1
|
Rojas LO, Ramsubeik K, Sanchez-Ramos L, Motilal S, Singh JA, Kaeley GS. Rituximab Treatment in Adult Patients With Idiopathic Inflammatory Myositis: A Systematic Review and Meta-analysis. J Clin Rheumatol 2025; 31:33-39. [PMID: 39527803 DOI: 10.1097/rhu.0000000000002151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This systematic review and meta-analysis assess the efficacy and safety of rituximab (RTX) in treating idiopathic inflammatory myositis (IIM). METHODS PubMed and Embase were systematically searched for trials and observational studies involving RTX use in IIM. Data were analyzed using a random-effects model to generate pooled estimates for overall response, complete remission, partial response, and adverse events, with subgroup analyses by myositis type and RTX dosage (PROSPERO registered number CRD42022353740). Risk of bias assessments were done using the Newcastle-Ottawa Scale for observational studies and risk of bias 1 tool for trials. RESULTS Seventeen studies (1 randomized controlled trial and 16 observational studies), encompassing 362 patients, were included. The overall pooled response rate was 70% (95% confidence interval [CI]: 57%-82%; I2 = 74%, p < 0.001). Complete remission occurred in 13% (95% CI: 3%-25%; I2 = 79%, p < 0.001) and partial response in 48% (95% CI: 30%-67%; I2 = 87%, p < 0.001), both with significant heterogeneity. Subgroup analysis revealed high response rates across all myositis types: polymyositis 69%, dermatomyositis 67%, antisynthetase syndrome 70%, juvenile dermatomyositis 60%, and immune-mediated necrotizing myopathy 86%. Response rates were similar between RTX induction doses of 1 g IV on days 0 and 14 (68%) and 375 mg/m 2 weekly for 4 weeks (71%). Reported adverse events totaled 120, including infusion reactions (18.5%) and infections (12.4%). CONCLUSIONS RTX shows a favorable clinical response in IIM treatment, though response rates vary. There was a significant heterogeneity in treatment effect estimates that are based on a small number of patients. The incidence of infusion reactions and infections highlights the need for careful monitoring. Further controlled trials are essential to refine treatment protocols and evaluate long-term outcomes for RTX's role in IIM.
Collapse
Affiliation(s)
- Lilian Otalora Rojas
- From the Division of Rheumatology, University of Florida College of Medicine, Jacksonville, FL
| | - Karishma Ramsubeik
- From the Division of Rheumatology, University of Florida College of Medicine, Jacksonville, FL
| | - Luis Sanchez-Ramos
- Division of Maternal and Fetal Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Shastri Motilal
- Unit of Public Health and Primary Care, Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | | | - Gurjit S Kaeley
- From the Division of Rheumatology, University of Florida College of Medicine, Jacksonville, FL
| |
Collapse
|
2
|
McLeish E, Sooda A, Slater N, Beer K, Cooper I, Mastaglia FL, Needham M, Coudert JD. Identification of distinct immune signatures in inclusion body myositis by peripheral blood immunophenotyping using machine learning models. Clin Transl Immunology 2024; 13:e1504. [PMID: 38585335 PMCID: PMC10990804 DOI: 10.1002/cti2.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Objective Inclusion body myositis (IBM) is a progressive late-onset muscle disease characterised by preferential weakness of quadriceps femoris and finger flexors, with elusive causes involving immune, degenerative, genetic and age-related factors. Overlapping with normal muscle ageing makes diagnosis and prognosis problematic. Methods We characterised peripheral blood leucocytes in 81 IBM patients and 45 healthy controls using flow cytometry. Using a random forest classifier, we identified immune changes in IBM compared to HC. K-means clustering and the random forest one-versus-rest model classified patients into three immunophenotypic clusters. Functional outcome measures including mTUG, 2MWT, IBM-FRS, EAT-10, knee extension and grip strength were assessed across clusters. Results The random forest model achieved a 94% AUC ROC with 82.76% specificity and 100% sensitivity. Significant differences were found in IBM patients, including increased CD8+ T-bet+ cells, CD4+ T cells skewed towards a Th1 phenotype and altered γδ T cell repertoire with a reduced proportion of Vγ9+Vδ2+ cells. IBM patients formed three clusters: (i) activated and inflammatory CD8+ and CD4+ T-cell profile and the highest proportion of anti-cN1A-positive patients in cluster 1; (ii) limited inflammation in cluster 2; (iii) highly differentiated, pro-inflammatory T-cell profile in cluster 3. Additionally, no significant differences in patients' age and gender were detected between immunophenotype clusters; however, worsening trends were detected with several functional outcomes. Conclusion These findings unveil distinct immune profiles in IBM, shedding light on underlying pathological mechanisms for potential immunoregulatory therapeutic development.
