1
|
Buzas D, Sun H, Toelzer C, Yadav SKN, Borucu U, Gautam G, Gupta K, Bufton JC, Capin J, Sessions RB, Garzoni F, Berger I, Schaffitzel C. Engineering the ADDobody protein scaffold for generation of high-avidity ADDomer super-binders. Structure 2024; 32:342-351.e6. [PMID: 38198950 PMCID: PMC7616808 DOI: 10.1016/j.str.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.
Collapse
Affiliation(s)
- Dora Buzas
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Sathish K N Yadav
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Joshua C Bufton
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Frederic Garzoni
- Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | |
Collapse
|
2
|
Trapani S, Bhat EA, Yvon M, Lai-Kee-Him J, Hoh F, Vernerey MS, Pirolles E, Bonnamy M, Schoehn G, Zeddam JL, Blanc S, Bron P. Structure-guided mutagenesis of the capsid protein indicates that a nanovirus requires assembled viral particles for systemic infection. PLoS Pathog 2023; 19:e1011086. [PMID: 36622854 PMCID: PMC9858847 DOI: 10.1371/journal.ppat.1011086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/20/2023] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Nanoviruses are plant multipartite viruses with a genome composed of six to eight circular single-stranded DNA segments. The distinct genome segments are encapsidated individually in icosahedral particles that measure ≈18 nm in diameter. Recent studies on the model species Faba bean necrotic stunt virus (FBNSV) revealed that complete sets of genomic segments rarely occur in infected plant cells and that the function encoded by a given viral segment can complement the others across neighbouring cells, presumably by translocation of the gene products through unknown molecular processes. This allows the viral genome to replicate, assemble into viral particles and infect anew, even with the distinct genome segments scattered in different cells. Here, we question the form under which the FBNSV genetic material propagates long distance within the vasculature of host plants and, in particular, whether viral particle assembly is required. Using structure-guided mutagenesis based on a 3.2 Å resolution cryogenic-electron-microscopy reconstruction of the FBNSV particles, we demonstrate that specific site-directed mutations preventing capsid formation systematically suppress FBNSV long-distance movement, and thus systemic infection of host plants, despite positive detection of the mutated coat protein when the corresponding segment is agroinfiltrated into plant leaves. These results strongly suggest that the viral genome does not propagate within the plant vascular system under the form of uncoated DNA molecules or DNA:coat-protein complexes, but rather moves long distance as assembled viral particles.
Collapse
Affiliation(s)
- Stefano Trapani
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Michel Yvon
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Joséphine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - François Hoh
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Elodie Pirolles
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Mélia Bonnamy
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Jean-Louis Zeddam
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
3
|
Tufail S, Shah MA, Asif TA, Ullah R, Shehzad A, Ismat F, Shah MS, Habib M, Calisto BM, Mirza O, Iqbal M, Rahman M. Highly soluble and stable ‘insertion domain’ of the capsid penton base protein provides complete protection against infections caused by fowl adenoviruses. Microb Pathog 2022; 173:105835. [DOI: 10.1016/j.micpath.2022.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
4
|
Wang Y, Zhang Z, Shang L, Gao H, Du X, Li F, Gao Y, Qi G, Guo W, Qu Z, Dong T. Immunological Study of Reconstructed Common Ancestral Sequence of Adenovirus Hexon Protein. Front Microbiol 2021; 12:717047. [PMID: 34777273 PMCID: PMC8578728 DOI: 10.3389/fmicb.2021.717047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: To reconstruct the ancestral sequence of human adenoviral hexon protein by combining sequence variations and structural information. And to provide a candidate hexon protein for developing new adenoviral vector capable of escaping the pre-existing immunity in healthy populations. Methods: The sequences of 74 adenovirus-type strains were used to predict the ancestral sequence of human adenovirus hexon protein using FastML and MEGA software. The three-dimensional structure model was built using homology modeling methods. The immunological features of ancestral loop 1 and loop 2 regions of sequences were tested using protein segments expressed in a prokaryotic expression system and polypeptides synthesized with human serum samples. Results: The tower region of the hexon protein had the highest sequence variability, while the neck and base regions remained constant among different types. The modern strains successfully predicted the common ancestral sequence of the human adenovirus hexon. The positive sera against neutralizing epitopes on the common ancestor of adenoviral hexon were relatively rare among healthy adults. Conclusion: The existing strains inferred the common ancestor of human adenoviruses, with epitopes never observed in the current human strains. The predicted common ancestor hexon is a good prospect in the improvement of adenovirus vectors.
