1
|
Fu X, Liu S, Cao D, Li C, Ji H, Wang G. Med23 deficiency reprograms the tumor microenvironment to promote lung tumorigenesis. Br J Cancer 2024; 130:716-727. [PMID: 38195889 PMCID: PMC10912217 DOI: 10.1038/s41416-023-02556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. We previously found that Mediator complex subunit 23 (MED23) is important for the tumourigenicity of lung cancer cells with hyperactive Ras activity in vitro, although the in vivo function of MED23 in lung tumourigenesis remains to be explored. METHODS In this study, we utilized well-characterized KrasG12D-driven non-small cell lung cancer mouse model to investigate the role of MED23 in lung cancer. The lung tumour progression was evaluated by H&E and IHC analysis. Western blotting and qRT-PCR assays were performed to detect changes in gene expression. Immune cells were analyzed by FACS technology. RNA-seq and reporter assays were conducted to explore the mechanism. RESULTS We observed that lung epithelial Med23 deletion by adeno-Cre resulted in a significant increase in KrasG12D tumour number and size, which was further verified with another mouse model with Med23 specifically deleted in alveolar type II cells. Mice with lung-specific Med23 deficiency also exhibited accelerated tumourigenesis, and a higher proliferation rate for tumour cells, along with increased ERK phosphorylation. Notably, the numbers of infiltrating CD4+ T cells and CD8+ T cells were significantly reduced in the lungs of Med23-deficient mice, while the numbers of myeloid-derived suppressor cells (MDSCs) and Treg cells were significantly increased, suggesting the enhanced immune escape capability of the Med23-deficient lung tumours. Transcriptomic analysis revealed that the downregulated genes in Med23-deficient lung tumour tissues were associated with the immune response. Specifically, Med23 deficiency may compromise the MHC-I complex formation, partially through down-regulating B2m expression. CONCLUSIONS Collectively, these findings revealed that MED23 may negatively regulate Kras-induced lung tumourigenesis in vivo, which would improve the precise classification of KRAS-mutant lung cancer patients and provide new insights for clinical interventions.
Collapse
Affiliation(s)
- Xiaobo Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Siming Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Cao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chonghui Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Yu W, Ye H, Li Y, Bao X, Ni Y, Chen X, Sun Y, Chen A, Zhou W, Li J. Pneumocystis carinii infection drives upregulation of Fn1 expression that causes pulmonary fibrosis with an inflammatory response. Rev Iberoam Micol 2024; 41:17-26. [PMID: 39332977 DOI: 10.1016/j.riam.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Pneumocystis carinii is an opportunistic fungal pathogen that may cause pneumonia and lead to pulmonary fibrosis. AIMS This study attempted to investigate the role of P. carinii infection-related genes in regulating lung fibrosis in mice. METHODS A screening of P. carinii infection-related differential mRNAs was performed using the GEO database, followed by protein-protein interaction (PPI) network construction using the STRING website in order to obtain P. carinii infection-related key genes. The development of a mouse model with gene aberrant expression was achieved by utilizing mice carrying the Cre-LoxP recombinase system. Dexamethasone was employed to induce tracheal infection in order to develop a model of pulmonary fibrosis, and the magnitude of lung injury was assessed by performing hematoxylin-eosin (H&E) staining and Masson staining. Lung coefficient and hydroxyproline level were assessed on sections of lung tissue as well. Finally, the magnitude of lung fibrosis and inflammation in mice was determined based on immunofluorescence and on the expression of genes associated with lung fibrosis and inflammation. RESULTS Fn1 was found by PPI with the highest connectivity in the PPI network associated with immunity and inflammation. Besides, Fn1 was significantly highly expressed in P. carinii-infected mice samples. The P carinii pneumonia (PCP)+Fn1fl/fl group had significantly higher lung coefficients, hydroxyproline levels and TNF-α, IL-6, IL-1β, IL-8 and NLRP3 expression levels, and significantly lower IL-10 expression levels. The results found in PCP+SPC-Cre:Fn1fl/fl group were the opposite. The results of the pulmonary fibrosis level study showed that the PCP+Fn1fl/fl group had the most intense H&E and Masson staining, and significantly higher expression levels of Col1A2, Col3A1 and α-SMA, which were lower in the PCP+SPC-Cre:Fn1fl/fl group. CONCLUSIONS P. carinii infection may promote the upregulation of Fn1, which causes pulmonary fibrosis with an inflammatory response.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Hua Ye
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Yunlei Li
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Xiaoqiong Bao
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Yangyang Ni
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Xiangxiang Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Yangjie Sun
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Ali Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Weilong Zhou
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Jifa Li
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang China.