Collapse
Affiliation(s)
- Emily McLeish
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
| | - Kelly Beer
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
| | - Ian Cooper
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
- School of MedicineUniversity of Notre Dame AustraliaFremantleWAAustralia
- Department of NeurologyFiona Stanley HospitalMurdochWAAustralia
| | - Jerome D Coudert
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
- School of MedicineUniversity of Notre Dame AustraliaFremantleWAAustralia
| |
Collapse
|
3
|
Carstens PO, Müllar LM, Wrede A, Zechel S, Wachowski MM, Brandis A, Krause S, Zierz S, Schmidt J. Skeletal muscle fibers produce B-cell stimulatory factors in chronic myositis. Front Immunol 2023; 14:1177721. [PMID: 37731487 PMCID: PMC10508232 DOI: 10.3389/fimmu.2023.1177721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction We aimed to identify B-cell-mediated immunomechanisms in inclusion body myositis (IBM) and polymyositis (PM) as part of the complex pathophysiology. Materials and methods Human primary myotube cultures were derived from orthopedic surgery. Diagnostic biopsy specimens from patients with IBM (n=9) and PM (n=9) were analyzed for markers of B cell activation (BAFF and APRIL) and for chemokines that control the recruitment of B cells (CXCL-12 and CXCL-13). Results were compared to biopsy specimens without myopathic changes (n=9) and hereditary muscular dystrophy (n=9). Results The mRNA expression of BAFF, APRIL, and CXCL-13 was significantly higher in IBM and PM compared to controls. Patients with IBM displayed the highest number of double positive muscle fibers for BAFF and CXCL-12 (48%) compared to PM (25%), muscular dystrophy (3%), and non-myopathic controls (0%). In vitro, exposure of human myotubes to pro-inflammatory cytokines led to a significant upregulation of BAFF and CXCL-12, but APRIL and CXCL-13 remained unchanged. Conclusion The results substantiate the hypothesis of an involvement of B cell-associated mechanisms in the pathophysiology of IBM and PM. Muscle fibers themselves seem to contribute to the recruitment of B cells and sustain inflammation.
Collapse
Affiliation(s)
- Per-Ole Carstens
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa M. Müllar
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Arne Wrede
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Neuropathology, Saarland University Medical Center and Medical Faculty of Saarland University, Homburg, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin M. Wachowski
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Almuth Brandis
- Department of Pathology, Klinikum Region Hannover, Hannover, Germany
- Institute of Pathology and Neuropathology, Medical University Hannover, Hannover, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of München, München, Germany
| | - Stephan Zierz
- Department of Neurology, University Hospital Halle/Saale, Halle, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neurology and Pain Treatment, Neuromuscular Center, Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei, Berlin, Germany
| |
Collapse
|
4
|
Jiang R, Roy B, Wu Q, Mohanty S, Nowak RJ, Shaw AC, Kleinstein SH, O’Connor KC. The Plasma Cell Infiltrate Populating the Muscle Tissue of Patients with Inclusion Body Myositis Features Distinct B Cell Receptor Repertoire Properties. Immunohorizons 2023; 7:310-322. [PMID: 37171806 PMCID: PMC10579972 DOI: 10.4049/immunohorizons.2200078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Inclusion body myositis (IBM) is an autoimmune and degenerative disorder of skeletal muscle. The B cell infiltrates in IBM muscle tissue are predominantly fully differentiated Ab-secreting plasma cells, with scarce naive or memory B cells. The role of this infiltrate in the disease pathology is not well understood. To better define the humoral response in IBM, we used adaptive immune receptor repertoire sequencing, of human-derived specimens, to generate large BCR repertoire libraries from IBM muscle biopsies and compared them to those generated from dermatomyositis, polymyositis, and circulating CD27+ memory B cells, derived from healthy controls and Ab-secreting cells collected following vaccination. The repertoire properties of the IBM infiltrate included the following: clones that equaled or exceeded the highly clonal vaccine-associated Ab-secreting cell repertoire in size; reduced somatic mutation selection pressure in the CDRs and framework regions; and usage of class-switched IgG and IgA isotypes, with a minor population of IgM-expressing cells. The IBM IgM-expressing population revealed unique features, including an elevated somatic mutation frequency and distinct CDR3 physicochemical properties. These findings demonstrate that some of IBM muscle BCR repertoire characteristics are distinct from dermatomyositis and polymyositis and circulating Ag-experienced subsets, suggesting that it may form through selection by disease-specific Ags.
