1
|
Schrad JR, Fu G, Hable WE, Tayar AM, Oliveira K, Nicastro D. Cryo-electron tomography of eel sperm flagella reveals a molecular "minimum system" for motile cilia. Mol Biol Cell 2025; 36:ar15. [PMID: 39661459 PMCID: PMC11809310 DOI: 10.1091/mbc.e24-08-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cilia and flagella play a crucial role in the development and function of eukaryotes. The activity of thousands of dyneins is precisely regulated to generate flagellar motility. The complex proteome (600+ proteins) and architecture of the structural core of flagella, the axoneme, have made it challenging to dissect the functions of the different complexes, like the regulatory machinery. Previous reports suggested that the flagellum of American eel sperm lacks many of the canonical axonemal complexes yet is still motile. Here, we use cryo-electron tomography for molecular characterization of this proposed "minimal" motile flagellum. We observed different diameters for the eel sperm flagellum: narrow at the base and wider toward the flagellar tip. Subtomogram averaging revealed the three-dimensional (3D) structure of the eel sperm flagellum. As expected, major complexes were missing, for example, outer dynein arms, radial spokes, and the central pair complex, but we found molecular remnants of most complexes. We also identified bend direction-specific patterns in the inter-DMT distance in actively beating eel sperm flagella and we propose a model for the regulation of dynein activity during their motility. Together, our results shed light on the structure and function of the eel sperm flagellum and provide insight into the minimum requirements for ciliary beating.
Collapse
Affiliation(s)
- Jason R. Schrad
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX 75235
| | - Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX 75235
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Whitney E. Hable
- Department of Biology, University of Massachusetts Dartmouth, MA 02747
| | - Alexandra M. Tayar
- Department of Physics, University of California, Santa Barbara, CA 93106
| | - Kenneth Oliveira
- Department of Biology, University of Massachusetts Dartmouth, MA 02747
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX 75235
| |
Collapse
|
2
|
Venkateshwarlu A, Akshayveer, Singh S, Melnik R. Piezoelectricity and flexoelectricity in biological cells: the role of cell structure and organelles. Biomech Model Mechanobiol 2025; 24:47-76. [PMID: 39455540 DOI: 10.1007/s10237-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. A two-dimensional bio-electromechanical model for two distinct cell structures has been developed to analyze the behavior of the biological cell to the external electrical and mechanical responses. The piezoelectric and flexoelectric effects have been included via multiphysics coupling for the biological cell. All the governing equations have been discretized and solved by the finite element method. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ( V R , max ). It has been found that V R , max depends upon the orientation angle and shape of the microtubules. The magnitude of V R , max exhibit huge change when we change the shape and orientation of the organelles, which in some cases (boundary condition (BC)-3) can reach to three times of regular shape organelles. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behavior based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akepogu Venkateshwarlu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Akshayveer
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
3
|
Pan X, Fang C, Shen C, Li X, Xie L, Li L, Huang S, Yan X, Zhu X. Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity. Nat Commun 2024; 15:10249. [PMID: 39592607 PMCID: PMC11599927 DOI: 10.1038/s41467-024-54766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed. Here, we show that the BF-AO coupling occurs during rotational polarizations of BBs and requires Ccdc57. Ccdc57 localizes on BBs as a rotationally-asymmetric punctum, which polarizes away from the BF in BBs having achieved the rotational polarity to probably fix the BF-AO relationship. Consistently, Ccdc57-deficient ependymal multicilia lack the BF-AO coupling and display directional beats at only single cell level. Ccdc57 -/- tracheal multicilia also fail to fully align their BFs. Furthermore, Ccdc57 -/- mice manifest severe hydrocephalus, due to impaired cerebrospinal fluid flow, and high mortality. These findings unravel mechanisms governing the planar polarity of epithelial motile cilia.
Collapse
Affiliation(s)
- Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Shen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xixia Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lele Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Huang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
4
|
Hwang J, Yanagisawa H, Davis KC, Hunter EL, Fox LA, Jimenez AR, Goodwin RE, Gordon SA, Stuart CDE, Bower R, Porter ME, Dutcher SK, Sale WS, Lechtreck KF, Alford LM. Assembly of FAP93 at the proximal axoneme in Chlamydomonas cilia. Cytoskeleton (Hoboken) 2024; 81:539-555. [PMID: 38224153 DOI: 10.1002/cm.21818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of Chlamydomonas. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in the axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | | | - Keira C Davis
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
- College of Arts & Sciences, Clayton State University, Morrow, Georgia, USA
| | - Emily L Hunter
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
- Science Communication Group, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laura A Fox
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Ariana R Jimenez
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | - Reagan E Goodwin
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | - Sarah A Gordon
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | | | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University St. Louis, St. Louis, Missouri, USA
| | - Winfield S Sale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Lea M Alford
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Morikawa M, Yamaguchi H, Kikkawa M. Calaxin is a key factor for calcium-dependent waveform control in zebrafish sperm. Life Sci Alliance 2024; 7:e202402632. [PMID: 38876797 PMCID: PMC11178939 DOI: 10.26508/lsa.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Calcium is critical for regulating the waveform of motile cilia and flagella. Calaxin is currently the only known molecule involved in the calcium-dependent regulation in ascidians. We have recently shown that Calaxin stabilizes outer arm dynein (OAD), and the knockout of Calaxin results in primary ciliary dyskinesia phenotypes in vertebrates. However, from the knockout experiments, it was not clear which functions depend on calcium and how Calaxin regulates the waveform. To address this question, here, we generated transgenic zebrafish expressing a mutant E130A-Calaxin deficient in calcium binding. E130A-Calaxin restored the OAD reduction of calaxin -/- sperm and the abnormal movement of calaxin -/- left-right organizer cilia, showing that Calaxin's stabilization of OADs is calcium-independent. In contrast, our quantitative analysis of E130A-Calaxin sperms showed that the calcium-induced asymmetric beating was not restored, linking Calaxin's calcium-binding ability with an asymmetric flagellar beating for the first time. Our data show that Calaxin is a calcium-dependent regulator of the ciliary beating and a calcium-independent OAD stabilizer.