| |
Collapse
|
3
|
Yang M, Shen H, Flodby P, Koss MD, Bassiouni R, Liu Y, Jashashvili T, Neely A, Ogbolu E, Castillo J, Stueve TR, Mullen DJ, Ryan AL, Carpten J, Castaldi A, Wallace WD, Zhou B, Borok Z, Marconett CN. Alveolar type I cells can give rise to KRAS-induced lung adenocarcinoma. Cell Rep 2023; 42:113286. [PMID: 37995179 PMCID: PMC10842735 DOI: 10.1016/j.celrep.2023.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 11/25/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.
Collapse
Affiliation(s)
- Minxiao Yang
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Hua Shen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael D Koss
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rania Bassiouni
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Yixin Liu
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aaron Neely
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Ezuka Ogbolu
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Castillo
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Theresa Ryan Stueve
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel J Mullen
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA
| | - John Carpten
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Alessandra Castaldi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - W Dean Wallace
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Beiyun Zhou
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Crystal N Marconett
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90089, USA; Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Vo T, Saini Y. Case report: Mafb promoter activity may define the alveolar macrophage dichotomy. Front Immunol 2022; 13:1050494. [PMID: 36578483 PMCID: PMC9791191 DOI: 10.3389/fimmu.2022.1050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cre-LoxP system has been widely used to induce recombination of floxed genes of interest. Currently available macrophage promoter-specific Cre recombinase mice strains have various limitations that warrants the testing of additional Cre strains. V-maf musculoaponeurotic fibrosarcoma oncogene family, protein b -Cre (Mafb-Cre) mice label macrophages in most organs such as spleen, small intestine, lung, bone marrow, and peritoneal cavity. However, whether Mafb-Cre recombinase targets the gene recombination in alveolar macrophage remains untested. Here, we utilized MafbCre/WTR26mTmG/WT strain that expresses mTOM protein in all the cells of mouse body except for those that express Mafb-Cre-regulated mEGFP. We performed fluorescent microscopy and flow cytometry to analyze mTOM and mEGFP expression in alveolar macrophages from MafbCre/WTR26mTmG/WT mice. Our analyses revealed that the Mafb-Cre is active in only ~40% of the alveolar macrophages in an age-independent manner. While Mafb- (mTOM+/mEGFP-) and Mafb+ (mEGFP+) alveolar macrophages exhibit comparable expression of CD11b and CD11c surface markers, the surface expression of MHCII is elevated in the Mafb+ (mEGFP+) macrophages. The bone marrow-derived macrophages from MafbCre/WTR26mTmG/WT mice are highly amenable to Cre-LoxP recombination in vitro. The bone marrow depletion and reconstitution experiment revealed that ~98% of alveolar macrophages from MafbCre/WTR26mTmG/WT → WT chimera are amenable to the Mafb-Cre-mediated recombination. Finally, the Th2 stimulation and ozone exposure to the MafbCre/WTR26mTmG/WT mice promote the Mafb-Cre-mediated recombination in alveolar macrophages. In conclusion, while the Mafb-/Mafb+ dichotomy thwarts the use of Mafb-Cre for the induction of floxed alleles in the entire alveolar macrophage population, this strain provides a unique tool to induce gene deletion in alveolar macrophages that encounter Th2 microenvironment in the lung airspaces.