Collapse
Affiliation(s)
- Yingchen Wang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Zhe Zhang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Lei Shang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Hong Gao
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Xiqiao Du
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China.,Harbin Center for Disease Control and Prevention, Harbin, China
| | - Falong Li
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Ya Gao
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Guiyun Qi
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Weiyuan Guo
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhangyi Qu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China.,Department of Natural Focus Disease Control, Institute of Environment-Associated Disease, Sino-Russia Joint Medical Research Center, Harbin Medical University, Harbin, China
| | - Tuo Dong
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Prasanna M, Podsiadla-Bialoskorska M, Mielecki D, Ruffier N, Fateh A, Lambert A, Fanuel M, Camberlein E, Szolajska E, Grandjean C. On the use of adenovirus dodecahedron as a carrier for glycoconjugate vaccines. Glycoconj J 2021; 38:437-446. [PMID: 33852106 DOI: 10.1007/s10719-021-09999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Virus-Like Particles (VLPs) have been used as immunogenic molecules in numerous recombinant vaccines. VLPs can also serve as vaccine platform to exogenous antigens, usually peptides incorporated within the protein sequences which compose the VLPs or conjugated to them. We herein described the conjugation of a synthetic tetrasaccharide mimicking the Streptococcus pneumoniae serotype 14 capsular polysaccharide to recombinant adenoviral type 3 dodecahedron, formed by the self-assembling of twelve penton bases and investigated the induced immune response when administered subcutaneously (s.c.). Whether formulated in the form of a dodecahedron or disassembled, the glycoconjugate induced an anti-protein response after two and three immunizations equivalent to that observed when the native dodecahedron was administered. On the other hand, the glycoconjugate induced a weak anti-IgM response which diminishes after two doses but no IgM-to-IgG switch was observed in mice against the serotype 14 capsular polysaccharide. In definitive, the whole conjugation process preserved both particulate nature and immunogenicity of the adenoviral dodecahedron. Further studies are needed to fully exploit adenoviral dodecahedron potential in terms of plasticity towards sequence engineering and of its capacity to stimulate the immune system via the intranasal route of administration as well as to shift the response to the carbohydrate antigen by playing both with the carbohydrate to protein ratio and the length of the synthetic carbohydrate antigen.
Collapse
Affiliation(s)
- Maruthi Prasanna
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | | | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Nicolas Ruffier
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Amina Fateh
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Annie Lambert
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Mathieu Fanuel
- UR BIA, INRAE, F-44316, Nantes, France.,BIBS facility, INRAE, F-44316, Nantes, France
| | - Emilie Camberlein
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Cyrille Grandjean
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France.
| |
Collapse
|
6
|
Caulier B, Stofleth G, Hannani D, Guidetti M, Josserand V, Laurin D, Chroboczek J, Mossuz P, Plantaz D. Evaluation of the human type 3 adenoviral dodecahedron as a vector to target acute myeloid leukemia. Mol Ther Methods Clin Dev 2021; 20:181-190. [PMID: 33473357 PMCID: PMC7797482 DOI: 10.1016/j.omtm.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Intensive systemic chemotherapy is the gold standard of acute myeloid leukemia (AML) treatment and is associated with considerable off-target toxicities. Safer and targeted delivery systems are thus urgently needed. In this study, we evaluated a virus-like particle derived from the human type 3 adenovirus, called the adenoviral dodecahedron (Dd) to target AML cells. The vectorization of leukemic cells was proved very effective at nanomolar concentrations in a time- and dose-dependent manner, without vector toxicity. The internalization involved clathrin-mediated energy-dependent endocytosis and strongly correlated with the expression of αVβ3 integrin. The treatment of healthy donor peripheral blood mononuclear cells showed a preferential targeting of monocytes compared to lymphocytes and granulocytes. Similarly, monocytes but also AML blasts were the best-vectorized populations in patients while acute lymphoid leukemia blasts were less efficiently targeted. Importantly, AML leukemic stem cells (LSCs) could be addressed. Finally, Dd reached peripheral monocytes and bone marrow hematopoietic stem and progenitor cells following intravenous injection in mice, without excessive spreading in other organs. These findings reveal Dd as a promising myeloid vector especially for therapeutic purposes in AML blasts, LSCs, and progenitor cells.