Collapse
Affiliation(s)
- Motohiro Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yamaguchi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Marshall WF. Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry, and microscopy. Front Cell Dev Biol 2024; 12:1412641. [PMID: 38872931 PMCID: PMC11169674 DOI: 10.3389/fcell.2024.1412641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, has played a central role in discovering much of what is currently known about the composition, assembly, and function of cilia and flagella. Chlamydomonas combines excellent genetics, such as the ability to grow cells as haploids or diploids and to perform tetrad analysis, with an unparalleled ability to detach and isolate flagella in a single step without cell lysis. The combination of genetics and biochemistry that is possible in Chlamydomonas has allowed many of the key components of the cilium to be identified by looking for proteins that are missing in a defined mutant. Few if any other model organisms allow such a seamless combination of genetic and biochemical approaches. Other major advantages of Chlamydomonas compared to other systems include the ability to induce flagella to regenerate in a highly synchronous manner, allowing the kinetics of flagellar growth to be measured, and the ability of Chlamydomonas flagella to adhere to glass coverslips allowing Intraflagellar Transport to be easily imaged inside the flagella of living cells, with quantitative precision and single-molecule resolution. These advantages continue to work in favor of Chlamydomonas as a model system going forward, and are now augmented by extensive genomic resources, a knockout strain collection, and efficient CRISPR gene editing. While Chlamydomonas has obvious limitations for studying ciliary functions related to animal development or organ physiology, when it comes to studying the fundamental biology of cilia and flagella, Chlamydomonas is simply unmatched in terms of speed, efficiency, cost, and the variety of approaches that can be brought to bear on a question.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Fu G, Augspurger K, Sakizadeh J, Reck J, Bower R, Tritschler D, Gui L, Nicastro D, Porter ME. The MBO2/FAP58 heterodimer stabilizes assembly of inner arm dynein b and reveals axoneme asymmetries involved in ciliary waveform. Mol Biol Cell 2024; 35:ar72. [PMID: 38568782 PMCID: PMC11151096 DOI: 10.1091/mbc.e23-11-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Cilia generate three-dimensional waveforms required for cell motility and transport of fluid, mucus, and particles over the cell surface. This movement is driven by multiple dynein motors attached to nine outer doublet microtubules that form the axoneme. The outer and inner arm dyneins are organized into 96-nm repeats tandemly arrayed along the length of the doublets. Motility is regulated in part by projections from the two central pair microtubules that contact radial spokes located near the base of the inner dynein arms in each repeat. Although much is known about the structures and protein complexes within the axoneme, many questions remain about the regulatory mechanisms that allow the cilia to modify their waveforms in response to internal or external stimuli. Here, we used Chlamydomonas mbo (move backwards only) mutants with altered waveforms to identify at least two conserved proteins, MBO2/CCDC146 and FAP58/CCDC147, that form part of a L-shaped structure that varies between doublet microtubules. Comparative proteomics identified additional missing proteins that are altered in other motility mutants, revealing overlapping protein defects. Cryo-electron tomography and epitope tagging revealed that the L-shaped, MBO2/FAP58 structure interconnects inner dynein arms with multiple regulatory complexes, consistent with its function in modifying the ciliary waveform.
Collapse
Affiliation(s)
- Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katherine Augspurger
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Jason Sakizadeh
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Jaimee Reck
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Meng X, Xu C, Li J, Qiu B, Luo J, Hong Q, Tong Y, Fang C, Feng Y, Ma R, Shi X, Lin C, Pan C, Zhu X, Yan X, Cong Y. Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia. Nat Commun 2024; 15:362. [PMID: 38191553 PMCID: PMC10774353 DOI: 10.1038/s41467-023-44577-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Radial spokes (RS) transmit mechanochemical signals between the central pair (CP) and axonemal dynein arms to coordinate ciliary motility. Atomic-resolution structures of metazoan RS and structures of axonemal complexes in ependymal cilia, whose rhythmic beating drives the circulation of cerebrospinal fluid, however, remain obscure. Here, we present near-atomic resolution cryo-EM structures of mouse RS head-neck complex in both monomer and dimer forms and reveal the intrinsic flexibility of the dimer. We also map the genetic mutations related to primary ciliary dyskinesia and asthenospermia on the head-neck complex. Moreover, we present the cryo-ET and sub-tomogram averaging map of mouse ependymal cilia and build the models for RS1-3, IDAs, and N-DRC. Contrary to the conserved RS structure, our cryo-ET map reveals the lack of IDA-b/c/e and the absence of Tektin filaments within the A-tubule of doublet microtubules in ependymal cilia compared with mammalian respiratory cilia and sperm flagella, further exemplifying the structural diversity of mammalian motile cilia. Our findings shed light on the stepwise mammalian RS assembly mechanism, the coordinated rigid and elastic RS-CP interaction modes beneficial for the regulation of asymmetric ciliary beating, and also facilitate understanding on the etiology of ciliary dyskinesia-related ciliopathies and on the ependymal cilia in the development of hydrocephalus.
Collapse
Affiliation(s)
- Xueming Meng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cong Xu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiawei Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Benhua Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiajun Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yujie Tong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanyan Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Ma
- Shanghai Nanoport, Thermofisher Scientific, Shanghai, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermofisher Scientific, Shanghai, China
| | - Cheng Lin
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Pan
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yao Cong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
10
|
Liu C, Wang Q, Gu L, Wang X, Yin Y, Huang T, Xiao S, Zhang S, Wang F, Zhou T, Xu G, Wang L, Dong F, Jiang J, Luo M, Li J, Zhang H, Zi-Jiang Chen, Ji W, Ji B, Liu H, Li W. CCDC176 stabilizes microtubule doublets 1 and 9 to ensure proper sperm movement. Curr Biol 2023; 33:3371-3388.e7. [PMID: 37494937 DOI: 10.1016/j.cub.2023.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
The molecular mechanism underlying asymmetric axonemal complexes in sperm flagella is still largely unknown. Here, we showed that the knockout of the coiled-coil domain-containing 176 (CCDC176) in mice led to male infertility due to decreased sperm motility. Ccdc176 knockout specifically destabilized microtubule doublets (MTDs) 1 and 9 during sperm maturation in the corpus epididymis. Single-sperm immunofluorescence showed that most CCDC176 was distributed along the axoneme, and further super-resolution imaging revealed that CCDC176 is asymmetrically localized in the sperm axoneme. CCDC176 could cooperate with microtubule and radial spoke proteins to stabilize MTDs 1 and 9, and its knockout results in the destabilization of some proteins in sperm flagella. Furthermore, as predicted by the sperm multibody dynamics (MBD) model, we found that MTDs 1 and 9 jutted out from the sperm flagellum annulus region in Ccdc176-/- spermatozoa, and these flagellar defects alter sperm flagellar beat patterns and swimming paths, potentially owing to the reduction and disequilibration of bending torque on the central pair. These results demonstrate that CCDC176 specifically stabilizes MTDs 1 and 9 in the sperm flagellum to ensure proper sperm movement for fertilization.