Collapse
|
5
|
Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, Holtzhausen A, Al-Rohil R, Salama AKS, Beasley GM, Plebanek MP, DeVito NC, Hanks BA. Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med 2022; 14:eabq7019. [PMID: 36417489 DOI: 10.1126/scitranslmed.abq7019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tumor-intrinsic NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome-heat shock protein 70 (HSP70) signaling axis is triggered by CD8+ T cell cytotoxicity and contributes to the development of adaptive resistance to anti-programmed cell death protein 1 (PD-1) immunotherapy by recruiting granulocytic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into the tumor microenvironment. Here, we demonstrate that the tumor NLRP3-HSP70 axis also drives the accumulation of PMN-MDSCs into distant lung tissues in a manner that depends on lung epithelial cell Toll-like receptor 4 (TLR4) signaling, establishing a premetastatic niche that supports disease hyperprogression in response to anti-PD-1 immunotherapy. Lung epithelial HSP70-TLR4 signaling induces the downstream Wnt5a-dependent release of granulocyte colony-stimulating factor (G-CSF) and C-X-C motif chemokine ligand 5 (CXCL5), thus promoting myeloid granulopoiesis and recruitment of PMN-MDSCs into pulmonary tissues. Treatment with anti-PD-1 immunotherapy enhanced the activation of this pathway through immunologic pressure and drove disease progression in the setting of Nlrp3 amplification. Genetic and pharmacologic inhibition of NLRP3 and HSP70 blocked PMN-MDSC accumulation in the lung in response to anti-PD-1 therapy and suppressed metastatic progression in preclinical models of melanoma and breast cancer. Elevated baseline concentrations of plasma HSP70 and evidence of NLRP3 signaling activity in tumor tissue specimens correlated with the development of disease hyperprogression and inferior survival in patients with stage IV melanoma undergoing anti-PD-1 immunotherapy. Together, this work describes a pathogenic mechanism underlying the phenomenon of disease hyperprogression in melanoma and offers candidate targets and markers capable of improving the management of patients with melanoma.
Collapse
Affiliation(s)
- Balamayooran Theivanthiran
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nagendra Yarla
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Y-Van Nguyen
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Linda Cao
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michelle Ferreira
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Alisha Holtzhausen
- Lineberger Comprehensive Cancer Center, University of North Caroline at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rami Al-Rohil
- Department of Pathology, Duke Cancer Institute, Duke University Durham, Durham, NC 27710, USA
| | - April K S Salama
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Georgia M Beasley
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michael P Plebanek
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nicholas C DeVito
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Brent A Hanks
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Wilson C, Mertens TC, Shivshankar P, Bi W, Collum SD, Wareing N, Ko J, Weng T, Naikawadi RP, Wolters PJ, Maire P, Jyothula SS, Thandavarayan RA, Ren D, Elrod ND, Wagner EJ, Huang HJ, Dickey BF, Ford HL, Karmouty-Quintana H. Sine oculis homeobox homolog 1 plays a critical role in pulmonary fibrosis. JCI Insight 2022; 7:e142984. [PMID: 35420997 PMCID: PMC9220956 DOI: 10.1172/jci.insight.142984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. The role of the developmental transcription factor Sine oculis homeobox homolog 1 (SIX1) in the pathophysiology of lung fibrosis is not known. IPF lung tissue samples and IPF-derived alveolar type II cells (AT2) showed a significant increase in SIX1 mRNA and protein levels, and the SIX1 transcriptional coactivators EYA1 and EYA2 were elevated. Six1 was also upregulated in bleomycin-treated (BLM-treated) mice and in a model of spontaneous lung fibrosis driven by deletion of Telomeric Repeat Binding Factor 1 (Trf1) in AT2 cells. Conditional deletion of Six1 in AT2 cells prevented or halted BLM-induced lung fibrosis, as measured by a significant reduction in histological burden of fibrosis, reduced fibrotic mediator expression, and improved lung function. These effects were associated with increased macrophage migration inhibitory factor (MIF) in lung epithelial cells in vivo following SIX1 overexpression in BLM-induced fibrosis. A MIF promoter-driven luciferase assay demonstrated direct binding of Six1 to the 5'-TCAGG-3' consensus sequence of the MIF promoter, identifying a likely mechanism of SIX1-driven MIF expression in the pathogenesis of lung fibrosis and providing a potentially novel pathway for targeting in IPF therapy.
