 01/17/2023] Open
Abstract
Lung cancer, the leading cause of cancer death worldwide, is most frequently detected through imaging tests. In this study, we investigated serum microRNAs (miRNAs) as a possible early screening tool for resectable lung cancer. First, we used serum samples from participants with and without lung cancer to comprehensively create 2588 miRNAs profiles; next, we established a diagnostic model based on the combined expression levels of two miRNAs (miR-1268b and miR-6075) in the discovery set (208 lung cancer patients and 208 non-cancer participants). The model displayed a sensitivity of 99% and specificity of 99% in the validation set (1358 patients and 1970 non-cancer participants) and exhibited high sensitivity regardless of histological type and pathological TNM stage of the cancer. Moreover, the diagnostic index markedly decreased after lung cancer resection. Thus, the model we developed has the potential to markedly improve screening for resectable lung cancer. Asakura, Kadota et al. demonstrate the diagnostic potential of serum microRNAs for resectable lung cancer. Their diagnostic model based on the combined expression levels of two miRNAs predicts resectable lung cancer with 99% sensitivity, regardless of histological types and pathological stages of cancer, suggesting its promising, diagnostic utility.
Collapse
Affiliation(s)
- Keisuke Asakura
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsukasa Kadota
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuo Nakagawa
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Satoko Takizawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Toray Industries, Inc. 6-10-1 Tebiro, Kamakura city, Kanagawa, 248-0036, Japan
| | - Yoshiaki Aoki
- Dynacom Co., Ltd., World Business Garden E25, 2-6-1 Nakase, Mihama-ku, Chiba city, Chiba, 261-7125, Japan
| | - Eiji Nakamura
- Dynacom Co., Ltd., World Business Garden E25, 2-6-1 Nakase, Mihama-ku, Chiba city, Chiba, 261-7125, Japan
| | - Junichiro Miura
- Dynacom Co., Ltd., World Business Garden E25, 2-6-1 Nakase, Mihama-ku, Chiba city, Chiba, 261-7125, Japan
| | - Hiromi Sakamoto
- Department of Biobank and Tissue Resources, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Institute of Medical Science, Tokyo Medical University, Tokyo, 160-0023, Japan.
| |
Collapse
|
22
|
Zheng C, Mao C, Tang K, Ceng S, Shu H. A two-miRNA signature (miR-21 and miR-92) in peripheral whole blood as a potential biomarker for diagnosis of human cerebral aneurysms. Arch Med Sci 2020; 20:726-735. [PMID: 39050149 PMCID: PMC11264084 DOI: 10.5114/aoms.2020.93536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/12/2020] [Indexed: 07/27/2024] Open
Abstract
Introduction microRNAs (miRs) have been reported as blood-based noninvasive indicators for the diagnosis of various diseases. However, the utility of whole blood-based miRs in the diagnosis of intracranial aneurysm (IA) is still not clear. The present study aimed to examine miR expression profiling in the peripheral whole blood of IA patients and healthy controls. Material and methods Seventy-three IA patients, including 34 unruptured and 39 ruptured, and 28 healthy subjects, were recruited for diagnostic analysis. microRNA (miR) expression profiling in whole blood from healthy controls and IA patients was evaluated using miRNA microarray assay. RT-qPCR was used to evaluate miR expression. Receiver operating characteristics (ROC) curves and the area under the ROC curves (AUC) were used to calculate the diagnostic power of miRs in whole blood of IA. Results We observed significantly higher miR-21 and miR-92 expression levels in aneurysmal tissues and whole blood of IA patients as compared to healthy subjects. miR-21 expression level was significantly positively correlated with miR-92 in IA tissues and whole blood of IA patients. ROC analysis revealed that miR-21 (AUC = 0.843, sensitivity = 0.849, specificity = 0.750) and miR-92 (AUC = 0.892, sensitivity = 0.945, specificity = 0.786) were promising in diagnosis of IA with high detectability. Intriguingly, miR-21 combined with miR-92 markedly improved the diagnostic power of IA (AUC = 0.920, sensitivity = 1.000, specificity = 0.786). Conclusions miR-21 combined with miR-92 could be considered as a potential biomarker for IA screening.
Collapse
Affiliation(s)
- Congying Zheng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chengliang Mao
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kai Tang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaojian Ceng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hang Shu
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
23
|
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB, Chen G. Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res 2020; 21:60. [PMID: 32102656 PMCID: PMC7045575 DOI: 10.1186/s12931-020-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pulmonary malignant neoplasms have a high worldwide morbidity and mortality, so the study of these malignancies using microRNAs (miRNAs) has attracted great interest and enthusiasm. The aim of this study was to determine the clinical effect of hsa-microRNA-204-5p (miR-204-5p) and its underlying molecular mechanisms in non-small cell lung cancer (NSCLC). Methods Expression of miR-204-5p was investigated by real-time quantitative PCR (RT-qPCR). After data mining from public online repositories, several integrative assessment methods, including receiver operating characteristic (ROC) curves, hazard ratios (HR) with 95% confidence intervals (95% CI), and comprehensive meta-analyses, were conducted to explore the expression and clinical utility of miR-204-5p. The potential objects regulated and controlled by miR-204-5p in the course of NSCLC were identified by estimated target prediction and analysis. The regulatory network of miR-204-5p, with its target genes and transcription factors (TFs), was structured from database evidence and literature references. Results The expression of miR-204-5p was downregulated in NSCLC, and the downtrend was related to gender, histological type, vascular invasion, tumor size, clinicopathologic grade and lymph node metastasis (P<0.05). MiR-204-5p was useful in prognosis, but was deemed unsuitable at present as an auxiliary diagnostic or prognostic risk factor for NSCLC due to the lack of statistical significance in meta-analyses and absence of large-scale investigations. Gene enrichment and annotation analyses identified miR-204-5p candidate targets that took part in various genetic activities and biological functions. The predicted TFs, like MAX, MYC, and RUNX1, interfered in regulatory networks involving miR-204-5p and its predicted hub genes, though a modulatory loop or axis of the miRNA-TF-gene that was out of range with shortage in database prediction, experimental proof and literature confirmation. Conclusions The frequently observed decrease in miR-204-5p was helpful for NSCLC diagnosis. The estimated target genes and TFs contributed to the anti-oncogene effects of miR-204-5p.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
24
|
Xu CY, Dong JF, Chen ZQ, Ding GS, Fu ZR. MiR-942-3p Promotes the Proliferation and Invasion of Hepatocellular Carcinoma Cells by Targeting MBL2. Cancer Control 2019; 26:1073274819846593. [PMID: 31046434 PMCID: PMC6501494 DOI: 10.1177/1073274819846593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs), a subgroup of small noncoding RNAs, play critical roles in tumor growth and metastasis. Accumulating evidence shows that the dysregulation of miRNAs is associated with the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism by which miR-942-3p contributes to HCC remains undocumented. The association between miR-942-3p expression and the clinicopathological characteristics in HCC patients was analyzed by The Cancer Genome Atlas data set. The targets of miR-942-3p were identified by bioinformatic analysis and dual luciferase report assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays were performed to assess the functional role of miR-942-3p in HCC cells. Consequently, we found that miR-942-3p expression level was elevated in HCC tissues and cell lines as compared with the normal tissues and was associated with the pathological stage and tumor node metastasis (TNM) stage, acting as an independent prognostic factor of poor survival in patients with HCC. Ectopic expression of miR-942-3p enhanced the proliferation and invasive potential of HCC cells, but inhibition of miR-942-3p expression had the opposite effects. Mannose-binding lectin 2 (MBL2) was further identified as a direct target of miR-942-3p and possessed a negative correlation with miR-942-3p expression and unfavorable survival in patients with HCC. Restoration of MBL2 inhibited the progression of HCC cells and attenuated the tumor-promoting effects induced by miR-942-3p. In conclusion, miR-942-3p may act as an oncogenic factor in HCC cells by targeting MBL2 and provide a potential marker for patients with HCC.