Collapse
Affiliation(s)
- Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianchun Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lusheng Gu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuge Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Sai Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwen Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuqiang Wang
- Analysis Center, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhou
- Research Institute for Reproductive Medicine and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Guangqiong Xu
- Analysis Center, Nanjing Medical University, Nanjing 210029, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fucheng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jiang
- Genome Tagging Project (GTP) Center, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430072, China
| | - Jinsong Li
- Genome Tagging Project (GTP) Center, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haobo Zhang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Baohua Ji
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China.
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Chen Z, Greenan GA, Shiozaki M, Liu Y, Skinner WM, Zhao X, Zhao S, Yan R, Yu Z, Lishko PV, Agard DA, Vale RD. In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes. Nat Struct Mol Biol 2023; 30:360-369. [PMID: 36593309 PMCID: PMC10023559 DOI: 10.1038/s41594-022-00861-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/11/2022] [Indexed: 01/04/2023]
Abstract
The flagella of mammalian sperm display non-planar, asymmetric beating, in contrast to the planar, symmetric beating of flagella from sea urchin sperm and unicellular organisms. The molecular basis of this difference is unclear. Here, we perform in situ cryo-electron tomography of mouse and human sperm, providing the highest-resolution structural information to date. Our subtomogram averages reveal mammalian sperm-specific protein complexes within the microtubules, the radial spokes and nexin-dynein regulatory complexes. The locations and structures of these complexes suggest potential roles in enhancing the mechanical strength of mammalian sperm axonemes and regulating dynein-based axonemal bending. Intriguingly, we find that each of the nine outer microtubule doublets is decorated with a distinct combination of sperm-specific complexes. We propose that this asymmetric distribution of proteins differentially regulates the sliding of each microtubule doublet and may underlie the asymmetric beating of mammalian sperm.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Garrett A Greenan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Momoko Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanxin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Will M Skinner
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xiaowei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shumei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rui Yan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
12
|
Pinskey JM, Lagisetty A, Gui L, Phan N, Reetz E, Tavakoli A, Fu G, Nicastro D. Three-dimensional flagella structures from animals' closest unicellular relatives, the Choanoflagellates. eLife 2022; 11:e78133. [PMID: 36384644 PMCID: PMC9671500 DOI: 10.7554/elife.78133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
In most eukaryotic organisms, cilia and flagella perform a variety of life-sustaining roles related to environmental sensing and motility. Cryo-electron microscopy has provided considerable insight into the morphology and function of flagellar structures, but studies have been limited to less than a dozen of the millions of known eukaryotic species. Ultrastructural information is particularly lacking for unicellular organisms in the Opisthokonta clade, leaving a sizeable gap in our understanding of flagella evolution between unicellular species and multicellular metazoans (animals). Choanoflagellates are important aquatic heterotrophs, uniquely positioned within the opisthokonts as the metazoans' closest living unicellular relatives. We performed cryo-focused ion beam milling and cryo-electron tomography on flagella from the choanoflagellate species Salpingoeca rosetta. We show that the axonemal dyneins, radial spokes, and central pair complex in S. rosetta more closely resemble metazoan structures than those of unicellular organisms from other suprakingdoms. In addition, we describe unique features of S. rosetta flagella, including microtubule holes, microtubule inner proteins, and the flagellar vane: a fine, net-like extension that has been notoriously difficult to visualize using other methods. Furthermore, we report barb-like structures of unknown function on the extracellular surface of the flagellar membrane. Together, our findings provide new insights into choanoflagellate biology and flagella evolution between unicellular and multicellular opisthokonts.
Collapse
Affiliation(s)
- Justine M Pinskey
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Adhya Lagisetty
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nhan Phan
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Amirrasoul Tavakoli
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
13
|
Gaudin N, Martin Gil P, Boumendjel M, Ershov D, Pioche-Durieu C, Bouix M, Delobelle Q, Maniscalco L, Phan TBN, Heyer V, Reina-San-Martin B, Azimzadeh J. Evolutionary conservation of centriole rotational asymmetry in the human centrosome. eLife 2022; 11:72382. [PMID: 35319462 PMCID: PMC8983040 DOI: 10.7554/elife.72382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.
Collapse
Affiliation(s)
| | | | | | - Dmitry Ershov
- Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
| | | | | | | | | | | | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
| | | | | |
Collapse
|
14
|
Wang WL, Tu CF, Tan YQ. Insight on multiple morphological abnormalities of sperm flagella in male infertility: what is new? Asian J Androl 2021; 22:236-245. [PMID: 31210147 PMCID: PMC7275805 DOI: 10.4103/aja.aja_53_19] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The syndrome of multiple morphological abnormalities of the sperm flagella (MMAF) is a specific kind of asthenoteratozoospermia with a mosaic of flagellar morphological abnormalities (absent, short, bent, coiled, and irregular flagella). MMAF was proposed in 2014 and has attracted increasing attention; however, it has not been clearly understood. In this review, we elucidate the definition of MMAF from a systematical view, the difference between MMAF and other conditions with asthenoteratozoospermia or asthenozoospermia (such as primary mitochondrial sheath defects and primary ciliary dyskinesia), the knowledge regarding its etiological mechanism and related genetic findings, and the clinical significance of MMAF for intracytoplasmic sperm injection and genetic counseling. This review provides the basic knowledge for MMAF and puts forward some suggestions for further investigations.