Collapse
Affiliation(s)
- Cory Wilson
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Tinne C.J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Pooja Shivshankar
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Weizen Bi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Scott D. Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Nancy Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Ram P. Naikawadi
- Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Paul J. Wolters
- Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Soma S.K. Jyothula
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth, Houston, Texas, USA
| | | | - Dewei Ren
- Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, KMRB G.9629, Rochester, New York, USA
| | - Howard J. Huang
- Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth, Houston, Texas, USA
| |
Collapse
|
7
|
Vohwinkel CU, Coit EJ, Burns N, Elajaili H, Hernandez‐Saavedra D, Yuan X, Eckle T, Nozik E, Tuder RM, Eltzschig HK. Targeting alveolar-specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB J 2021; 35:e21468. [PMID: 33687752 PMCID: PMC8250206 DOI: 10.1096/fj.202002778r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Acute lung injury (ALI) is an inflammatory lung disease, which manifests itself in patients as acute respiratory distress syndrome (ARDS). Previous studies have implicated alveolar-epithelial succinate in ALI protection. Therefore, we hypothesized that targeting alveolar succinate dehydrogenase SDH A would result in elevated succinate levels and concomitant lung protection. Wild-type (WT) mice or transgenic mice with targeted alveolar-epithelial Sdha or hypoxia-inducible transcription factor Hif1a deletion were exposed to ALI induced by mechanical ventilation. Succinate metabolism was assessed in alveolar-epithelial via mass spectrometry as well as redox measurements and evaluation of lung injury. In WT mice, ALI induced by mechanical ventilation decreased SDHA activity and increased succinate in alveolar-epithelial. In vitro, cell-permeable succinate decreased epithelial inflammation during stretch injury. Mice with inducible alveolar-epithelial Sdha deletion (Sdhaloxp/loxp SPC-CreER mice) revealed reduced lung inflammation, improved alveolar barrier function, and attenuated histologic injury. Consistent with a functional role of succinate to stabilize HIF, Sdhaloxp/loxp SPC-CreER experienced enhanced Hif1a levels during hypoxia or ALI. Conversely, Hif1aloxp/loxp SPC-CreER showed increased inflammation with ALI induced by mechanical ventilation. Finally, wild-type mice treated with intra-tracheal dimethlysuccinate were protected during ALI. These data suggest that targeting alveolar-epithelial SDHA dampens ALI via succinate-mediated stabilization of HIF1A. Translational extensions of our studies implicate succinate treatment in attenuating alveolar inflammation in patients suffering from ARDS.