Collapse
Affiliation(s)
- Chun-Yang Xu
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Feng Dong
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zi-Qi Chen
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guo-Shan Ding
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Ren Fu
- 1 Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
25
|
Ma T, Hu Y, Guo Y, Yan B. Tumor-Promoting Activity of Long Noncoding RNA LINC00466 in Lung Adenocarcinoma via miR-144-Regulated HOXA10 Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2154-2170. [PMID: 31381886 DOI: 10.1016/j.ajpath.2019.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Previous investigations have implicated long noncoding RNAs in lung adenocarcinoma, which is an aggressive disease with poor prognosis and high mortality. Through the alteration of lung adenocarcinoma-related long noncoding RNA and miRNA based on microarray analysis, our aim was to understand the role of LINC00466 and miR-144 in lung adenocarcinoma progression. The relationship among LINC00466, miR-144, and HOXA10 was also verified. Moreover, to examine whether the LINC00466/miR-144/HOXA10 axis contributed to the cellular processes in lung adenocarcinoma, A549 and XWLC-05 cells were transduced with siRNA LINC00466, siRNA HOXA10, or miR-144 mimic plasmids. Highly expressed LINC00466 and HOXA10 and lowly expressed miR-144 were eventually revealed in lung adenocarcinoma tissues. HOXA10 was down-regulated in response to the overexpression of miR-144, whereas inhibition of LINC00466 decreased its binding to miR-144, thereby up-regulating miR-144, which, in turn, halted the lung adenocarcinoma progression. LINC00466 silencing or miR-144 up-regulation exerted an inhibitory role in the tumorigenicity, invasion, migration, and proliferation, and it also promoted apoptosis of lung adenocarcinoma cells. Furthermore, tumor formation was inhibited by knockdown of LINC00466 or overexpression of miR-144. Taken together, LINC00466 could restrain the miR-144 expression to up-regulate HOXA10 and, therefore, promote lung adenocarcinoma.
Collapse
Affiliation(s)
- Tiangang Ma
- Department of Respiratory, Second Hospital Affiliated to Jilin University, Changchun, PR China
| | - Yanbing Hu
- Department of Ultrasound, Second Hospital Affiliated to Jilin University, Changchun, PR China
| | - Yingxue Guo
- Department of Clinical Laboratory, Second Hospital Affiliated to Jilin University, Changchun, PR China.
| | - Bingdi Yan
- Department of Respiratory, Second Hospital Affiliated to Jilin University, Changchun, PR China.
| |
Collapse
|
26
|
Pascut D, Krmac H, Gilardi F, Patti R, Calligaris R, Crocè LS, Tiribelli C. A comparative characterization of the circulating miRNome in whole blood and serum of HCC patients. Sci Rep 2019; 9:8265. [PMID: 31164669 PMCID: PMC6547851 DOI: 10.1038/s41598-019-44580-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
miRNAs are considered promising non-invasive biomarkers. Serum represents the major source of biomarkers, being readily accessible for many analytical tests. Recently, whole blood has drawn increasing interest in biomarker studies due to the presence of cancer-interacting cells and circulating cancer cells. Although Hepatocellular Carcinoma (HCC) is the seventh most frequent cancer worldwide, fragmented information exists regarding the miRNome characterization in blood and serum. We profiled the circulatory miRNome of paired serum and blood samples from 20 HCC patients, identifying 274 miRNA expressed in serum and 670 in blood, most of them still uncharacterized. 157 miRNA significantly differ between the two biofluids with 28 exclusively expressed in serum. Six miRNA clusters significantly characterize the two compartments, with the cluster containing miR-4484, miR-1281, miR-3178, miR-3613-3p, miR-4532, miR-4668-5p, miR-1825, miR-4487, miR-455-3p, miR-940 having the highest average expression in serum compared to blood. The ontological analysis revealed a role of these miRNAs in cancer progression, vascular invasion and cancer immune surveillance thought the regulation of DUSP1, PD-L1 and MUC1. Taken together, these results provide the most comprehensive contribution to date towards a complete miRNome profile of blood and serum for HCC patients. We show a consistent portion of circulatory miRNAs being still unknown.
Collapse
Affiliation(s)
- Devis Pascut
- Fondazione Italiana Fegato - ONLUS, Area Science Park, ss14, km163.5, 34149, Trieste, Italy.
| | - Helena Krmac
- Scuola Internazionale Superiore di Studi Avanzati - via Bonomea, 265 - 34136, Trieste, Italy
| | - Francesca Gilardi
- Fondazione Italiana Fegato - ONLUS, Area Science Park, ss14, km163.5, 34149, Trieste, Italy
| | - Riccardo Patti
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Clinica Patologie Fegato, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Via Giovanni Sai 7, Trieste, Italy
| | - Raffaella Calligaris
- Scuola Internazionale Superiore di Studi Avanzati - via Bonomea, 265 - 34136, Trieste, Italy
| | - Lory Saveria Crocè
- Fondazione Italiana Fegato - ONLUS, Area Science Park, ss14, km163.5, 34149, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy.,Clinica Patologie Fegato, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Via Giovanni Sai 7, Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato - ONLUS, Area Science Park, ss14, km163.5, 34149, Trieste, Italy
| |
Collapse
|
27
|
Wen W, Mai SJ, Lin HX, Zhang MY, Huang JL, Hua X, Lin C, Long ZQ, Lu ZJ, Sun XQ, Liu SL, Yang Q, Zhu Q, Wang HY, Guo L. Identification of two microRNA signatures in whole blood as novel biomarkers for diagnosis of nasopharyngeal carcinoma. J Transl Med 2019; 17:186. [PMID: 31159814 PMCID: PMC6547589 DOI: 10.1186/s12967-019-1923-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early diagnosis is critical to reduce the mortality caused by nasopharyngeal carcinoma (NPC). MicroRNAs (miRNAs) are dysregulated and play important roles in carcinogenesis. Therefore, this study aimed to identify diagnostically relevant circulating miRNA signatures in patients with NPC. METHODS Total RNA was extracted from whole blood samples obtained from 120 patients with NPC, 30 patients with head-neck tumors (HNT), and 30 healthy subjects (HSs), and examined by using a custom microarray. The expression levels of four miRNAs identified by using the microarray were validated with quantitative real-time reverse transcription polymerase chain reaction. The 120 patients with NPC and 30 HSs were randomly assigned to training group-1 and validation group-1, respectively. By using significance analysis of microarray (SAM), the specific miRNA expression profiles in whole blood from patients with NPC are obtained. By using lasso regression and adaptive boosting, a diagnostic signature was identified in training group-1, and its accuracy was verified in validation group-1. By using the same methods, another signature to distinguish patients with NPC from those with HNT and HSs was identified in training group-2 and confirmed in validation group-2. RESULTS There were 117 differentially expressed miRNAs (upregulated and downregulated fold change ≥ 1.5) between the patients with NPC and HSs, among which an 8-miRNA signature was identified with 96.43% sensitivity and 100% specificity [area under the curve (AUC) = 0.995] to diagnose NPC in training group-1 and 86.11% sensitivity and 88.89% specificity (AUC = 0.941) in validation group-1. Compared with traditional Epstein-Barr virus (EBV) seromarkers, this signature was more specific for NPC. Furthermore, a 16-miRNA signature to differentiate NPC from HNT and HS (HNT-HS) was established from 164 differentially expressed miRNAs, which diagnosed NPC and HNT-HS with 100% accuracy (AUC = 1.000) in training group-2 and 87.04% (AUC = 0.924) in validation group-2. CONCLUSIONS The present study identified two miRNA signatures for the highly accurate diagnosis and differential diagnosis of patients with NPC from HSs and patients with HNT. The identified miRNAs might represent novel serological biomarkers and potential therapeutic targets for NPC.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Jia-Ling Huang