Collapse
Affiliation(s)
- Wei-Li Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Chao-Feng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,National Engineering and Research Center of Human Stem Cell, Changsha 410078, China
| |
Collapse
|
15
|
Cicconofri G, Noselli G, DeSimone A. The biomechanical role of extra-axonemal structures in shaping the flagellar beat of Euglena gracilis. eLife 2021; 10:58610. [PMID: 33899736 PMCID: PMC8075587 DOI: 10.7554/elife.58610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
We propose and discuss a model for flagellar mechanics in Euglena gracilis. We show that the peculiar non-planar shapes of its beating flagellum, dubbed 'spinning lasso', arise from the mechanical interactions between two of its inner components, namely, the axoneme and the paraflagellar rod. The spontaneous shape of the axoneme and the resting shape of the paraflagellar rod are incompatible. Thus, the complex non-planar configurations of the coupled system emerge as the energetically optimal compromise between the two antagonistic components. The model is able to reproduce the experimentally observed flagellar beats and the characteristic geometric signature of spinning lasso, namely, traveling waves of torsion with alternating sign along the length of the flagellum.
Collapse
Affiliation(s)
| | - Giovanni Noselli
- SISSA - International School for Advanced Studies, Trieste, Italy
| | - Antonio DeSimone
- SISSA - International School for Advanced Studies, Trieste, Italy.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Trieste, Italy
| |
Collapse
|
16
|
Liu P, Lou X, Wingfield JL, Lin J, Nicastro D, Lechtreck K. Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. J Cell Biol 2021; 219:151720. [PMID: 32348466 PMCID: PMC7265326 DOI: 10.1083/jcb.202001122] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the channel protein PKD2 cause autosomal dominant polycystic kidney disease, but the function of PKD2 in cilia remains unclear. Here, we show that PKD2 targets and anchors mastigonemes, filamentous polymers of the glycoprotein MST1, to the extracellular surface of Chlamydomonas cilia. PKD2–mastigoneme complexes physically connect to the axonemal doublets 4 and 8, positioning them perpendicular to the plane of ciliary beating. pkd2 mutant cilia lack mastigonemes, and mutant cells swim with reduced velocity, indicating a motility-related function of the PKD2–mastigoneme complex. Association with both the axoneme and extracellular structures supports a mechanosensory role of Chlamydomonas PKD2. We propose that PKD2–mastigoneme arrays, on opposing sides of the cilium, could perceive forces during ciliary beating and transfer these signals to locally regulate the response of the axoneme.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Xiaochu Lou
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
17
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
18
|
Lindemann CB, Lesich KA. The many modes of flagellar and ciliary beating: Insights from a physical analysis. Cytoskeleton (Hoboken) 2021; 78:36-51. [PMID: 33675288 PMCID: PMC8048621 DOI: 10.1002/cm.21656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
The mechanism that allows the axoneme of eukaryotic cilia and flagella to produce both helical and planar beating is an enduring puzzle. The nine outer doublets of eukaryotic cilia and flagella are arranged in a circle. Therefore, each doublet pair with its associated dynein motors, should produce torque to bend the flagellum in a different direction. Sequential activation of each doublet pair should, therefore result in a helical bending wave. In reality, most cilia and flagella have a well‐defined bending plane and many exhibit an almost perfectly flat (planar) beating pattern. In this analysis we examine the physics that governs flagellar bending, and arrive at two distinct possibilities that could explain the mechanism of planar beating. Of these, the mechanism with the best observational support is that the flagellum behaves as two ribbons of doublets interacting with a central partition. We also examine the physics of torsion in flagella and conclude that torsion could play a role in transitioning from a planar to a helical beating modality in long flagella. Lastly, we suggest some tests that would provide theoretical and/or experimental evaluation of our proposals.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
19
|
Dutcher SK. Asymmetries in the cilia of Chlamydomonas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190153. [PMID: 31884924 PMCID: PMC7017335 DOI: 10.1098/rstb.2019.0153] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
The generation of ciliary waveforms requires the spatial and temporal regulation of dyneins. This review catalogues many of the asymmetric structures and proteins in the cilia of Chlamydomonas, a unicellular alga with two cilia that are used for motility in liquid medium. These asymmetries, which have been identified through mutant analysis, cryo-EM tomography and proteomics, provide a wealth of information to use for modelling how waveforms are generated and propagated. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Susan K. Dutcher
- Department of Genetics, Washington University in St Louis, Saint Louis, MO, USA
| |
Collapse
|
20
|
Lin J, Le TV, Augspurger K, Tritschler D, Bower R, Fu G, Perrone C, O’Toole ET, Mills KV, Dymek E, Smith E, Nicastro D, Porter ME. FAP57/WDR65 targets assembly of a subset of inner arm dyneins and connects to regulatory hubs in cilia. Mol Biol Cell 2019; 30:2659-2680. [PMID: 31483737 PMCID: PMC6761771 DOI: 10.1091/mbc.e19-07-0367] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat and the highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for preassembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms (IDAs) to a specific location in the 96 nm repeat. IDA8 encodes flagellar-associated polypeptide (FAP)57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple IDAs and regulatory complexes.