Collapse
Affiliation(s)
- Christine U. Vohwinkel
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Ethan J. Coit
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Nana Burns
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Hanan Elajaili
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | | | - Xiaoyi Yuan
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Tobias Eckle
- Department of AnesthesiologyUniversity of Colorado ‐ Anschutz Medical CampusAuroraCOUSA
| | - Eva Nozik
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraCOUSA
| | - Holger K. Eltzschig
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| |
Collapse
|
8
|
Royer DJ, Cook DN. Regulation of Immune Responses by Nonhematopoietic Cells in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:292-301. [PMID: 33397743 PMCID: PMC8581969 DOI: 10.4049/jimmunol.2000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Nonhematopoietic cells are emerging as important contributors to many inflammatory diseases, including allergic asthma. Recent advances have led to a deeper understanding of how these cells interact with traditional immune cells, thereby modulating their activities in both homeostasis and disease. In addition to their well-established roles in gas exchange and barrier function, lung epithelial cells express an armament of innate sensors that can be triggered by various inhaled environmental agents, leading to the production of proinflammatory molecules. Advances in cell lineage tracing and single-cell RNA sequencing have expanded our knowledge of rare, but immunologically important nonhematopoietic cell populations. In parallel with these advances, novel reverse genetic approaches are revealing how individual genes in different lung-resident nonhematopoietic cell populations contribute to the initiation and maintenance of asthma. This knowledge is already revealing new pathways that can be selectively targeted to treat distinct forms of asthma.
Collapse
Affiliation(s)
- Derek J Royer
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
9
|
Li L, Wu H, Li Q, Chen J, Xu K, Xu J, Su X. SOCS3-deficient lung epithelial cells uptaking neutrophil-derived SOCS3 worsens lung influenza infection. Mol Immunol 2020; 125:51-62. [PMID: 32645550 DOI: 10.1016/j.molimm.2020.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/30/2020] [Accepted: 06/21/2020] [Indexed: 12/25/2022]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of TBK1 and interferon pathway and the expression of SOCS3 is closely correlated with symptoms of influenza patients. However, whether deletion of Socs3 in the lung epithelial cells would affect influenza lung replication and inflammation in vivo is unknown. To test this, we approached the influenza infected Socs3f/f and SpcCre.Socs3f/f mice. We first found that knockdown of Socs3 in lung epithelial cells reduced influenza replication. However, in the in vivo study, there was a reduction of SOCS3 in the influenza-infected neutrophils coincided with an increase of SOCS3 in the CD45-CD326+ lung epithelial cells in PR8-infected SpcCre.Socs3f/f mice. SOCS3-deficient neutrophils expressed higher levels of IL-17 that enhanced chemokine expression in the lung epithelial cells. Lung SOCS3-dificient epithelial cells increased expression of GM-CSF and PGE2 which promoted SpcCre.Socs3f/f neutrophils to yield SOCS3. SpcCre.Socs3f/f lung epithelial cells internalized SOCS3 released from GM-CSF + PGE2-stimulated SpcCre.Socs3f/f neutrophils, which could boost influenza replication in the lung epithelial cells. Thus, in the in vivo study, deletion of SOCS3 from lung epithelium could be nullified by the uptake from SOCS3 from infiltrated neutrophils. In addition, deletion of Socs3 from myeloid cells reduced lung influenza infection, but increased lung inflammation. Taken together, deletion of SOCS3 could suppress influenza replication, but intracellular SOCS3 communication between neutrophils and lung epithelial cells confounds this effect.
Collapse
Affiliation(s)
- Ling Li
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiya Wu
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingmei Li
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaifeng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jinfu Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai China.