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xin Hua
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Chao Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Zhi-Qing Long
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Zi-Jian Lu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Xiao-Qing Sun
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Sai-Lan Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Qi Yang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Qian Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Ling Guo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| |
Collapse
|
28
|
MicroRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis. Clin Rheumatol 2018; 38:877-884. [PMID: 30511295 DOI: 10.1007/s10067-018-4380-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) patients have high expression levels of hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p in peripheral blood. We studied if baseline blood levels of these microRNAs (miRNAs) could predict response to methotrexate (MTX). METHODS RA patients (the American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) criteria) with active disease (disease-modifying anti-rheumatic drug (DMARD)-naïve and Disease Activity Score 28 (DAS28) > 3.2) were enrolled. They were treated with MTX by gradually increasing dose up to 25 mg/week. After 4 months, the DAS28 score was calculated and EULAR response was assessed. The hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p levels were measured by real-time qPCR in whole-blood RNA at baseline and 4 months after therapy, using hsa-let-7a-5p as housekeeping gene. Results are expressed as median (interquartile range). RESULTS The 94 enrolled patients (81 females) had a median age of 40 (17) years, disease duration of (24) months, and DAS28 4.61 (1.11). After 4 months of therapy, 73 were classified as responders and 21 as non-responders. Baseline levels of all three miRNAs were lower in responders than non-responders, hsa-miR-132-3p (- 8.03 (0.70) versus - 7.47 (0.85), P < 0.05), hsa-miR-146a-5p (- 5.11 (0.88) versus - 4.62 (0.90), P < 0.05), and hsa-miR-155-5p (- 7.59 (1.07) versus - 7 (0.72), P = 0.002). Receiver operating characteristic curve analysis showed that all three miRNAs were also good predictors of MTX response, showing the following values: hsa-miR-132-3p (area under curve (AUC) 0.756, P < 0.05), hsa-miR-146a-5p (AUC 0.760, P < 0.05), and hsa-miR-155-5p (AUC 0.728, P = 0.002). CONCLUSION hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p are potential biomarkers of responsiveness to MTX therapy.
Collapse
|
29
|
Unger L, Jagannathan V, Pacholewska A, Leeb T, Gerber V. Differences in miRNA differential expression in whole blood between horses with sarcoid regression and progression. J Vet Intern Med 2018; 33:241-250. [PMID: 30506726 PMCID: PMC6335546 DOI: 10.1111/jvim.15375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Currently no methods are available to predict the clinical outcome of individual horses with equine sarcoid (ES) disease. Objective To investigate if whole blood microRNA (miRNA) profiles can predict the long‐term development of ES tumors. Animals Five horses with regression and 5 with progression of ES lesions monitored over 5‐7 years and 5 control horses free of ES for at least 5 years. Methods For this cohort study, RNA extracted from whole blood samples from the regression, progression, and control groups was used for high throughput sequencing. Known and novel miRNAs were identified using miRDeep2 and differential expression analysis was carried out by the DESeq2 algorithm. Target gene and pathway prediction as well as enrichment and network analyses were conducted using TarBase, mirPath, and metaCore from GeneGo. Results Fourteen miRNAs were differentially expressed between regression and progression groups after accounting for the control condition: 4 miRNAs (28.6%) were upregulated and 10 miRNAs (71.4%) were downregulated with >2‐fold change. Seven of the 10 downregulated miRNAs are encoded in an miRNA cluster on equine chromosome 24, homologous to the well‐known 14q32 cluster in humans. Their target genes show enrichment for pathways involved in viral carcinogenesis. Conclusions and Clinical Importance Whole blood miRNA expression profiles are associated with long‐term ES growth in horses and warrant further validation as prognostic biomarkers in a larger study cohort. Deregulation of miRNAs on equine chromosome 24 might represent a trigger for ES development.
Collapse
Affiliation(s)
- Lucia Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alicja Pacholewska
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Unger L, Gerber V, Pacholewska A, Leeb T, Jagannathan V. MicroRNA fingerprints in serum and whole blood of sarcoid‐affected horses as potential non‐invasive diagnostic biomarkers. Vet Comp Oncol 2018; 17:107-117. [DOI: 10.1111/vco.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of Bern, and Agroscope Bern Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of Bern, and Agroscope Bern Switzerland
| | - Alicja Pacholewska
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| |
Collapse
|
31
|
Xie ZC, Tang RX, Gao X, Xie QN, Lin JY, Chen G, Li ZY. A meta-analysis and bioinformatics exploration of the diagnostic value and molecular mechanism of miR-193a-5p in lung cancer. Oncol Lett 2018; 16:4114-4128. [PMID: 30250529 PMCID: PMC6144214 DOI: 10.3892/ol.2018.9174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a leading cause of mortality worldwide and despite recent improvements in lung cancer treatments patient mortality remains high. miR-193a-5p serves a crucial role in the initiation and development of cancer; it is necessary to understand the underlying molecular mechanisms of miR-193a-5p in lung cancer, which may enable the development of improved clinical diagnoses and therapies. The present study investigated the diagnostic value of peripheral blood and tissue miR-193a-5p expression using a microarray meta-analysis. Peripheral blood miR-193a-5p was revealed to be upregulated in patients with lung cancer. The pooled area under the curve (AUC) was 0.67, with a sensitivity and specificity of 0.74 and 0.56, respectively. Conversely, the peripheral tissue miR-193a-5p expression in patients with lung cancer was significantly downregulated. The pooled AUC was 0.83, and the sensitivity and specificity were 0.65 and 0.89, respectively. Through bioinformatics analysis, three Kyoto Encyclopedia of Genes and Genomes (KEGG) terms, pathways in cancer, prostate cancer and RIG-I-like receptor signaling pathway, were identified as associated with miR-193a-5p in lung cancer. In addition, in lung cancer, six key miR-193a-5p target genes, receptor tyrosine-protein kinase erbB-2 (ERBB2), nuclear cap-binding protein subunit 2 (NCBP2), collagen α-1(I) chain (COL1A1), roprotein convertase subtilisin/kexin type 9 (PCSK9), casein kinase II subunit α (CSNK2A1) and nucleolar transcription factor 1 (UBTF), were identified, five of which were significantly upregulated (ERBB2, NCBP2, COL1A1, CSNK2A1 and UBTF). The protein expression of ERBB2, NCBP2, COL1A1, CSNK2A1 and UBTF was also upregulated. NCBP2 and CSNK2A1 were negatively correlated with miR-193a-5p. The results demonstrated that miR-193a-5p exhibited opposite expression patterns in peripheral blood and tissue. Upregulated peripheral blood miR-193a-5p and downregulated tissue miR-193a-5p may be promising diagnostic biomarkers in lung cancer. In addition, the KEGG terms pathways in cancer, prostate cancer and RIG-I-like receptor signaling pathway may suggest which pathways serve vital roles in lung cancer by regulating miR-193a-5p. In addition, six genes, ERBB2, COL1A1, PCSK9, UBTF and particularly NCBP2 and CSNK2A1, may be key target genes of miR-193a-5p in lung cancer.