Collapse
Affiliation(s)
- Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Thuc Vy Le
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Katherine Augspurger
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Catherine Perrone
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eileen T. O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Erin Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Elizabeth Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E. Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
21
|
Dymek EE, Lin J, Fu G, Porter ME, Nicastro D, Smith EF. PACRG and FAP20 form the inner junction of axonemal doublet microtubules and regulate ciliary motility. Mol Biol Cell 2019; 30:1805-1816. [PMID: 31116684 PMCID: PMC6727744 DOI: 10.1091/mbc.e19-01-0063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously demonstrated that PACRG plays a role in regulating dynein-driven microtubule sliding in motile cilia. To expand our understanding of the role of PACRG in ciliary assembly and motility, we used a combination of functional and structural studies, including newly identified Chlamydomonas pacrg mutants. Using cryo-electron tomography we show that PACRG and FAP20 form the inner junction between the A- and B-tubule along the length of all nine ciliary doublet microtubules. The lack of PACRG and FAP20 also results in reduced assembly of inner-arm dynein IDA b and the beak-MIP structures. In addition, our functional studies reveal that loss of PACRG and/or FAP20 causes severe cell motility defects and reduced in vitro microtubule sliding velocities. Interestingly, the addition of exogenous PACRG and/or FAP20 protein to isolated mutant axonemes restores microtubule sliding velocities, but not ciliary beating. Taken together, these studies show that PACRG and FAP20 comprise the inner junction bridge that serves as a hub for both directly modulating dynein-driven microtubule sliding, as well as for the assembly of additional ciliary components that play essential roles in generating coordinated ciliary beating.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
22
|
Bertiaux E, Mallet A, Fort C, Blisnick T, Bonnefoy S, Jung J, Lemos M, Marco S, Vaughan S, Trépout S, Tinevez JY, Bastin P. Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. J Cell Biol 2018; 217:4284-4297. [PMID: 30275108 PMCID: PMC6279389 DOI: 10.1083/jcb.201805030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) is the movement of large protein complexes responsible for the construction of cilia and flagella. Using a combination of three-dimensional electron microscopy and high-resolution live imaging, Bertiaux et al. show that IFT takes place on only four microtubule doublets out of the nine available in the trypanosome flagellum. Intraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. In this study, we used a combination of high-resolution electron and light microscopy to investigate how and where these IFT trains move within the flagellum of the protist Trypanosoma brucei. Focused ion beam scanning electron microscopy (FIB-SEM) analysis of trypanosomes showed that trains are found almost exclusively along two sets of doublets (3–4 and 7–8) and distribute in two categories according to their length. High-resolution live imaging of cells expressing mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two parallel lines within the flagellum. Anterograde and retrograde IFT occurs on each of these lines. At the distal end, a large individual anterograde IFT train is converted in several smaller retrograde trains in the space of 3–4 s while remaining on the same side of the axoneme.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France.,UtechS Ultrastructural Bioimaging (Ultrapole), Institut Pasteur, Paris, France
| | - Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Jamin Jung
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Moara Lemos
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Sergio Marco
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 9187, Orsay, France.,Institut Curie, Paris Sciences et Lettres Research University, INSERM U1196, Orsay, France
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Sylvain Trépout
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 9187, Orsay, France.,Institut Curie, Paris Sciences et Lettres Research University, INSERM U1196, Orsay, France
| | - Jean-Yves Tinevez
- UtechS Photonic Bioimaging (Imagopole), Institut Pasteur, Paris, France.,Image Analysis Hub, Institut Pasteur, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| |
Collapse
|
23
|
King SM. Turning dyneins off bends cilia. Cytoskeleton (Hoboken) 2018; 75:372-381. [PMID: 30176122 PMCID: PMC6249098 DOI: 10.1002/cm.21483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
Ciliary and flagellar motility is caused by the ensemble action of inner and outer dynein arm motors acting on axonemal doublet microtubules. The switch point or switching hypothesis, for which much experimental and computational evidence exists, requires that dyneins on only one side of the axoneme are actively working during bending, and that this active motor region propagate along the axonemal length. Generation of a reverse bend results from switching active sliding to the opposite side of the axoneme. However, the mechanochemical states of individual dynein arms within both straight and curved regions and how these change during beating has until now eluded experimental observation. Recently, Lin and Nicastro used high-resolution cryo-electron tomography to determine the power stroke state of dyneins along flagella of sea urchin sperm that were rapidly frozen while actively beating. The results reveal that axonemal dyneins are generally in a pre-power stroke conformation that is thought to yield a force-balanced state in straight regions; inhibition of this conformational state and microtubule release on specific doublets may then lead to a force imbalance across the axoneme allowing for microtubule sliding and consequently the initiation and formation of a ciliary bend. Propagation of this inhibitory signal from base-to-tip and switching the microtubule doublet subsets that are inhibited is proposed to result in oscillatory motion.
Collapse
Affiliation(s)
- Stephen M. King
- Department of Molecular Biology and BiophysicsUniversity of Connecticut Health CenterFarmingtonConnecticut
| |
Collapse
|
24
|
Lin J, Nicastro D. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 2018; 360:360/6387/eaar1968. [PMID: 29700238 DOI: 10.1126/science.aar1968] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Motile cilia and flagella are essential, highly conserved organelles, and their motility is driven by the coordinated activities of multiple dynein isoforms. The prevailing "switch-point" hypothesis posits that dyneins are asymmetrically activated to drive flagellar bending. To test this model, we applied cryo-electron tomography to visualize activity states of individual dyneins relative to their locations along beating flagella of sea urchin sperm cells. As predicted, bending was generated by the asymmetric distribution of dynein activity on opposite sides of the flagellum. However, contrary to predictions, most dyneins were in their active state, and the smaller population of conformationally inactive dyneins switched flagellar sides relative to the bending direction. Thus, our data suggest a "switch-inhibition" mechanism in which force imbalance is generated by inhibiting, rather than activating, dyneins on alternating sides of the flagellum.
Collapse
Affiliation(s)
- Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. .,Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
25
|
Fu G, Wang Q, Phan N, Urbanska P, Joachimiak E, Lin J, Wloga D, Nicastro D. The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Mol Biol Cell 2018. [PMID: 29514928 PMCID: PMC5921572 DOI: 10.1091/mbc.e18-02-0142] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Motile cilia are essential for propelling cells and moving fluids across tissues. The activity of axonemal dynein motors must be precisely coordinated to generate ciliary motility, but their regulatory mechanisms are not well understood. The tether and tether head (T/TH) complex was hypothesized to provide mechanical feedback during ciliary beating because it links the motor domains of the regulatory I1 dynein to the ciliary doublet microtubule. Combining genetic and biochemical approaches with cryoelectron tomography, we identified FAP44 and FAP43 (plus the algae-specific, FAP43-redundant FAP244) as T/TH components. WT-mutant comparisons revealed that the heterodimeric T/TH complex is required for the positional stability of the I1 dynein motor domains, stable anchoring of CK1 kinase, and proper phosphorylation of the regulatory IC138-subunit. T/TH also interacts with inner dynein arm d and radial spoke 3, another important motility regulator. The T/TH complex is a conserved regulator of I1 dynein and plays an important role in the signaling pathway that is critical for normal ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Qian Wang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
26
|
Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun 2018; 9:686. [PMID: 29449551 PMCID: PMC5814398 DOI: 10.1038/s41467-017-02792-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/28/2017] [Indexed: 11/09/2022] Open
Abstract
Spermatogenesis defects concern millions of men worldwide, yet the vast majority remains undiagnosed. Here we report men with primary infertility due to multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme, a microtubule-based structure highly conserved throughout evolution. Whole-exome sequencing was performed on 78 patients allowing the identification of 22 men with bi-allelic mutations in DNAH1 (n = 6), CFAP43 (n = 10), and CFAP44 (n = 6). CRISPR/Cas9 created homozygous CFAP43/44 male mice that were infertile and presented severe flagellar defects confirming the human genetic results. Immunoelectron and stimulated-emission-depletion microscopy performed on CFAP43 and CFAP44 orthologs in Trypanosoma brucei evidenced that both proteins are located between the doublet microtubules 5 and 6 and the paraflagellar rod. Overall, we demonstrate that CFAP43 and CFAP44 have a similar structure with a unique axonemal localization and are necessary to produce functional flagella in species ranging from Trypanosoma to human. Asthenozoospermia is a major cause of male infertility, and multiple morphological abnormalities of the flagella (MMAF) is a particularly severe form. Here, using whole-exome sequencing of 78 MMAF patients, the authors identify mutations in two WDR proteins, CFAP43 and CFAP44, and confirm that these proteins are required for flagellogenesis in mouse and Trypanosoma brucei.