Collapse
Affiliation(s)
- Benjamin Caulier
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Gaëlle Stofleth
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Department of Pediatric Onco-Immuno-Hematology, University Grenoble Alpes Hospital, Grenoble, France
| | - Dalil Hannani
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Mélanie Guidetti
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Véronique Josserand
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - David Laurin
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne Rhône-Alpes, Grenoble, France
| | - Jadwiga Chroboczek
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Pascal Mossuz
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Dominique Plantaz
- Department of Pediatric Onco-Immuno-Hematology, University Grenoble Alpes Hospital, Grenoble, France
| |
Collapse
|
7
|
Sari‐Ak D, Bufton J, Gupta K, Garzoni F, Fitzgerald D, Schaffitzel C, Berger I. VLP-factory™ and ADDomer © : Self-assembling Virus-Like Particle (VLP) Technologies for Multiple Protein and Peptide Epitope Display. Curr Protoc 2021; 1:e55. [PMID: 33729713 PMCID: PMC9733710 DOI: 10.1002/cpz1.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Virus-like particles (VLPs) play a prominent role in vaccination as safe and highly versatile alternatives to attenuated or inactivated viruses or subunit vaccines. We present here two innovations, VLP-factory™ and ADDomer© , for creating VLPs displaying entire proteins or peptide epitopes as antigens, respectively, to enable efficient vaccination. For producing these VLPs, we use MultiBac, a baculovirus expression vector system (BEVS) that we developed for producing complex protein biologics in insect cells transfected with an engineered baculovirus. VLPs are protein assemblies that share features with viruses but are devoid of genetic material, and thus considered safe. VLP-factory™ represents a customized MultiBac baculovirus tailored to produce enveloped VLPs based on the M1 capsid protein of influenza virus. We apply VLP-factory™ to create an array of influenza-derived VLPs presenting functional mutant influenza hemagglutinin (HA) glycoprotein variants. Moreover, we describe MultiBac-based production of ADDomer© , a synthetic self-assembling adenovirus-derived protein-based VLP platform designed to display multiple copies of pathogenic epitopes at the same time on one particle for highly efficient vaccination. © 2021 The Authors. Basic Protocol 1: VLP-factory™ baculoviral genome generation Basic Protocol 2: Influenza VLP array generation using VLP-factory™ Basic Protocol 3: Influenza VLP purification Basic Protocol 4: ADDomer© BioBrick design, expression, and purification Basic Protocol 5: ADDomer© candidate vaccines against infectious diseases.
Collapse
Affiliation(s)
- Duygu Sari‐Ak
- Department of Medical Biology, School of MedicineUniversity of Health SciencesIstanbulTurkey
| | - Joshua Bufton
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Frederic Garzoni
- Imophoron Ltd, St. Philips CentralSt. PhilipsBristolUnited Kingdom
| | | | - Christiane Schaffitzel
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- School of ChemistryUniversity of BristolBristolUnited Kingdom
- Max Planck Bristol Centre for Minimal BiologyUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
8
|
Besson S, Vragniau C, Vassal-Stermann E, Dagher MC, Fender P. The Adenovirus Dodecahedron: Beyond the Platonic Story. Viruses 2020; 12:E718. [PMID: 32630840 PMCID: PMC7412204 DOI: 10.3390/v12070718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/03/2023] Open
Abstract
Many geometric forms are found in nature, some of them adhering to mathematical laws or amazing aesthetic rules. One of the best-known examples in microbiology is the icosahedral shape of certain viruses with 20 triangular facets and 12 edges. What is less known, however, is that a complementary object displaying 12 faces and 20 edges called a 'dodecahedron' can be produced in huge amounts during certain adenovirus replication cycles. The decahedron was first described more than 50 years ago in the human adenovirus (HAdV3) viral cycle. Later on, the expression of this recombinant scaffold, combined with improvements in cryo-electron microscopy, made it possible to decipher the structural determinants underlying their architecture. Recently, this particle, which mimics viral entry, was used to fish the long elusive adenovirus receptor, desmoglein-2, which serves as a cellular docking for some adenovirus serotypes. This breakthrough enabled the understanding of the physiological role played by the dodecahedral particles, showing that icosahedral and dodecahedral particles live more than a simple platonic story. All these points are developed in this review, and the potential use of the dodecahedron in therapeutic development is discussed.