Collapse
Affiliation(s)
- Zu-Cheng Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiang Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiong-Ni Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia-Ying Lin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
miRNA-1284, a regulator of HMGB1, inhibits cell proliferation and migration in osteosarcoma. Biosci Rep 2018; 38:BSR20171675. [PMID: 29899164 PMCID: PMC6043716 DOI: 10.1042/bsr20171675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Previous literatures have reported the role of human micro RNA-1284 (hsa-miR-1284, in short miR-1284) in diverse cancers. However, its biological function in osteosarcoma pathogenesis remains unknown. In the present study, we investigated the potential role of miR-1284 in osteosarcoma. Expression of miR-1284 and high mobility group box 1 (HMGB1) were examined in 80 tissues obtained from 40 patients. MiR-1284 level was measured in five osteosarcoma cell lines. Relative luciferase activity and HMGB1 expression were examined in MG-63 and U2OS cells transfected with wild-type or mutant 3′-UTR of HMGB1 in the presence of miR-1284 mimics or miR-NC. Cell viability, colony formation, and cell migration were measured in MG-63, U2OS and hFOB 1.19 cells, which were transfected with miR-1284 mimics or miR-NC. In the rescue experiments, recombinant HMGB1 plasmid was transfected into MG-63 and U2OS cells, and cell viability and migration were determined again. Our results indicated that relative level of miR-1284 was lower in tumor tissues compared with its adjacent tissues and it was found suppressed at lower levels in MG-63 and U2OS cell lines. Expression of HMGB1 is significantly elevated in tumor tissues and negatively correlated with miR-1284 expression. MiR-1284 exerted its function by directly binding to 3′-UTR of HMGB1 and regulates expression of HMGB1. The overexpression of miR-1284 inhibited the cell proliferation and migration, and altered the protein expression of epithelial–mesenchymal transition (EMT)-associated genes (E-cadherin, N-cadherin, Vimentin, and Snail), which was reversed by HMGB1 overexpression. In conclusion, miR-1284 can function as a new regulator to inhibit osteosarcoma cell proliferation and migration by targeting HMGB1.
Collapse
|
33
|
Lu S, Kong H, Hou Y, Ge D, Huang W, Ou J, Yang D, Zhang L, Wu G, Song Y, Zhang X, Zhai C, Wang Q, Zhu H, Wu Y, Bai C. Two plasma microRNA panels for diagnosis and subtype discrimination of lung cancer. Lung Cancer 2018; 123:44-51. [PMID: 30089594 DOI: 10.1016/j.lungcan.2018.06.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/12/2018] [Accepted: 06/23/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Early and accurate diagnosis of lung cancer is crucial for effective treatment. This study aimed to identify plasma microRNAs for diagnosis of lung cancer and for further discrimination of small cell lung cancer (SCLC) from non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Plasma microRNA expression was investigated using three independent cohorts including 1132 participants recruited between October 2008 and September 2014 from five medical centers. The subjects were healthy individuals and patients with NSCLC or SCLC. Microarrays were used to screen 723 human microRNAs in 106 plasma samples for candidate selection. Quantitative reverse-transcriptase PCR was applied to evaluate the expression of selected microRNAs. Two logistic regression models were constructed based on a training cohort (n = 565) and then validated using an independent cohort (n = 461). The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. RESULTS Plasma panel A with six microRNAs (miR-17, miR-190b, miR-19a, miR-19b, miR-26b, and miR-375) provided high diagnostic accuracy in discriminating lung cancer patients from healthy individuals (AUC 0.873 and 0.868 for training and validation cohort, respectively). Moreover, plasma panel B with three microRNAs (miR-17, miR-190b, and miR-375) demonstrated high diagnostic accuracy in discriminating SCLC from NSCLC (AUC 0.878 and 0.869 for training and validation cohort, respectively). CONCLUSION We constructed and validated two plasma microRNA panels that have considerable clinical value in diagnosis of lung cancer, and could play an important role in determining optimal treatment strategies based on discrimination between SCLC and NSCLC.
Collapse
Affiliation(s)
- Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hui Kong
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Huang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaxian Ou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guoming Wu
- Institute of Respiratory Diseases, the Second Affiliated Hospital of the Third Military Medical University, Chongqing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Henan, China
| | - Changwen Zhai
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongguang Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
He RQ, Gao L, Ma J, Li ZY, Hu XH, Chen G. Oncogenic role of miR‑183‑5p in lung adenocarcinoma: A comprehensive study of qPCR, in vitro experiments and bioinformatic analysis. Oncol Rep 2018; 40:83-100. [PMID: 29749535 PMCID: PMC6059757 DOI: 10.3892/or.2018.6429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/25/2018] [Indexed: 12/14/2022] Open
Abstract
Despite the fact that previous studies have reported the aberrant expression of miR-183-5p in lung adenocarcinoma (LUAD), the oncogenic role of miR-183-5p in LUAD and its underlying mechanisms have remained elusive. Hence, we attempted to elucidate the clinicopathological significance of miR-183-5p expression in LUAD and identify the biological function of miR-183-5p in LUAD in this study. Meta-analysis of Gene Expression Omnibus (GEO) data, data mining of The Cancer Genome Atlas (TCGA) and real-time quantitative polymerase chain reaction (qPCR) were performed to evaluate the clinicopathological significance of miR-183-5p in LUAD. Then, the effect of miR-183-5p on cell growth in LUAD was assessed by in vitro experiments. Additionally, the target genes of miR-183-5p were identified via miRWalk v.2.0 and TCGA. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Disease Ontology (DO) analysis were further carried out for the target genes. The targetability between target genes in key KEGG pathways and miR-183-5p was validated by independent samples t-test, Pearson's correlation test and immunohistochemistry results from the Human Protein Atlas (HPA). According to the results, miR-183-5p was overexpressed in LUAD and exhibited significant diagnostic value. Moreover, miR-183 expression was associated with tumor progression in the TCGA data. In vitro experiments revealed the positive influence of miR-183-5p on cell viability and proliferation as well as the negative effect of miR-183-5p on caspase-3/7 activity in LUAD, which supports the finding that target genes of miR-183-5p are mainly enriched in gene pathways containing cell adhesion molecules (CAMs) and gene pathways important in cancer. Therefore, we conclude that miR-183-5p acts as an oncogene in LUAD and participates in the pathogenesis of LUAD via the interaction networks of its target genes.
Collapse
Affiliation(s)
- Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| |
Collapse
|
35
|
Identification of an 88-microRNA signature in whole blood for diagnosis of hepatocellular carcinoma and other chronic liver diseases. Aging (Albany NY) 2018; 9:1565-1584. [PMID: 28657540 PMCID: PMC5509456 DOI: 10.18632/aging.101253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with very poor survival due to lack of reliable biomarker for early diagnosis. In this study, we investigated microRNA (miRNA) profile of whole blood with a custom microarray containing probes for 1849 miRNA species in a total 213 successive subjects who were divided into a discovery set and a validation set. An 88-miRNA signature was established to diagnose health controls (HC), chronic hepatitis B (CHB), liver cirrhosis (LC) and HCC with 100% accuracy in the discovery set using Fisher discriminant analysis. This diagnostic signature was confirmed in the validation set with accuracy rates of 100%, 95.2%, 93.7% and 98.4% for HC, CHB, LC and HCC patients, respectively. Compared with AFP, the only available non-invasive and routinely used biomarker for diagnosis of HCC, the 88-miRNA signature has much higher accuracy (99.5% vs 76.5%), sensitivity (100% vs 63.8%), and specificity (99.2% vs 84.2%). More importantly, the signature detects small HCCs (<3cm) with 100% (17/17) accuracy while AFP has only 64.7% (11/17). In conclusion, we have identified a powerful and sensitive blood 88-miRNA signature for diagnosing early HCC and other chronic liver diseases (CHB and LC) with a high accuracy.