Collapse
|
27
|
Alvarez L. The tailored sperm cell. JOURNAL OF PLANT RESEARCH 2017; 130:455-464. [PMID: 28357612 PMCID: PMC5406480 DOI: 10.1007/s10265-017-0936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 05/28/2023]
Abstract
Sperm are ubiquitous and yet unique. Genes involved in sexual reproduction are more divergent than most genes expressed in non-reproductive tissues. It has been argued that sperm have been altered during evolution more than any somatic cell. Profound variations are found at the level of morphology, motility, search strategy for the egg, and the underlying signalling mechanisms. Sperm evolutionary adaptation may have arisen from sperm competition (sperm from rival males compete within the female's body to fertilize eggs), cryptic female choice (the female's ability to choose among different stored sperm), social cues tuning sperm quality or from the site of fertilization (internal vs. external fertilization), to name a few. Unquestionably, sperm represent an invaluable source for the exploration of biological diversity at the level of signalling, motility, and evolution. Despite the richness in sperm variations, only a few model systems for signalling and motility have been studied in detail. Using fast kinetic techniques, electrophysiological recordings, and optogenetics, the molecular players and the sequence of signalling events of sperm from a few marine invertebrates, mammals, and fish are being elucidated. Furthermore, recent technological advances allow studying sperm motility with unprecedented precision; these studies provide new insights into flagellar motility and navigation in three dimensions (3D). The scope of this review is to highlight variations in motile sperm across species, and discuss the great promise that 3D imaging techniques offer into unravelling sperm mysteries.
Collapse
Affiliation(s)
- Luis Alvarez
- Center of Advanced European Studies and Research (caesar). Institute affiliated with the Max Planck Society, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
28
|
Alford LM, Stoddard D, Li JH, Hunter EL, Tritschler D, Bower R, Nicastro D, Porter ME, Sale WS. The nexin link and B-tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme. Cytoskeleton (Hoboken) 2016; 73:331-40. [PMID: 27105591 DOI: 10.1002/cm.21301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models. ATP-induced reactivation failed in a subset of drc cell models, despite forward motility in live drc cells. Dark-field light microscopic observations of drc cell models revealed various degrees of axonemal splaying. In contrast, >98% of axonemes from wild-type reactivated cell models remained intact. The sup-pf4 and drc3 mutants, unlike other drc mutants, retain most of the N-DRC linker that interconnects outer doublet microtubules. Reactivated sup-pf4 and drc3 cell models displayed nearly wild-type levels of forward motility. Thus, the N-DRC linker is required for axonemal integrity. We also examined reactivated motility and axoneme integrity in mutants defective in tubulin polyglutamylation. ATP-induced reactivation resulted in forward swimming of >75% of tpg cell models. Analysis of double mutants defective in tubulin polyglutamylation and different regions of the N-DRC indicate B-tubule polyglutamylation and the distal lobe of the linker region are both important for axonemal integrity and normal N-DRC function. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lea M Alford
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| | - Daniel Stoddard
- Biology Department, Brandeis University, Rosenstiel Basic Medical Science Research Center, 415 South Street, Waltham, Massachusetts.,Departments Of Cell Biology and Biophysics, University of Texas Southwestern Medical School, 6000 Harry Hines Blvd. Dallas, Texas
| | - Jennifer H Li
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| | - Emily L Hunter
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota
| | - Daniela Nicastro
- Departments Of Cell Biology and Biophysics, University of Texas Southwestern Medical School, 6000 Harry Hines Blvd. Dallas, Texas
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota
| | - Winfield S Sale
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia
| |
Collapse
|
29
|
Konno A, Ikegami K, Konishi Y, Yang HJ, Abe M, Yamazaki M, Sakimura K, Yao I, Shiba K, Inaba K, Setou M. Ttll9-/- mice sperm flagella show shortening of doublet 7, reduction of doublet 5 polyglutamylation and a stall in beating. J Cell Sci 2016; 129:2757-66. [PMID: 27257088 DOI: 10.1242/jcs.185983] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/31/2016] [Indexed: 12/27/2022] Open
Abstract
Nine outer doublet microtubules in axonemes of flagella and cilia are heterogeneous in structure and biochemical properties. In mammalian sperm flagella, one of the factors to generate the heterogeneity is tubulin polyglutamylation, although the importance of the heterogeneous modification is unclear. Here, we show that a tubulin polyglutamylase Ttll9 deficiency (Ttll9(-/-)) causes a unique set of phenotypes related to doublet heterogeneity. Ttll9(-/-) sperm axonemes had frequent loss of a doublet and reduced polyglutamylation. Intriguingly, the doublet loss selectively occurred at the distal region of doublet 7, and reduced polyglutamylation was observed preferentially on doublet 5. Ttll9(-/-) spermatozoa showed aberrant flagellar beating, characterized by frequent stalls after anti-hook bending. This abnormal motility could be attributed to the reduction of polyglutamylation on doublet 5, which probably occurred at a position involved in the switching of bending. These results indicate that mammalian Ttll9 plays essential roles in maintaining the normal structure and beating pattern of sperm flagella by establishing normal heterogeneous polyglutamylation patterns.