Collapse
Affiliation(s)
- Solène Besson
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| | - Charles Vragniau
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Institut National Polytechnique Grenoble, Technique de l’ingénierie Médicale et de la Complexité, TIMC-IMAG Bât Jean Roget Faculté de Médecine et Pharmacie, 38700 La Tronche, France
| | - Emilie Vassal-Stermann
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| | - Marie Claire Dagher
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| | - Pascal Fender
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, Commissariat Enérgies Alternatives, Institut de Biologie Structurale, 41 rue des Martyrs, 38042 Grenoble, France; (S.B.); (C.V.); (E.V.-S.); (M.C.D.)
| |
Collapse
|
9
|
Wilson DP. Unveiling the Hidden Rules of Spherical Viruses Using Point Arrays. Viruses 2020; 12:v12040467. [PMID: 32326043 PMCID: PMC7232142 DOI: 10.3390/v12040467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any critical insight into sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding virus stability and key locations for exterior and interior modifications. We present a modified fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local surface chemistry, steric hinderance, solvent accessibility or Triangulation number. We then use these point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of surface lysine residues in CPMV and the non-quasi-equivalent flexibility of the HBV dimers. We then explain how point arrays can be used as a predictive tool for site-directed modifications of capsids. This success builds on our previous work showing that viruses place their protruding features along the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric constraints.
Collapse
Affiliation(s)
- David P Wilson
- Department of Physics, Kalamazoo College, Kalamazoo, MI 49006, USA
| |
Collapse
|
10
|
Vragniau C, Bufton JC, Garzoni F, Stermann E, Rabi F, Terrat C, Guidetti M, Josserand V, Williams M, Woods CJ, Viedma G, Bates P, Verrier B, Chaperot L, Schaffitzel C, Berger I, Fender P. Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display. SCIENCE ADVANCES 2019; 5:eaaw2853. [PMID: 31620562 PMCID: PMC6763337 DOI: 10.1126/sciadv.aaw2853] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Self-assembling virus-like particles represent highly attractive tools for developing next-generation vaccines and protein therapeutics. We created ADDomer, an adenovirus-derived multimeric protein-based self-assembling nanoparticle scaffold engineered to facilitate plug-and-play display of multiple immunogenic epitopes from pathogens. We used cryo-electron microscopy at near-atomic resolution and implemented novel, cost-effective, high-performance cloud computing to reveal architectural features in unprecedented detail. We analyzed ADDomer interaction with components of the immune system and developed a promising first-in-kind ADDomer-based vaccine candidate to combat emerging Chikungunya infectious disease, exemplifying the potential of our approach.
Collapse
Affiliation(s)
- Charles Vragniau
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Joshua C. Bufton
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
| | - Frédéric Garzoni
- Imophoron Ltd., Unit DX, St. Philips Central, Albert Road, Bristol BS2 OXJ, UK
| | - Emilie Stermann
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Fruzsina Rabi
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
| | - Céline Terrat
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305, Université Lyon 1, CNRS, Institut de Biologie et Chimie des Protéines (IBCP), Lyon, France
| | - Mélanie Guidetti
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Véronique Josserand
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Matt Williams
- Advanced Computing Research Centre, University of Bristol, 31 Great George Street, Bristol BS1 5QD, UK
| | - Christopher J. Woods
- Advanced Computing Research Centre, University of Bristol, 31 Great George Street, Bristol BS1 5QD, UK
| | - Gerardo Viedma
- Oracle Cloud Development Centre, Tower Wharf, Cheese Lane, Bristol BS2 2JJ, UK
| | - Phil Bates
- Oracle Cloud Development Centre, Tower Wharf, Cheese Lane, Bristol BS2 2JJ, UK
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305, Université Lyon 1, CNRS, Institut de Biologie et Chimie des Protéines (IBCP), Lyon, France
| | - Laurence Chaperot
- Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, 38700 Grenoble, France
| | - Christiane Schaffitzel
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
| | - Imre Berger
- Bristol Research Centre for Synthetic Biology BrisSynBio, School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Max Planck-Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Pascal Fender
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
11
|
Wang X, Tang Q, Qiu L, Yang Z. Penton-dodecahedron of fowl adenovirus serotype 4 as a vaccine candidate for the control of related diseases. Vaccine 2019; 37:839-847. [DOI: 10.1016/j.vaccine.2018.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
12
|
Jedynak M, Worch R, Podsiadła-Białoskórska M, Chroboczek J, Szołajska E. Cholesterol and phosphatidylserine are engaged in adenoviral dodecahedron endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2215-2223. [DOI: 10.1016/j.bbamem.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/14/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