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Sandlesh P, Juang T, Safina A, Higgins MJ, Gurova KV. Uncovering the fine print of the CreERT2-LoxP system while generating a conditional knockout mouse model of Ssrp1 gene. PLoS One 2018; 13:e0199785. [PMID: 29953487 PMCID: PMC6023160 DOI: 10.1371/journal.pone.0199785] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/13/2018] [Indexed: 01/26/2023] Open
Abstract
FAcilitates Chromatin Transcription (FACT) is a complex of SSRP1 and SPT16 that is involved in chromatin remodeling during transcription, replication, and DNA repair. FACT has been mostly studied in cell-free or single cell model systems because general FACT knockout (KO) is embryonically lethal (E3.5). FACT levels are limited to the early stages of development and stem cell niches of adult tissues. FACT is upregulated in poorly differentiated aggressive tumors. Importantly, FACT inhibition (RNAi) is lethal for tumors but not normal cells, making FACT a lucrative target for anticancer therapy. To develop a better understanding of FACT function in the context of the mammalian organism under normal physiological conditions and in disease, we aimed to generate a conditional FACT KO mouse model. Because SPT16 stability is dependent on the SSRP1-SPT16 association and the presence of SSRP1 mRNA, we targeted the Ssrp1 gene using a CreERT2- LoxP approach to generate the FACT KO model. Here, we highlight the limitations of the CreERT2-LoxP (Rosa26) system that we encountered during the generation of this model. In vitro studies showed an inefficient excision rate of ectopically expressed CreERT2 (retroviral CreERT2) in fibroblasts with homozygous floxed Ssrp1. In vitro and in vivo studies showed that the excision efficiency could only be increased with germline expression of two alleles of Rosa26CreERT2. The expression of one germline Rosa26CreERT2 allele led to the incomplete excision of Ssrp1. The limited efficiency of the CreERT2-LoxP system may be sufficient for studies involving the deletion of genes that interfere with cell growth or viability due to the positive selection of the phenotype. However, it may not be sufficient for studies that involve the deletion of genes supporting growth, or those crucial for development. Although CreERT2-LoxP is broadly used, it has limitations that have not been widely discussed. This paper aims to encourage such discussions.
Collapse
Affiliation(s)
- Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Thierry Juang
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Katerina V. Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chen Y, Wu Z, Luo X, Bai S, Zhao L. Effect of the conditional knockout of bone marrow specific RIPK3 gene on bone marrow hematopoiesis in mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:568-576. [PMID: 31938142 PMCID: PMC6958049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/28/2017] [Indexed: 06/10/2023]
Abstract
Receptor-interacting serine-threonine kinase 3 (RIPk3) is a key signaling molecule in the regulation of cell apoptosis and necroptosis, it plays an important role in the pathophysiological changes of many hematologic diseases. However, the regulatory role of RIPk3 in programmed cell death (PCD) is not fully known. In this study, bone marrow-specific RIPk3 gene knockout homozygotes (RIPk3-/- mice) were established by homologous recombination. The physiological index of peripheral blood, the morphology and structure of the bone marrow, the bone marrow nucleated cells (BMNCs), the hemopoietic stem cells (HSCs), interleukin-6 (IL-6) level and the colony formation capacity of bone marrow hematopoietic progenitor cells were compared between RIPk3-/- mice and wild-type mice. The results showed that, the cell death rate of BMNCs in RIPk3-/- mice was significantly higher than that in control mice, indicated that RIPk3 gene knockout may cause damage to bone marrow cells to some extent. However, the bone marrow had normal structure and morphology in the bone marrow-specific RIPk3-knockout mice, and there were not significantly different between the two mice in most of the blood physiological indicators, and colony yields of hemopoietic stem/progenitor cells. Further study found that the bone marrow IL-6 level of the RIPk3-/- mice increased significantly, besides, the number of BMNCs and HSCs in the bone marrow of the RIPk3-/- mice increased considerably as compared with the control mice. The findings implies that bone marrow RIPk3 gene knockout may lead to the increase of BMNCs cell death, however, increased secretion of hematopoietic cytokines such as IL-6 may promote the proliferation of hematopoietic stem/progenitor cells and thus maintain the stability of bone marrow hematopoiesis. This hypothesis and the detailed mechanisms remain to be further investigated.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University Taizhou, China