Collapse
|
36
|
Zhou J, Liu X, Wang C, Li C. The correlation analysis of miRNAs and target genes in metastasis of cervical squamous cell carcinoma. Epigenomics 2018; 10:259-275. [PMID: 29343084 DOI: 10.2217/epi-2017-0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This study was intended to identify the metastasis-related miRNAs and target genes in cervical squamous cell carcinoma. Materials & methods: The mRNA and miRNA next-generation sequencing data were downloaded. Differential expression analysis was carried out, followed by target gene prediction of differentially expressed miRNAs. The biological function of differentially expressed genes was performed. Validation was carried out by survival analysis and qRT-PCR. Results: N4BP3 were associated with the survival time of patients. Hsa-mir-451 and hsa-mir-486 were related to tumor differentiation stage. Validated expression of hsa-mir-24–2, hsa-mir-582, NOTCH1, PIP4K2B, DIP2B and IGFBP5 was consistent with the bioinformatics analysis. Conclusion: Alterations of miRNAs and target genes may be useful in understanding the metastasis mechanisms of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong Province, China
- Department of Gynecology, Jining NO.1 People's Hospital, Jining, Shandong Province, China
| | - Xia Liu
- Department of Gynecology, Jining NO.1 People's Hospital, Jining, Shandong Province, China
| | - Changhe Wang
- Department of Gynecology, Jining NO.1 People's Hospital, Jining, Shandong Province, China
| | - Changzhong Li
- Department of Gynecology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
37
|
Identification of a three-miRNA signature as a blood-borne diagnostic marker for early diagnosis of lung adenocarcinoma. Oncotarget 2018; 7:26070-86. [PMID: 27036025 PMCID: PMC5041965 DOI: 10.18632/oncotarget.8429] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Background The subtypes of NSCLC have unique characteristics of pathogenic mechanism and responses to targeted therapies. Thus, non-invasive markers for diagnosis of different subtypes of NSCLC at early stage are needed. Results Based on the results from the screening and validation process, 3 miRNAs (miR-532, miR-628-3p and miR-425-3p) were found to display significantly different expression levels in early-stage lung adenocarcinoma, as compared to those in healthy controls. ROC analysis showed that the miRNA–based biomarker could distinguish lung adenocarcinoma from healthy controls with high AUC (0.974), sensitivity (91.5%), and specificity (97.8%). Importantly, these three miRNAs could also distinguish lung adenocarcinoma from lung benigh diseases and other subtypes of lung cancer. Methods Two hundreds and one early-stage lung adenocarcinoma cases and one hundreds seventy eight age- and sex-matched healthy controls were recruited to this study. We screened the differentially expressed plasma miRNAs using TaqMan Low Density Arrays (TLDA) followed by three-phase qRT-PCR validation. A risk score model was established to evaluate the diagnostic value of the plasma miRNA profiling system. Conclusions Taken together, these findings suggest that the 3 miRNA–based biomarker might serve as a novel non-invasive approach for diagnosis of early-stage lung adenocarcinoma.
Collapse
|
38
|
Li TT, Gao X, Gao L, Gan BL, Xie ZC, Zeng JJ, Chen G. Role of upregulated miR-136-5p in lung adenocarcinoma: A study of 1242 samples utilizing bioinformatics analysis. Pathol Res Pract 2018. [PMID: 29526559 DOI: 10.1016/j.prp.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND It is generally acknowledged that miRNAs play pivotal roles in the initiation and development of cancer. The aim of the current study is to investigate the clinicopathological role of miR-136-5p in lung adenocarcinoma and its underlying molecular mechanism. MATERIALS AND METHODS Data of a cohort of 1242 samples were provided by the Gene Expression Omnibus and The Cancer Genome Atlas to evaluate miR-136-5p expression in lung adenocarcinoma. A comprehensive meta-analysis integrating the expression data from all sources was performed, followed by a summary receiver operating curve plotted to appraise the upregulated expression of miR-136-5p in lung adenocarcinoma. Candidate targets of miR-136-5p were launched by the intersection of differentially expressed genes in The Cancer Genome Atlas and genes predicted by 12 web-based platforms. Then, hub genes were illustrated by a protein-protein interaction network. Furthermore, Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and Protein Analysis Through Evolutionary Relationships analyses of potential target genes were carried out via bioinformatics tools. RESULTS MiR-136-5p expression was upregulated in lung adenocarcinoma versus normal tissues (standard mean difference = 0.43, 95% confidence interval: 0.27-0.58). The summary receiver operating characteristic curve further verified the upregulation of miR-136-5p in lung adenocarcinoma (area under curve = 0.7459). A total of 311 candidate target genes of miR-136-5p were gathered to create a protein-protein interaction network. Molecular mechanism analysis unveiled the potential miR-136-5p target genes participated in cell adhesion molecules, focal adhesion, complement and coagulation cascades and blood coagulation. CONCLUSION MiR-136-5p is overexpressed in lung adenocarcinoma and is involved in the molecular mechanism of lung adenocarcinoma via suppressing the expressions of downstream targets, especially claudin-18, sialophorin and syndecan 2 that participate in cell adhesion.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Xiang Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Zu-Cheng Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|
39
|
Cao Z, Liu C, Xu J, You L, Wang C, Lou W, Sun B, Miao Y, Liu X, Wang X, Zhang T, Zhao Y. Plasma microRNA panels to diagnose pancreatic cancer: Results from a multicenter study. Oncotarget 2018; 7:41575-41583. [PMID: 27223429 PMCID: PMC5173079 DOI: 10.18632/oncotarget.9491] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Biomarkers for the early diagnosis of pancreatic cancer (PC) are urgent needed. Plasma microRNAs (miRNAs) might be used as biomarkers for the diagnosis of cancer. We analyzed 361 plasma samples from 6 surgical centers in China and performed machine learning approach. We gain insight of the association between the aberrant plasma miRNA expression and pancreatic disease. 671 microRNAs were screened in the discovery phase and 33 microRNAs in the training phase and 13 microRNAs in the validation phase. After the discovery phase and training phase, 2 diagnostic panels were constructed comprising 3 microRNAs in panel I (miR-486-5p, miR-126-3p, miR-106b-3p) and 6 microRNAs in panel II (miR-486-5p, miR-126-3p, miR-106b-3p, miR-938, miR-26b-3p, miR-1285). Panel I and panel II had high accuracy for distinguishing pancreatic cancer from chronic pancreatitis (CP) with area under the curve (AUC) values of 0.891 (Standard Error (SE): 0.097) and 0.889 (SE: 0.097) respectively, in the validation phase. Additionally, we demonstrated that the diagnostic value of the panels in discriminating PC from CP were comparable to that of carbohydrate antigen 19–9 (CA 19–9) 0.775 (SE: 0.053) (P = 0.1 for both). This study identified 2 diagnostic panels based on microRNA expression in plasma with the potential to distinguish PC from CP. These patterns might be developed as biomarkers for pancreatic cancer.
Collapse
Affiliation(s)
- Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chang Liu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Jianwei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chunyou Wang
- Department of General Surgery, Pancreatic Disease Institute, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhong Shan Hospital, Fudan University, Shanghai, 200032, China
| | - Bei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yi Miao
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xubao Liu
- Department of Hepatopancreatobiliary Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
40
|
Sun Y, Mei H, Xu C, Tang H, Wei W. Circulating microRNA-339-5p and -21 in plasma as an early detection predictors of lung adenocarcinoma. Pathol Res Pract 2018; 214:119-125. [PMID: 29103767 DOI: 10.1016/j.prp.2017.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Many studies have shown that differentially expressed miRs in body fluids can serve as biomarkers in non-invasive detection of the cancers. However, the clinical significance of plasma miRs in the diagnosis of lung adenocarcinoma (LA) is still not clear. Therefore, we examined the LA-specific miRs in plasma, which could be utilized to diagnosis and monitor LA in routine clinical practice. METHODS Twenty-eight LA cases and twenty-eight healthy controls were recruited to our study. MiRs differential expression in plasma was measured by miRNA Microarray assay and revalidated by using qRT-PCR based absolute quantification methods The diagnostic power of circulating miRs in LA was evaluated using the receiver operating characteristics (ROC) curves and the area under the ROC curves (AUC). RESULTS Tumor tissues and plasma levels of miR-339-5p were significantly down-regulated in LA patients compared with those in the control group, whereas the levels of miR-21 in LA patients were significantly higher than control group. ROC analysis showed that miR-339-5p and miR-21 could distinguish LA patients from healthy controls with high AUC (0.900 and 0.880, respectively), sensitivity (0.821 and 0.821, respectively) and specificity (0.929 and 0.964, respectively). Importantly, the combination of miR-339-5p and miR-21 markedly improved AUC (0.963), sensitivity (0.929) and specificity (0.929). CONCLUSION Plasma miR-339-5p or miR-21 could serve as a potential biomarker for diagnosis of LA, however, the combination of miR-339-5p and miR-21 was more efficient for LA detection.