|
13
|
Jedynak M, Laurin D, Dolega P, Podsiadla-Bialoskorska M, Szurgot I, Chroboczek J, Szolajska E. Leukocytes and drug-resistant cancer cells are targets for intracellular delivery by adenoviral dodecahedron. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1853-1865. [DOI: 10.1016/j.nano.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/04/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
|
14
|
Zhou J, Scherer J, Yi J, Vallee RB. Role of kinesins in directed adenovirus transport and cytoplasmic exploration. PLoS Pathog 2018; 14:e1007055. [PMID: 29782552 PMCID: PMC5983873 DOI: 10.1371/journal.ppat.1007055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/01/2018] [Accepted: 04/25/2018] [Indexed: 01/23/2023] Open
Abstract
Many viruses, including adenovirus, exhibit bidirectional transport along microtubules following cell entry. Cytoplasmic dynein is responsible for microtubule minus end transport of adenovirus capsids after endosomal escape. However, the identity and roles of the opposing plus end-directed motor(s) remain unknown. We performed an RNAi screen of 38 kinesins, which implicated Kif5B (kinesin-1 family) and additional minor kinesins in adenovirus 5 (Ad5) capsid translocation. Kif5B RNAi markedly increased centrosome accumulation of incoming Ad5 capsids in human A549 pulmonary epithelial cells within the first 30 min post infection, an effect dramatically enhanced by blocking Ad5 nuclear pore targeting using leptomycin B. The Kif5B RNAi phenotype was rescued by expression of RNAi-resistant Kif5A, B, or C, and Kif4A. Kif5B RNAi also inhibited a novel form of microtubule-based “assisted-diffusion” behavior which was apparent between 30 and 60 min p.i. We found the major capsid protein penton base (PB) to recruit kinesin-1, distinct from the hexon role we previously identified for cytoplasmic dynein binding. We propose that adenovirus uses independently recruited kinesin and dynein for directed transport and for a more random microtubule-based assisted diffusion behavior to fully explore the cytoplasm before docking at the nucleus, a mechanism of potential importance for physiological cargoes as well. The role of plus-end directed microtubule motors in virus entry into host cells is a long-standing question. In this study, the authors identify the kinesins responsible for adenovirus plus end-directed transport along microtubules, the mechanism for kinesin recruitment, and both directed and motor-based exploratory movements involved in adenovirus’ search for the nucleus.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York City, New York, United States of America
| | - Julian Scherer
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York City, New York, United States of America
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University, New York City, New York, United States of America
| | - Richard B. Vallee
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Wilson DP. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles. PLoS One 2016; 11:e0152319. [PMID: 27045511 PMCID: PMC4821576 DOI: 10.1371/journal.pone.0152319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
Spherical viruses are remarkably well characterized by the Triangulation (T) number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary constraints as well as bioengineering for capsid drug delivery systems. This result also suggests that in addition to biochemical attachment restrictions, there are additional geometric constraints that should be adhered to when modifying protein capsids.
Collapse
Affiliation(s)
- David P. Wilson
- Department of Physics, Albion College, 611 E. Porter St., Albion, Michigan, United States of America
- * E-mail:
| |
Collapse
|
16
|
Szurgot I, Jedynak M, Podsiadla-Bialoskorska M, Piwowarski J, Szolajska E, Chroboczek J. Adenovirus Dodecahedron, a VLP, Can be Purified by Size Exclusion Chromatography Instead of Time-Consuming Sucrose Density Gradient Centrifugation. Mol Biotechnol 2016; 57:565-73. [PMID: 25711740 DOI: 10.1007/s12033-015-9850-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adenoviral dodecahedron (Dd) is a virus-like particle composed of twelve pentameric penton base (Pb) proteins, responsible for adenovirus cell penetration. It is generated spontaneously in the baculovirus system upon expression of the Pb gene of adenovirus serotype 3. This particle shows remarkable cell penetration ability with 2,00,000-3,00,000 Dd internalized into one cell in culture, conceivably delivering several millions of foreign cargo molecules to the target cell. We have used it in the past for delivery of small drugs as well as a vaccination platform, in which Dd serves as a particulate vaccine delivery system. Since development of new biomedicals depends strongly on the cost of their expression and purification, we attempted, albeit unsuccessfully, to obtain Dd expression in bacteria. We therefore retained its expression in the baculovirus/insect cells system but introduced significant improvements in the protocols for Dd expression and purification, leading to considerable savings in time and improved yield.