Collapse
Affiliation(s)
- Alu Konno
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan
| | - Yoshiyuki Konishi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan
| | - Hyun-Jeong Yang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 9518585, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 9518585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 9518585, Japan
| | - Ikuko Yao
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 4150025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 4150025, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 4313192, Japan Department of Anatomy, The University of Hong Kong, 6/F, William MW Mong Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China Division of Neural Systematics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 4440867, Japan Riken Center for Molecular Imaging Science, Kobe, Hyogo 6500047, Japan
| |
Collapse
|
30
|
Dean AB, Mitchell DR. Late steps in cytoplasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction of ODA5 and ODA10 in a complex. Mol Biol Cell 2015; 26:3596-605. [PMID: 26310446 PMCID: PMC4603930 DOI: 10.1091/mbc.e15-05-0317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/18/2015] [Indexed: 11/14/2022] Open
Abstract
In humans, homologues of Chlamydomonas ciliary docking complex subunit DC2 and assembly factor ODA10 are interacting axonemal proteins needed for outer dynein arm assembly. Surprisingly, Chlamydomonas ODA10 does not interact with DC2, localizes to a proximal axonemal domain, and is needed for cytoplasmic steps in dynein assembly, not for docking. Axonemal dyneins are multisubunit enzymes that must be preassembled in the cytoplasm, transported into cilia by intraflagellar transport, and bound to specific sites on doublet microtubules, where their activity facilitates microtubule sliding-based motility. Outer dynein arms (ODAs) require assembly factors to assist their preassembly, transport, and attachment to cargo (specific doublet A-tubule sites). In Chlamydomonas, three assembly factors—ODA5, ODA8, and ODA10—show genetic interactions and have been proposed to interact in a complex, but we recently showed that flagellar ODA8 does not copurify with ODA5 or ODA10. Here we show that ODA5 and ODA10 depend on each other for stability and coexist in a complex in both cytoplasmic and flagellar extracts. Immunofluorescence and immuno–electron microscopy reveal that ODA10 in flagella localizes strictly to a proximal region of doublet number 1, which completely lacks ODAs in Chlamydomonas. Studies of the in vitro binding of ODAs to axonemal doublets reveal a role for the ODA5/ODA10 assembly complex in cytoplasmic maturation of ODAs into a form that can bind to doublet microtubules.
Collapse
Affiliation(s)
- Anudariya B Dean
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
31
|
Simons J, Fauci L, Cortez R. A fully three-dimensional model of the interaction of driven elastic filaments in a Stokes flow with applications to sperm motility. J Biomech 2015; 48:1639-51. [PMID: 25721767 DOI: 10.1016/j.jbiomech.2015.01.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/27/2022]
Abstract
In many animals, sperm flagella exhibit primarily planar waveforms. An isolated sperm with a planar flagellar beat in a three-dimensional unbounded fluid domain would remain in a plane. However, because sperm must navigate through complex, three-dimensional confined spaces along with other sperm, forces that bend or move the flagellum out of its current beat plane develop. Here we present an extension of previous models of an elastic sperm flagellar filament whose shape change is driven by the pursuit of a preferred curvature wave. In particular, we extend the energy of the generalized elastica to include a term that penalizes out-of-plane motion. We are now able to study the interaction of free-swimmers in a 3D Stokes flow that do not start out beating in the same plane. We demonstrate the three-dimensional nature of swimming behavior as neighboring sperm swim close to each other and affect each others' trajectories via fluid-structure coupling.
Collapse
Affiliation(s)
- Julie Simons
- Center for Computational Science and Mathematics Department, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Lisa Fauci
- Center for Computational Science and Mathematics Department, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Ricardo Cortez
- Center for Computational Science and Mathematics Department, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| |
Collapse
|
32
|
Ishikawa T. Cryo-electron tomography of motile cilia and flagella. Cilia 2015; 4:3. [PMID: 25646146 PMCID: PMC4313461 DOI: 10.1186/s13630-014-0012-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Cryo-electron tomography has been a valuable tool in the analysis of 3D structures of cilia at molecular and cellular levels. It opened a way to reconstruct 3D conformations of proteins in cilia at 3-nm resolution, revealed networks of a number of component proteins in cilia, and has even allowed the study of component dynamics. In particular, we have identified the locations and conformations of all the regular inner and outer dyneins, as well as various regulators such as radial spokes. Since the mid 2000s, cryo-electron tomography has provided us with new knowledge, concepts, and questions in the area of cilia research. Now, after nearly 10 years of application of this technique, we are turning a corner and are at the stage to discuss the next steps. We expect further development of this technique for specimen preparation, data acquisition, and analysis. While combining this tool with other methodologies has already made cryo-electron tomography more biologically significant, we need to continue this cooperation using recently developed biotechnology and cell biology approaches. In this review, we will provide an up-to-date overview of the biological insights obtained by cryo-electron tomography and will discuss future possibilities of this technique in the context of cilia research.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Group of Electron Microscopy of Complex Cellular System, Laboratory of Biomolecular Research, Paul Scherrer Institute, OFLG/010, 5232 Villigen PSI, Switzerland
| |
Collapse
|
33
|
Kamiya R, Yagi T. Functional Diversity of Axonemal Dyneins as Assessed by in Vitro and in Vivo Motility Assays ofChlamydomonasMutants. Zoolog Sci 2014; 31:633-44. [DOI: 10.2108/zs140066] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Cavalier-Smith T. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol 2014; 6:a016006. [PMID: 25183828 PMCID: PMC4142966 DOI: 10.1101/cshperspect.a016006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three kinds of cells exist with increasingly complex membrane-protein targeting: Unibacteria (Archaebacteria, Posibacteria) with one cytoplasmic membrane (CM); Negibacteria with a two-membrane envelope (inner CM; outer membrane [OM]); eukaryotes with a plasma membrane and topologically distinct endomembranes and peroxisomes. I combine evidence from multigene trees, palaeontology, and cell biology to show that eukaryotes and archaebacteria are sisters, forming the clade neomura that evolved ~1.2 Gy ago from a posibacterium, whose DNA segregation and cell division were destabilized by murein wall loss and rescued by the evolving novel neomuran endoskeleton, histones, cytokinesis, and glycoproteins. Phagotrophy then induced coevolving serial major changes making eukaryote cells, culminating in two dissimilar cilia via a novel gliding-fishing-swimming scenario. I transfer Chloroflexi to Posibacteria, root the universal tree between them and Heliobacteria, and argue that Negibacteria are a clade whose OM, evolving in a green posibacterium, was never lost.