Collapse
Affiliation(s)
- Roy Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Bhaskar Roy
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Qian Wu
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | | | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Kevin C. O’Connor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Neurology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
5
|
Fichtner ML, Vieni C, Redler RL, Kolich L, Jiang R, Takata K, Stathopoulos P, Suarez PA, Nowak RJ, Burden SJ, Ekiert DC, O'Connor KC. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med 2021; 217:152036. [PMID: 32820331 PMCID: PMC7953735 DOI: 10.1084/jem.20200513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogenic muscle-specific tyrosine kinase (MuSK)–specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient–derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm–exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Casey Vieni
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY.,Medical Scientist Training Program, New York University School of Medicine, New York, NY
| | - Rachel L Redler
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ljuvica Kolich
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kazushiro Takata
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pablo A Suarez
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven J Burden
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Damian C Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
6
|
McElhanon KE, Young N, Hampton J, Paleo BJ, Kwiatkowski TA, Beck EX, Capati A, Jablonski K, Gurney T, Perez MAL, Aggarwal R, Oddis CV, Jarjour WN, Weisleder N. Autoantibodies targeting TRIM72 compromise membrane repair and contribute to inflammatory myopathy. J Clin Invest 2021; 130:4440-4455. [PMID: 32687067 DOI: 10.1172/jci131721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIM) involve chronic inflammation of skeletal muscle and subsequent muscle degeneration due to an uncontrolled autoimmune response; however, the mechanisms leading to pathogenesis are not well understood. A compromised sarcolemmal repair process could promote an aberrant exposure of intramuscular antigens with the subsequent initiation of an inflammatory response that contributes to IIM. Using an adoptive transfer mouse model of IIM, we show that sarcolemmal repair is significantly compromised in distal skeletal muscle in the absence of inflammation. We identified autoantibodies against TRIM72 (also known as MG53), a muscle-enriched membrane repair protein, in IIM patient sera and in our mouse model of IIM by ELISA. We found that patient sera with elevated levels of TRIM72 autoantibodies suppress sarcolemmal resealing in healthy skeletal muscle, and depletion of TRIM72 antibodies from these same serum samples rescues sarcolemmal repair capacity. Autoantibodies targeting TRIM72 lead to skeletal muscle fibers with compromised membrane barrier function, providing a continuous source of autoantigens to promote autoimmunity and further amplifying humoral responses. These findings reveal a potential pathogenic mechanism that acts as a feedback loop contributing to the progression of IIM.
Collapse
Affiliation(s)
- Kevin E McElhanon
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Nicholas Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey Hampton
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brian J Paleo
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Thomas A Kwiatkowski
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Eric X Beck
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Ana Capati
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Kyle Jablonski
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Travis Gurney
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Miguel A Lopez Perez
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester V Oddis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wael N Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Noah Weisleder
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| |
Collapse
|
7
|
Zhao L, Wang Q, Zhou B, Zhang L, Zhu H. The Role of Immune Cells in the Pathogenesis of Idiopathic Inflammatory Myopathies. Aging Dis 2021; 12:247-260. [PMID: 33532139 PMCID: PMC7801271 DOI: 10.14336/ad.2020.0410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are chronic autoimmune disorders involving multiple organs, such as the muscle, skin, lungs and joints. Although the detailed pathogenesis of IIMs remains unclear, immune mechanisms have long been recognised as of key importance. Immune cells contribute to many inflammatory processes via intercellular interactions and secretion of inflammatory factors, and many studies have demonstrated the participation of a variety of immune cells, such as T cells and B cells, in the development of IIMs. Here, we summarise the current knowledge regarding immune cells in IIM patients and discuss their potential roles in IIM pathogenesis.