| | - Zhongmin Wu
- Department of Basic Medical Sciences, Medical College of Taizhou University Taizhou, China
| | - Xingjing Luo
- Department of Basic Medical Sciences, Medical College of Taizhou University Taizhou, China
| | - Shi Bai
- Department of Basic Medical Sciences, Medical College of Taizhou University Taizhou, China
| | - Lidong Zhao
- Department of Basic Medical Sciences, Medical College of Taizhou University Taizhou, China
| |
Collapse
|
12
|
Sinha M, Lowell CA. Efficiency and Specificity of Gene Deletion in Lung Epithelial Doxycycline-Inducible Cre Mice. Am J Respir Cell Mol Biol 2017; 57:248-257. [PMID: 28287822 DOI: 10.1165/rcmb.2016-0208oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transgenic mouse strains surfactant protein C-reverse tetracycline transactivator (SP-C-rtTA), club cell secretory protein (CCSP)-rtTA, and tetracycline operator (TetO)-Cre have been invaluable for spatiotemporally regulating gene deletion in the pulmonary epithelium. In this study, we measured the efficiency and specificity of gene deletion that can be achieved in these mice using the Rosa26-eYFP reporter. Triple-transgenic mice (tTg or rtTA/TetO-Cre/Rosa-eYFP) were bred and treated with various doxycycline (dox) regimens to induce gene deletion, which was then quantified in various cell populations by flow cytometry. In these crosses, we found that the TetO-Cre transgene must be transmitted through the female parent to avoid germline gene deletion. With dox exposure during lung development, SP-C-tTg mice deleted in ∼65-75% of alveolar epithelial type II (ATII) cells, but in only ∼45-50% of the integrin β4+ population, which consisted of club cells and distal lung progenitor cells. In contrast, CCSP-tTg mice deleted in ∼50% of ATII cells and ∼80% of integrin β4+ cells. Upon dox treatment of adults, deletion in ATII cells and integrin β4+ cells in SP-C-tTg mice dropped significantly to ∼20% and ∼6%, respectively, whereas CCSP-tTg mice deleted in ∼57% of ATII and ∼40% of integrin β4+ cells. Interestingly, untreated CCSP-tTg mice also deleted in ∼40% of integrin β4+ cells, indicating significant leakiness of CCSP-tTg in β4+ cells. In all mouse groups, minimal deletion occurred in mouse tracheal epithelial cells or in mesenchymal or hematopoietic cells. These data provide the first quantitative, side-by-side comparison of the deletion efficiency for these widely used transgenic mouse strains.
Collapse
Affiliation(s)
- Meenal Sinha
- Department of Laboratory Medicine and Program in Immunology, University of California, San Francisco, California
| | - Clifford A Lowell
- Department of Laboratory Medicine and Program in Immunology, University of California, San Francisco, California
| |
Collapse
|
13
|
Oczypok EA, Perkins TN, Oury TD. Alveolar Epithelial Cell-Derived Mediators: Potential Direct Regulators of Large Airway and Vascular Responses. Am J Respir Cell Mol Biol 2017; 56:694-699. [PMID: 28080134 DOI: 10.1165/rcmb.2016-0151ps] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bronchial epithelial cells and pulmonary endothelial cells are thought to be the primary modulators of conducting airways and vessels, respectively. However, histological examination of both mouse and human lung tissue reveals that alveolar epithelial cells (AECs) line the adventitia of large airways and vessels and thus are also in a position to directly regulate these structures. The primary purpose of this perspective is to highlight the fact that AECs coat the adventitial surface of every vessel and airway in the lung parenchyma. This localization is ideal for transmitting signals that can contribute to physiologic and pathologic responses in vessels and airways. A few examples of mediators produced by AECs that may contribute to vascular and airway responses are provided to illustrate some of the potential effects that AECs may modulate.