Collapse
Affiliation(s)
- I Szurgot
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02106, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Zhang B, Yan Y, Jin J, Lin H, Li Z, Zhang X, Liu J, Xi C, Lieber A, Fan X, Ran L. Two types of functionally distinct fiber containing structural protein complexes are produced during infection of adenovirus serotype 5. PLoS One 2015; 10:e0117976. [PMID: 25723153 PMCID: PMC4344211 DOI: 10.1371/journal.pone.0117976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/03/2015] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses are common pathogens. The localization of their receptors coxsackievirus and adenovirus receptor, and desmoglein-2 in cell-cell junction complexes between polarized epithelial cells represents a major challenge for adenovirus infection from the apical surface. Structural proteins including hexon, penton base and fiber are excessively produced in serotype 5 adenovirus (Ad5)-infected cells. We have characterized the composition of structural protein complexes released from Ad5 infected cells and their capacity in remodeling cell-cell junction complexes. Using T84 cells as a model for polarized epithelium, we have studied the effect of Ad5 structural protein complexes in remodeling cell-cell junctions in polarized epithelium. The initial Ad5 infection in T84 cell culture was inefficient. However, progressive distortion of cell-cell junction in association with fiber release was evident during progression of Ad5 infection. Incubation of T84 cell cultures with virion-free supernatant from Ad5 infected culture resulted in distortion of cell-cell junctions and decreased infectivity of Ad5-GFP vector. We used gel filtration chromatography to fractionate fiber containing virion–free supernatant from Ad5 infected culture supernatant. Fiber containing fractions were further characterized for their capacity to inhibit the infection of Ad5-GFP vector, their composition in adenovirus structural proteins using western blot and LC-MS/MS and their capacity in remolding cell-cell junctions. Fiber molecules in complexes containing penton base and hexon, or mainly hexon were identified. Only the fiber complexes with relatively high content of penton base, but not the fiber-hexon complexes with low penton base, were able to penetrate into T84 cells and cause distortion of cell-cell junctions. Our findings suggest that these two types of fiber complexes may play different roles in adenoviral infection.
Collapse
Affiliation(s)
- Bo Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
| | - Yuhua Yan
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
| | - Jie Jin
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
| | - Hongyu Lin
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
| | - Zongyi Li
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Xiaoyan Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
| | - Andre Lieber
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Xiaolong Fan
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
- * E-mail: (XF); (LR)
| | - Liang Ran
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Science, Beijing Normal University, Beijing, China
- * E-mail: (XF); (LR)
| |
Collapse
|
18
|
Abstract
During human adenovirus type 3 (Ad3) infection, an excess of penton base and fiber proteins are produced. These form dodecahedral particles composed of 12 pentamers of penton base and 12 trimers of fiber protein. Beside this "natural" expression, the adenovirus dodecahedron can be expressed in the heterologous baculovirus system in two forms: a fiber-devoid dodecahedron made only of 12 penton bases (called base-dodecahedron: Bs-Dd) and the fiber-containing dodecahedron (called penton dodecahedron: Pt-Dd). These particles partly mimic the adenoviral cellular entry pathway but are devoid of genetic information making them an unusual tool for basic research or applications. We report here how these particles are expressed and purified, the labeling method for trafficking studies as well as their use in molecular interaction studies. The potential of these particles for biotechnological applications is under evaluation, making their study a "niche" along side traditional adenoviral vectors.