Collapse
Affiliation(s)
- Yongpan Sun
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hong Mei
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Chuan Xu
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hongjun Tang
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Wei Wei
- Department of thoracic surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| |
Collapse
|
41
|
Wang YM, Huang LM, Li DR, Shao JH, Xiong SL, Wang CM, Lu SM. Hsa_circ_0101996 combined with hsa_circ_0101119 in peripheral whole blood can serve as the potential biomarkers for human cervical squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11924-11931. [PMID: 31966557 PMCID: PMC6966017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous study suggests changes in circRNAs in tumor tissues from cervical squamous cell carcinoma (CSCC) patients. However, little is known about the diagnostic value of circRNAs in CSCC. To assess the potential application of circRNAs as diagnostic tools in CSCC, the circulating circRNAs in peripheral whole blood were carried out. METHODS Five up-regulated circRNAs in peripheral whole blood from 87 patients with CSCC and 55 healthy controls were first identified by real-time quantitative polymerase chain reaction (RT-qPCR). The diagnostic value was evaluated using receiver operating characteristics (ROC) curves and the area under the ROC curves (AUC). RESULTS Compared with healthy controls, hsa_circ_0101996, hsa_circ_0104649, hsa_circ_0104443 and hsa_circ_0101119 expression were significantly up-regulated in peripheral whole blood from CSCC patients. ROC analysis showed that hsa_circ_0101996 and hsa_circ_0101119 could distinguish CSCC patients from healthy controls with high AUC (0.906 and 0.887, respectively). Intriguingly, the combination of hsa_circ_0101996 and hsa_circ_0101119 markedly improved AUC (0.964). CONCLUSION All of the findings suggest that hsa_circ_0101996 combined with hsa_circ_0101119 can serve as potential biomarkers for CSCC detection.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Lu-Mi Huang
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Dai-Rong Li
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Jiang-He Shao
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Shuang-Long Xiong
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Chun-Mei Wang
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| | - Song-Mei Lu
- Department of Oncology, Chongqing Cancer Institute & Hospital & Cancer Center Chongqing, China
| |
Collapse
|
42
|
Yang Y, Hu Z, Zhou Y, Zhao G, Lei Y, Li G, Chen S, Chen K, Shen Z, Chen X, Dai P, Huang Y. The clinical use of circulating microRNAs as non-invasive diagnostic biomarkers for lung cancers. Oncotarget 2017; 8:90197-90214. [PMID: 29163821 PMCID: PMC5685742 DOI: 10.18632/oncotarget.21644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Many studies have investigated the diagnostic role of circulating microRNAs (miRNAs) in patients with lung cancer; however, the results still remain inconclusive. An updated system review and meta-analysis was necessary to give a comprehensive evaluation of diagnostic role of circulating miRNAs in lung cancer. Eligible studies were searched in electronical databases. The sensitivity and specificity were used to plot the summary receiver operator characteristic (SROC) curve and calculate the area under the curve (AUC). The between-study heterogeneity was evaluated by Q test and I2 statistics. Subgroup analyses and meta-regression were further performed to explore the potential sources of heterogeneity. A total of 134 studies from 65 articles (6,919 patients with lung cancer and 7,064 controls) were included for analysis. Overall analysis showed that circulating miRNAs had a good diagnostic performance in lung cancers, with a sensitivity of 0.83, a specificity of 0.84, and an AUC of 0.90. Subgroup analysis suggested that combined miRNAs and Caucasian populations may yield relatively higher diagnostic performance. In addition, we found serum might serve as an ideal material to detecting miRNA as good diagnostic performance. We also found the diagnostic role of miRNAs in early stage lung cancer was still relatively high (the sensitivity, specificity and an AUC of stage I/II was 0.81, 0.82 and 0.88; and for stage I, it was 0.80, 0.81, and 0.88). We also identified a panel of miRNAs such as miR-21-5p, miR-223-3p, miR-155-5p and miR-126-3p might serve as potential biomarkers for lung cancer. As a result, circulating miRNAs, particularly the combination of multiple miRNAs, may serve as promising biomarkers for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Yanlong Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Zaoxiu Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yongchun Zhou
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,International Joint Laboratory of High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University(Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Guangqiang Zhao
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Guangjian Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Shuai Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Kai Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Zhenghai Shen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Xiao Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Peilin Dai
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,International Joint Laboratory of High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University(Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| |
Collapse
|
43
|
Ito S, Kamoto Y, Sakai A, Sasai K, Hayashi T, Toyooka S, Katayama H. Unique circulating microRNAs in relation to EGFR mutation status in Japanese smoker male with lung adenocarcinoma. Oncotarget 2017; 8:114685-114697. [PMID: 29383112 PMCID: PMC5777724 DOI: 10.18632/oncotarget.21425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The incidence of lung adenocarcinoma has been increasing recently in smokers. The molecular target therapy has been developed for lung adenocarcinoma patients harboring EGFR gene mutation. However, the treatment modalities for patients without mutation are currently limited. Thus, analysis of EGFR gene mutation status at early stage is important strategy to classify the patients for improving treatments and prognosis efficiently. This study aimed to identify microRNA (miRNA) signature in relation to mutation status in EGFR gene in early stage of lung adenocarcinoma male patients with smoking history. MiRNA profiles were assessed by microarray in paired plasma and tissue pooled from 10 EGFR wild type (EGFR-wt) and 10 EGFR mutated (EGFR-mut) patients. Expressions of selected miRNAs were verified further by real-time qRT-PCR in 83 plasma samples consisting of 55 EGFR-wt patients and 28 EGFR-mut patients and their correlation with clinicopathological parameters and EGFR gene mutation status were evaluated. We found that seven miRNAs (miR-16-5p, miR-23a-3p, miR-103a-3p, miR122-5p, miR-223-3p, miR-346 and miR-451a) were differentially expressed in stage I and stage I+II. Especially, miR-23a-3p was only miRNA shown higher expression in EGFR-wt patients than EGFR-mut patients. Thus, our findings could be useful non-invasive biomarkers to differentiate mutation status in EGFR gene in smoker lung adenocarcinoma male patients.