Collapse
Affiliation(s)
- Elizabeth A Oczypok
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, Ricks DM, Garg AV, Erb CJ, Bo M, Wang T, Chen W, Lee JS, Gaffen SL, Kolls JK. IL-17 Receptor Signaling in the Lung Epithelium Is Required for Mucosal Chemokine Gradients and Pulmonary Host Defense against K. pneumoniae. Cell Host Microbe 2016; 20:596-605. [PMID: 27923703 DOI: 10.1016/j.chom.2016.10.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
The cytokine IL-17, and signaling via its heterodimeric IL-17RA/IL-17RC receptor, is critical for host defense against extracellular bacterial and fungal pathogens. Polarized lung epithelial cells express IL-17RA and IL-17RC basolaterally. However, their contribution to IL-17-dependent pulmonary defenses in vivo remains to be determined. To address this, we generated mice with conditional deletion of Il17ra or Il17rc in Scgb1a1-expressing club cells, a major component of the murine bronchiolar epithelium. These mice displayed an impaired ability to recruit neutrophils into the airway lumen in response to IL-17, a defect in bacterial clearance upon mucosal challenge with the pulmonary pathogen Klebsiella pneumoniae, and substantially reduced epithelial expression of the chemokine Cxcl5. Neutrophil recruitment and bacterial clearance were restored by intranasal administration of recombinant CXCL5. Our data show that IL-17R signaling in the lung epithelium plays a critical role in establishing chemokine gradients that are essential for mucosal immunity against pulmonary bacterial pathogens.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Giraldina Trevejo-Nunez
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emily E Way
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David M Ricks
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Carla J Erb
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Meihua Bo
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ting Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Janet S Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| |
Collapse
|
15
|
Mailhiot SE, Zignego DL, Prigge JR, Wardwell ER, Schmidt EE, June RK. Non-Invasive Quantification of Cartilage Using a Novel In Vivo Bioluminescent Reporter Mouse. PLoS One 2015; 10:e0130564. [PMID: 26151638 PMCID: PMC4495059 DOI: 10.1371/journal.pone.0130564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Mouse models are common tools for examining post-traumatic osteoarthritis (OA), which involves cartilage deterioration following injury or stress. One challenge to current mouse models is longitudinal monitoring of the cartilage deterioration in vivo in the same mouse during an experiment. The objective of this study was to assess the feasibility for using a novel transgenic mouse for non-invasive quantification of cartilage. Chondrocytes are defined by expression of the matrix protein aggrecan, and we developed a novel mouse containing a reporter luciferase cassette under the inducible control of the endogenous aggrecan promoter. We generated these mice by crossing a Cre-dependent luciferase reporter allele with an aggrecan creERT2 knockin allele. The advantage of this design is that the targeted knockin retains the intact endogenous aggrecan locus and expresses the tamoxifen-inducible CreERT2 protein from a second IRES-driven open reading frame. These mice display bioluminescence in the joints, tail, and trachea, consistent with patterns of aggrecan expression. To evaluate this mouse as a technology for non-invasive quantification of cartilage loss, we characterized the relationship between loss of bioluminescence and loss of cartilage after induction with (i) ex vivo collagenase digestion, (ii) an in vivo OA model utilizing treadmill running, and (iii) age. Ex vivo experiments revealed that collagenase digestion of the femur reduced both luciferase signal intensity and pixel area, demonstrating a link between cartilage degradation and bioluminescence. In an in vivo model of experimental OA, we found decreased bioluminescent signal and pixel area, which correlated with pathological disease. We detected a decrease in both bioluminescent signal intensity and area with natural aging from 2 to 13 months of age. These results indicate that the bioluminescent signal from this mouse may be used as a non-invasive quantitative measure of cartilage. Future studies may use this reporter mouse to advance basic and preclinical studies of murine experimental OA with applications in synovial joint biology, disease pathogenesis, and drug delivery.
Collapse
Affiliation(s)
- Sarah E. Mailhiot
- Molecular Biosciences Program, Montana State University, Bozeman, MT, United States of America
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
| | - Donald L. Zignego
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
| | - Justin R. Prigge
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Ella R. Wardwell
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
| | - Edward E. Schmidt
- Molecular Biosciences Program, Montana State University, Bozeman, MT, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Ronald K. June
- Molecular Biosciences Program, Montana State University, Bozeman, MT, United States of America
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, United States of America
- Department of Cell Biology and Neuroscience, Affiliate Faculty, Montana State University, Bozeman, MT, United States of America
- * E-mail:
| |
Collapse
|