Collapse
Affiliation(s)
- Pascal Fender
- Unit of Virus Host Cell Interactions (UMI-3265:CNRS/UJF/EMBL), Grenoble, France
| |
Collapse
|
19
|
Penton-dodecahedral particles trigger opening of intercellular junctions and facilitate viral spread during adenovirus serotype 3 infection of epithelial cells. PLoS Pathog 2013; 9:e1003718. [PMID: 24204268 PMCID: PMC3814681 DOI: 10.1371/journal.ppat.1003718] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Human adenovirus serotypes Ad3, Ad7, Ad11, and Ad14 use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. During Ad infection, the fiber and penton base capsid proteins are produced in vast excess and form hetero-oligomers, called pentons. It has been shown for Ad3 that pentons self-assemble into penton-dodecahedra (PtDd). Our previous studies with recombinant purified Ad3 PtDd (produced in insect cells) showed that PtDd bind to DSG2 and trigger intracellular signaling resulting in the transient opening of junctions between epithelial cells. So far, a definitive proof for a function of Ad3 PtDd in the viral life cycle is elusive. Based on the recently published 3D structure of recombinant Ad3 PtDd, we generated a penton base mutant Ad3 vector (mu-Ad3GFP). mu-Ad3GFP is identical to its wild-type counterpart (wt-Ad3GFP) in the efficiency of progeny virus production; however, it is disabled in the production of PtDd. For infection studies we used polarized epithelial cancer cells or cell spheroids. We showed that in wt-Ad3GFP infected cultures, PtDd were released from cells before viral cytolysis and triggered the restructuring of epithelial junctions. This in turn facilitated lateral viral spread of de novo produced virions. These events were nearly absent in mu-Ad3GFP infected cultures. Our in vitro findings were consolidated in mice carrying xenograft tumors derived from human epithelial cancer cells. Furthermore, we provide first evidence that PtDd are also formed by another DSG2-interacting Ad serotype, the newly emerged, highly pathogenic Ad14 strain (Ad14p1). The central finding of this study is that a subgroup of Ads has evolved to generate PtDd as a strategy to achieve penetration into and dissemination in epithelial tissues. Our findings are relevant for basic and applied virology, specifically for cancer virotherapy. We have recently reported that a group of human Ads uses DSG2 as a receptor for infection. Among the DSG2-interacting Ads is serotype 3, which is widely distributed in the human population. During Ad3 infection, subviral particles (PtDd) formed by two capsid proteins are produced in vast excess and released early in infection. In this study, we demonstrate that PtDd trigger the opening of epithelial junctions and thus support the lateral spread of Ad3 progeny virus in epithelial tissues. Our study contributes to a better understanding of Ad3 infection and pathology. It also has implications for Ad-mediated gene transfer into epithelial tissues and tumors.
Collapse
|
20
|
Szurgot I, Szolajska E, Laurin D, Lambrecht B, Chaperot L, Schoehn G, Chroboczek J. Self-adjuvanting influenza candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform. Vaccine 2013; 31:4338-46. [PMID: 23880363 DOI: 10.1016/j.vaccine.2013.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022]
Abstract
We exploit the features of a virus-like particle, adenoviral dodecahedron (Ad Dd), for engineering a multivalent vaccination platform carrying influenza epitopes for cell-mediated immunity. The delivery platform, Ad Dd, is a proteinaceous, polyvalent, and biodegradable nanoparticle endowed with remarkable endocytosis activity that can be engineered to carry 60 copies of a peptide. Influenza M1 is the most abundant influenza internal protein with the conserved primary structure. Two different M1 immunodominant epitopes were separately inserted in Dd external positions without destroying the particles' dodecahedric structure. Both kinds of DdFluM1 obtained through expression in baculovirus system were properly presented by human dendritic cells triggering efficient activation of antigen-specific T cells responses. Importantly, the candidate vaccine was able to induce cellular immunity in vivo in chickens. These results warrant further investigation of Dd as a platform for candidate vaccine, able to stimulate cellular immune responses.
Collapse
Affiliation(s)
- Inga Szurgot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The outer shell of the adenovirus capsid comprises three major types of protein (hexon, penton base and fiber) that perform the majority of functions facilitating the early stages of adenovirus infection. These stages include initial cell-surface binding followed by receptor-mediated endocytosis, endosomal penetration and cytosolic entry, and intracellular trafficking toward the nucleus. Numerous studies have shown that the penton base contributes to several of these steps and have supported the development of this protein into a delivery agent for therapeutic molecules. Studies revealing that the fiber and hexon bear unexpected properties of cell entry and/or nuclear homing have supported the development of these capsid proteins, as well into potential delivery vehicles. This review summarizes the findings to date of the protein-cell activities of these capsid proteins in the absence of the whole virus and their potential for therapeutic application with regard to the delivery of foreign molecules.
Collapse
|