Collapse
Affiliation(s)
- Sachio Ito
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Kamoto
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akiko Sakai
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaori Sasai
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuro Hayashi
- Division of Thoracic Surgery, National Hospital Organization, Yamaguchi-Ube Medical Center, Yamaguchi, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Katayama
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
44
|
Zhu Z, Liang L, Zhang R, Wei Y, Su L, Tejera P, Guo Y, Wang Z, Lu Q, Baccarelli AA, Zhu X, Bajwa EK, Taylor Thompson B, Shi GP, Christiani DC. Whole blood microRNA markers are associated with acute respiratory distress syndrome. Intensive Care Med Exp 2017; 5:38. [PMID: 28856588 PMCID: PMC5577350 DOI: 10.1186/s40635-017-0155-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can play important roles in inflammation and infection, which are common manifestations of acute respiratory distress syndrome (ARDS). We assessed if whole blood miRNAs were potential diagnostic biomarkers for human ARDS. METHODS This nested case-control study (N = 530) examined a cohort of ARDS patients and critically ill at-risk controls. Whole blood miRNA profiles and logistic regression analyses identified miRNAs correlated with ARDS. Stratification analysis also assessed selected miRNA markers for their role in sepsis and pneumonia associated with ARDS. Receiver operating characteristic (ROC) analysis evaluated miRNA diagnostic performance, along with Lung Injury Prediction Score (LIPS). RESULTS Statistical analyses were performed on 294 miRNAs, selected from 754 miRNAs after quality control screening. Logistic regression identified 22 miRNAs from a 156-patient discovery cohort as potential risk or protective markers of ARDS. Three miRNAs-miR-181a, miR-92a, and miR-424-from the discovery cohort remained significantly associated with ARDS in a 373-patient independent validation cohort (FDR q < 0.05) and meta-analysis (p < 0.001). ROC analyses demonstrated a LIPS baseline area-under-the-curve (AUC) value of ARDS of 0.708 (95% CI 0.651-0.766). Addition of miR-181a, miR-92a, and miR-424 to LIPS increased baseline AUC to 0.723 (95% CI 0.667-0.778), with a relative integrated discrimination improvement of 2.40 (p = 0.005) and a category-free net reclassification index of 27.21% (p = 0.01). CONCLUSIONS miR-181a and miR-92a are risk biomarkers for ARDS, whereas miR-424 is a protective biomarker. Addition of these miRNAs to LIPS can improve the risk estimate for ARDS.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ruyang Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA.,Department of Environmental Health, Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yongyue Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA.,Department of Environmental Health, Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Paula Tejera
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Yichen Guo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ednan K Bajwa
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - B Taylor Thompson
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA. .,Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Patnaik SK, Kannisto ED, Mallick R, Vachani A, Yendamuri S. Whole blood microRNA expression may not be useful for screening non-small cell lung cancer. PLoS One 2017; 12:e0181926. [PMID: 28742859 PMCID: PMC5526508 DOI: 10.1371/journal.pone.0181926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
At least seven studies have suggested that microRNA levels in whole blood can be diagnostic for lung cancer. We conducted a large bi-institutional study to validate this. Qiagen® PAXgene™ Blood miRNA System was used to collect blood and extract RNA from it for 85 pathologic stage I-IV non-small cell lung cancer (NSCLC) cases and 76 clinically-relevant controls who had a benign pulmonary mass, or a high risk of developing lung cancer because of a history of cigarette smoking or age >60 years. Cases and controls were similar for age, gender, race, and blood hemoglobin and leukocyte but not platelet levels (0.23 and 0.26 million/μl, respectively; t test P = 0.01). Exiqon® MiRCURY™ microarrays were used to quantify microRNAs in RNA isolates. Quantification was also performed using Taqman™ microRNA reverse transcription (RT)-PCR assays for five microRNAs whose lung cancer-diagnostic potential had been suggested in seven published studies. Of the 1,941 human mature microRNAs detectable with the microarray platform, 598 (31%) were identified as expressed and reliably quantified among the study's subjects. However, none of the microRNAs was differentially expressed between cases and controls (P >0.05 at false discovery rate <5% in test using empirical Bayes-moderated t statistics). In classification analyses with leave-one-out internal cross-validation, cases and controls could be identified by microRNA expression with 47% and 50% accuracy with support vector machines and top-scoring pair methods, respectively. Cases and controls did not differ for RT-PCR-based measurements of any of the five microRNAs whose biomarker potential had been suggested by seven previous studies. Additionally, no difference for microRNA expression was noticed in microarray-based microRNA profiles of whole blood of 12 stage IA-IIIB NSCLC cases before and three-four weeks after tumor resection. These findings show that whole blood microRNA expression profiles lack diagnostic value for high-risk screening of NSCLC, though such value may exist for selective sub-groups of NSCLC and control populations.
Collapse
Affiliation(s)
- Santosh K. Patnaik
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Surgery, State University of New York, Buffalo, New York, United States of America
- * E-mail: (SY); (SP)
| | - Eric D. Kannisto
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Reema Mallick
- Department of Surgery, University of Minnesota, Minneapolis, United States of America
| | - Anil Vachani
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Surgery, State University of New York, Buffalo, New York, United States of America
- * E-mail: (SY); (SP)
| |
Collapse
|
46
|
Li J, Jin H, Yu H, Wang B, Tang J. miRNA‑1284 inhibits cell growth and induces apoptosis of lung cancer cells. Mol Med Rep 2017; 16:3049-3054. [PMID: 28713980 PMCID: PMC5547959 DOI: 10.3892/mmr.2017.6949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/07/2017] [Indexed: 01/20/2023] Open
Abstract
Lung cancer is the most common cancer worldwide, and morbidity and mortality associated with lung cancer has been increasing annually in recent decades. MicroRNAs (miRNAs), which are short non-coding RNA sequences that are involved in the regulation of gene expression, have been previously demonstrated to be key regulators in cancer. The present study aimed to clarify the role of miRNA (miR)-1284 in lung cancer. A549 lung carcinoma cells were transfected with miR-1284 mimic or miR-1284 inhibitor using Lipofectamine 2000. Subsequently, cell viability, growth and apoptosis of A459 cells in the miR-1284 mimic, miR-1284 inhibitor and control groups were assayed by MTT assay, bromodeoxyuridine assay and flow cytometry, respectively. Furthermore, the protein expression levels of p27, p21, Bax, pro-caspase-3, activated caspase-3 and Myc were detected by western blot analysis to investigate the molecular mechanisms underlying the effect of miR-1284 on A549 cells. The cell viability and growth of A549 cells were significantly decreased in the miR-1284 mimic group compared with the control group, whereas the percentage of apoptotic cells was significantly increased. By contrast, miR-1284 inhibitor transfection significantly increased the cell viability and growth compared with control, and decreased apoptosis. Furthermore, expression of p27 was increased in miR-1284 mimic-transfected A549 cells compared with the control group, whereas p21 was unaffected by miR-1284 overexpression or inhibition. The expression of Myc was decreased by miR-1284 mimic transfection compared with the control group. For the other apoptosis-associated proteins that were investigated (Bax, pro-caspase-3 and active caspase-3), the expression levels in the miR-1284 mimic transfected cells were higher than in the other two groups (control and miR-1284 inhibitor). In conclusion, the results suggest that miR-1284 affects cell proliferation and apoptosis of lung cancer cells, indicating that miR-1284 may have a key role in lung tumorigenesis.