Collapse
|
35
|
Structural mechanism of the dynein power stroke. Nat Cell Biol 2014; 16:479-85. [PMID: 24727830 PMCID: PMC4102432 DOI: 10.1038/ncb2939] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/26/2014] [Indexed: 01/20/2023]
Abstract
Dyneins are large microtubule motor proteins required for mitosis, intracellular transport, and ciliary and flagellar motility1,2. They generate force through a powerstroke mechanism, which is an ATP-consuming cycle of pre- and post-powerstroke conformational changes that cause relative motion between different dynein domains3-5. However, key structural details of dynein's force generation remain elusive. Here, using cryo-electron tomography of intact, active (i.e. beating), rapidly frozen, sea urchin sperm flagella, we determined the in situ 3D structures of all domains of both pre- and post-powerstroke dynein, including the previously unresolved linker and stalk of pre-powerstroke dynein. Our results reveal that the rotation of the head relative to the linker is the key action in dynein movement, and that there are at least two distinct pre-powerstroke conformations: pre-I (microtubule-detached) and pre-II (microtubule-bound). We provide 3D-reconstructions of native dyneins in three conformational states, in situ, allowing us to propose a molecular model of the structural cycle underlying dynein movement.
Collapse
|
36
|
Singh H, Shukla M, Rao BJ, Chary KVR. Flagella as a novel alignment medium for the measurement of residual dipolar couplings in proteins. Chem Commun (Camb) 2013; 49:11403-5. [PMID: 24165953 DOI: 10.1039/c3cc46233a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two flexible rod-like flagella (∼500 nm in diameter and 5-15 μm long) of Chlamydomonas reinhardtii, a unicellular green alga, can weakly align molecules in an external magnetic field, thereby enabling the measurement of various residual dipolar couplings in solution NMR spectroscopy.
Collapse
|
37
|
Abstract
Dynein is a microtubule-based molecular motor that is involved in various biological functions, such as axonal transport, mitosis, and cilia/flagella movement. Although dynein was discovered 50 years ago, the progress of dynein research has been slow due to its large size and flexible structure. Recent progress in understanding the force-generating mechanism of dynein using x-ray crystallography, cryo-electron microscopy, and single molecule studies has provided key insight into the structure and mechanism of action of this complex motor protein.
Collapse
Affiliation(s)
- Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
38
|
Cibert C. Bending, twisting and beating trunk robot bioinspired from the '3 + 0' axoneme. BIOINSPIRATION & BIOMIMETICS 2013; 8:026006. [PMID: 23579109 DOI: 10.1088/1748-3182/8/2/026006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The axoneme is the skeleton and motor axis of flagella and cilia in eukaryotic organisms. Basically it consists of a series of longitudinal fibers (outer doublets of microtubules) that design a cylinder and whose sliding, due to the coordinated activities of dedicated molecular motors (the dynein arms), is converted into a bending because outer doublets pairs are stabilized by elastic links (the nexine molecules). In spite of these interesting mechanical properties, mechanical and robotics engineers have never considered this amazing molecular machinery as a model. The aim of this paper is to propose the robotic design and the kinematic modeling of the '3 + 0' axoneme that makes motile the flagellum of Diplauxis hatti, the simplest that exists. The model that we propose bends and twists and combines the two movements. It is able to propagate wave trains that could be involved in the development of biomimetic actuators of various mechanisms such as (sub)aquatic robotic propellers as well as robotic trunks.
Collapse
Affiliation(s)
- Christian Cibert
- Institut des Sciences et Techniques des Yvelines - ISTY, 10-12, Avenue de l'Europe F-78140 Vélizy, France.
| |
Collapse
|
39
|
Yamamoto R, Song K, Yanagisawa HA, Fox L, Yagi T, Wirschell M, Hirono M, Kamiya R, Nicastro D, Sale WS. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. ACTA ACUST UNITED AC 2013; 201:263-78. [PMID: 23569216 PMCID: PMC3628515 DOI: 10.1083/jcb.201211048] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MIA complex, composed of FAP100 and FAP73, interacts with I1 dynein components and is required for normal ciliary beat frequency. Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which form the modifier of inner arms (MIA) complex in flagella. Cryo–electron tomography of mia mutant axonemes revealed that the MIA complex was located immediately distal to the intermediate/light chain complex of I1 dynein and structurally appeared to connect with the nexin–dynein regulatory complex. In axonemes from mutants that lack both the outer dynein arms and the MIA complex, I1 dynein failed to assemble, suggesting physical interactions between these three axonemal complexes and a role for the MIA complex in the stable assembly of I1 dynein. The MIA complex appears to regulate I1 dynein and possibly outer arm dyneins, which are both essential for normal motility.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Briggs JAG. Structural biology in situ--the potential of subtomogram averaging. Curr Opin Struct Biol 2013; 23:261-7. [PMID: 23466038 DOI: 10.1016/j.sbi.2013.02.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 12/27/2022]
Abstract
Cryo-electron tomography provides low-resolution 3D views of cells, organelles, or viruses. Macromolecular complexes present in multiple copies can be subsequently identified within the 3D reconstruction (the tomogram), computationally extracted, and averaged to obtain higher resolution 3D structures, as well as a map of their spatial distribution. This method, called subtomogram averaging or subvolume averaging, allows structures of macromolecular complexes to be resolved in situ. Recent applications have provided in situ structural data at resolutions of 2-4 nm on samples including polysomes, nuclear pores, vesicle coats, and viral surface proteins. Here I describe the method and discuss limitations, advances and recent applications. I speculate how the method will solve more structures at higher resolution, allowing in situ structural biology.
Collapse
Affiliation(s)
- John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
41
|
Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24:1134-52. [PMID: 23427265 PMCID: PMC3623635 DOI: 10.1091/mbc.e12-11-0801] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nexin–dynein regulatory complex (N-DRC) is implicated in the control of dynein activity as a structural component of the nexin link. This study identifies several new subunits of the N-DRC and demonstrates for the first time that it forms a discrete biochemical complex that maintains outer doublet integrity and regulates microtubule sliding. The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|