Collapse
Affiliation(s)
- Jie Li
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hairong Jin
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua Yu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jian Tang
- Department of Cardio‑Thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
47
|
Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC, Ma R. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 2017; 619:10-20. [PMID: 28359916 DOI: 10.1016/j.gene.2017.03.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/22/2017] [Accepted: 03/25/2017] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that human circulating microRNAs (miRNAs) could serve as diagnostic and prognostic biomarkers in various cancers. We aimed to explore novel miRNA biomarkers in the blood of breast cancer patients based on miRNA profiling. A miRCURY™ LNA Array was used to identify differentially altered miRNAs in the whole blood of breast cancer patients (n=6) and healthy controls (n=6). Levels of candidate miRNAs were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in whole blood specimens of 15 breast cancer patients and 13 age-matched healthy control individuals. The miRWalk database was used to predict miRNA targets and the DAVID tool was used to identify significant enrichment pathways. A total of 171 differentially expressed miRNAs were identified by microarray, including 169 upregulated and 2 downregulated miRNAs in breast cancer. Five upregulated miRNAs (miR-30b-5p, miR-96-5p, miR-182-5p, miR-374b-5p, and miR-942-5p) were confirmed by qRT-PCR. The areas under the receiver operating characteristic curve of miR-30b-5p, miR-96-5p, miR-182-5p, miR-374b-5p, and miR-942-5p were 0.9333, 0.7692, 0.7590, 0.8256, and 0.8128, respectively. Importantly, upregulation of these five miRNAs was observed even in patients with very early-stage breast cancer. A total of 855 genes were predicted to be targeted by the five miRNAs, and the one cut domain family member 2 gene (ONECUT2) was a shared target of the five miRNAs. Analysis of publicly available data revealed that these dysregulated miRNAs and the target genes were associated with the survival of breast cancer patients. Furthermore, the five miRNAs were significantly enriched in numerous cancer-related pathways, including "MicroRNAs in cancer", "Pathways in cancer", "FoxO signaling pathway", "Ras signaling pathway", "Rap1 signaling pathway", "MAPK signaling pathway", and "PI3K-Akt signaling pathway". Our data support the potential of the five identified miRNAs as novel biomarkers for the detection of breast cancer, and indicate that they may be involved in breast cancer development and progression.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Ya-Wen Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Yan-Yan Wang
- Health Examination Center, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Yu Song
- Department of Breast Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Jiang Zhu
- Department of Breast Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China
| | - Peng-Chao Si
- Key Laboratory for Liqeuid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Rong Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan 250012, Shandong, People's Republic of China.
| |
Collapse
|
48
|
Zhang Y, Huang G, Zhang Y, Yang H, Long Y, Liang Q, Zheng Z. MiR-942 decreased before 20 weeks gestation in women with preeclampsia and was associated with the pathophysiology of preeclampsia in vitro. Clin Exp Hypertens 2017; 39:108-113. [PMID: 28287888 DOI: 10.1080/10641963.2016.1210619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To investigate the possible relationship between miR-942 levels and the pathogenesis of preeclampsia using in vitro assays and to investigate circulating miR-942 levels in the early phase of mid-of pregnancy in women who later developed preeclampsia and in women with uncomplicated pregnancies. METHODS Plasma samples were collected from pregnant women between 12 and 20 weeks of gestation. MiR-942 levels were determined by stem-loop real-time PCR for 26 cases who subsequently developed preeclampsia as well as for 52 controls. Bioinformatics software was used to predict the target genes of miR-942, and a dual-luciferase reporter system was utilized to validate target gene regulation. Finally, MTT proliferation assays, transwell invasion assays, and endothelial cell tube formation assays were performed to further explore the function of miR-942 using a human extravillous trophoblast cell line (TEV-1). RESULT Circulating miR-942 levels were significantly lower in mid-pregnancy (12-20 weeks gestation) in women who later developed preeclampsia compared with those with an uncomplicated pregnancy (p < 0.05). Endoglin (ENG) is an miR-942 target gene. MiR-942 had a sensitivity of 0.673, a specificity of 0.875, and an area under the receiver operating characteristic curve (AUC) of 0.718 [95% CI, 0.594-0.822] for the possible screening of preeclampsia. In vitro, decreased miR-942 expression decreased the invasive ability of TEV-1 cells, and inhibited the HUVEC angiogenesis assay, both effects that are similar to what is observed in preeclampsia (both p <0.05). CONCLUSION MiR-942 may be involved in the pathogenesis of preeclampsia via the regulation of its target gene ENG. Multicenter studies must be performed and a greater number of samples must be analyzed to ascertain whether circulating miR-942 levels can serve as a novel early diagnostic marker for preeclampsia.
Collapse
Affiliation(s)
- Yonggang Zhang
- a Department of Clinical Laboratory , Central Hospital of Longhua New District , Shenzhen , China
| | - Guoqing Huang
- a Department of Clinical Laboratory , Central Hospital of Longhua New District , Shenzhen , China
| | - Yipeng Zhang
- a Department of Clinical Laboratory , Central Hospital of Longhua New District , Shenzhen , China
| | - Hongling Yang
- b Department of Clinical Laboratory , Guangzhou Women & Children Medical Center, Guangzhou Medical University , Guangzhou , China
| | - Yan Long
- b Department of Clinical Laboratory , Guangzhou Women & Children Medical Center, Guangzhou Medical University , Guangzhou , China
| | - Qihua Liang
- b Department of Clinical Laboratory , Guangzhou Women & Children Medical Center, Guangzhou Medical University , Guangzhou , China
| | - Zaoxiong Zheng
- c Department of Clinical Laboratory , Xiangzhou District People's Hospital , Zhuhai , China
| |
Collapse
|
49
|
Nitu R, Rogobete AF, Gundogdu F, Tanasescu S, Boruga O, Sas A, Popovici SE, Hutanu D, Pilut C, Sarau CA, Candea AC, Stan AT, Moise LM. microRNAs Expression as Novel Genetic Biomarker for Early Prediction and Continuous Monitoring in Pulmonary Cancer. Biochem Genet 2017; 55:281-290. [PMID: 28070693 DOI: 10.1007/s10528-016-9789-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
One of the main causes of death in the world is lung cancer. According to the World Health Organization, the annual incidence of lung cancer increases significantly. Moreover, lung cancer accounts for one of the highest mortality rates, mainly due to late detection. Numerous studies have been conducted in order to identify new biomarkers for early diagnosis and for monitoring and evaluation of lung cancer stages. An ideal biomarker candidate is represented by the analysis of microRNAs expression. In this paper, we want to summarize microRNAs expressions in lung cancer. We also want to present the expression of microRNAs depending on the evolution of lung cancer. For this study, we analyzed the studies available in scientific databases, such as PubMed and Scopus. The studies were selected using the search keywords "microRNAs expression," "lung cancer," and "genetic biomarkers." The most significant articles were selected for the study, following rigorous analysis. To evaluate and monitor lung cancer, the expression of microRNAs may be used successfully due to increased specificity and selectivity. However, further studies are needed on the assignment and validation of microRNAs for each type of lung cancer, respectively, for each stage of evolution.
Collapse
Affiliation(s)
- Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania. .,Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania.
| | - Fuat Gundogdu
- Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Sonia Tanasescu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ovidiu Boruga
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Adriana Sas
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Delia Hutanu
- Faculty of Chemistry, Biology Geography, West University of Medicine and Pharmacy, Timisoara, Romania
| | - Ciprian Pilut
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristian Andrei Sarau
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Adrian Tudor Stan
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Liviu Marius Moise
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
50
|
Wang C, Qiao C. MicroRNA-190b confers radio-sensitivity through negative regulation of Bcl-2 in gastric cancer cells. Biotechnol Lett 2017; 39:485-490. [PMID: 28044223 DOI: 10.1007/s10529-016-2273-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine the role of miR-190b in radio-sensitivity of gastric cancer (GC). RESULTS In radio-resistant GC cells, down-regulation of miR-190b and up-regulation of Bcl-2 were observed. The protein expression of Bcl-2 was negatively regulated by miR-190b. Overexpression of miR-190b significantly decreased cell viability and enhanced radio-sensitivity of GC cells. Of note, these effects of miR-190b on GC cells radio-sensitivity were abolished by Bcl-2. CONCLUSION miR-190b confers radio-sensitivity of GC cells, possibly via negative regulation of Bcl-2.
Collapse
Affiliation(s)
- Changzheng Wang
- Department of Gastroenterology, The First People's Hospital of XiangYang, Hubei University of Medicine, No. 15, Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, People's Republic of China
| | - Chuanhu Qiao
- Department of Gastroenterology, The First People's Hospital of XiangYang, Hubei University of Medicine, No. 15, Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, People's Republic of China.
| |
Collapse
|