Collapse
Affiliation(s)
- Lijuan Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 15:257-272. [PMID: 30837708 DOI: 10.1038/s41584-019-0186-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Children's Hospital Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Amlani A, Choi MY, Tarnopolsky M, Brady L, Clarke AE, Garcia-De La Torre I, Mahler M, Schmeling H, Barber CE, Jung M, Fritzler MJ. Anti-NT5c1A Autoantibodies as Biomarkers in Inclusion Body Myositis. Front Immunol 2019; 10:745. [PMID: 31024569 PMCID: PMC6465553 DOI: 10.3389/fimmu.2019.00745] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: Sporadic Inclusion Body Myositis (sIBM) is an inflammatory myopathy (IIM) without a specific diagnostic biomarker until autoantibodies to the cytosolic 5′-nucleotidase 1A (NT5c1A/Mup44) were reported. The objectives of our study were to determine the sensitivity and specificity of anti-NT5c1A for sIBM, demonstrate demographic, clinical and serological predictors for anti-NT5c1A positivity and determine if anti-nuclear antibody (ANA) indirect immunofluorescence (IIF) staining on HEp-2 cells is a reliable screening method for anti-NT5c1A. Methods: Sera from sIBM patients and controls were stored at −80°C until required for analysis. IgG antibodies to NT5c1A were detected by an addressable laser bead immunoassay (ALBIA) using a full-length human recombinant protein. Autoantibodies to other autoimmune myopathy antigens (Jo-1, OJ, TIF1y, PL-12, SAE, EJ, MDA5, PL7, SRP, NXP2, MI-2) were detected by line immunoassay (LIA), chemiluminescence immunoassay (CIA) or enzyme linked immunosorbent assay (ELISA) and ANA detected by IIF on HEp-2 substrate. Demographic, clinical and serological data were obtained by chart review. Results: Forty-three patients with sIBM, 537 disease control patients with other autoimmune, degenerative and neuromuscular diseases, and 78 healthy controls were included. 48.8% (21/43) of sIBM patients were positive for anti-NT5c1A. The overall sensitivity, specificity, positive predictive value, and negative predictive value of anti-NT5c1A for sIBM were 0.49, 0.92, 0.29, and 0.96, respectively. Compared to sIBM, the frequency of anti-NT5c1A was lower in both the disease control group (8.8%, OR 0.10 [95%CI: 0.05–0.20], p < 0.0001) and in the apparently healthy control group (5.1%, OR 0.06 [95%CI: 0.02–0.18], p < 0.0001). In the univariable analysis, sIBM patients with more severe muscle weakness were more likely to be anti-NT5c1A positive (OR 4.10 [95% CI: 1.17, 14.33], p = 0.027), although this was not statistically significant (adjusted OR 4.30 [95% CI: 0.89, 20.76], p = 0.069) in the multivariable analysis. The ANA of sIBM sera did not demonstrate a consistent IIF pattern associated with anti-NT5c1A. Conclusions: Anti-NT5c1A has moderate sensitivity and high specificity for sIBM using ALBIA. The presence of anti-NT5c1A antibodies may be associated with muscle weakness. Anti-NT5c1A antibodies were not associated with a specific IIF staining pattern, hence screening using HEp-2 substrate is unlikely to be a useful predictor for presence of these autoantibodies.
Collapse
Affiliation(s)
- Adam Amlani
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - May Y Choi
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON, Canada
| | - Lauren Brady
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON, Canada
| | - Ann E Clarke
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ignacio Garcia-De La Torre
- Hospital General de Occidente and University of Guadalajara, Guadalajara, Mexico.,PANLAR Myositis Study Group, Guadalajara, Mexico
| | | | | | - Claire E Barber
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michelle Jung
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marvin J Fritzler
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Stathopoulos P, Kumar A, Nowak RJ, O'Connor KC. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight 2017; 2:94263. [PMID: 28878127 DOI: 10.1172/jci.insight.94263] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Myasthenia gravis (MG) is a B cell-mediated autoimmune disorder of neuromuscular transmission. Pathogenic autoantibodies to muscle-specific tyrosine kinase (MuSK) can be found in patients with MG who do not have detectable antibodies to the acetylcholine receptor (AChR). MuSK MG includes immunological and clinical features that are generally distinct from AChR MG, particularly regarding responsiveness to therapy. B cell depletion has been shown to affect a decline in serum autoantibodies and to induce sustained clinical improvement in the majority of MuSK MG patients. However, the duration of this benefit may be limited, as we observed disease relapse in MuSK MG patients who had achieved rituximab-induced remission. We investigated the mechanisms of such relapses by exploring autoantibody production in the reemerging B cell compartment. Autoantibody-expressing CD27+ B cells were observed within the reconstituted repertoire during relapse but not during remission or in controls. Using two complementary approaches, which included production of 108 unique human monoclonal recombinant immunoglobulins, we demonstrated that antibody-secreting CD27hiCD38hi B cells (plasmablasts) contribute to the production of MuSK autoantibodies during relapse. The autoantibodies displayed hallmarks of antigen-driven affinity maturation. These collective findings introduce potential mechanisms for understanding both MuSK autoantibody production and disease relapse following B cell depletion.
Collapse
|
11
|
Needham M, Mastaglia F. Advances in inclusion body myositis: genetics, pathogenesis and clinical aspects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1318056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Willis SN, Stathopoulos P, Chastre A, Compton SD, Hafler DA, O'Connor KC. Investigating the Antigen Specificity of Multiple Sclerosis Central Nervous System-Derived Immunoglobulins. Front Immunol 2015; 6:600. [PMID: 26648933 PMCID: PMC4663633 DOI: 10.3389/fimmu.2015.00600] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
The central nervous system (CNS) of patients with multiple sclerosis (MS) is the site where disease pathology is evident. Damaged CNS tissue is commonly associated with immune cell infiltration. This infiltrate often includes B cells that are found in multiple locations throughout the CNS, including the cerebrospinal fluid (CSF), parenchyma, and the meninges, frequently forming tertiary lymphoid structures in the latter. Several groups, including our own, have shown that B cells from distinct locations within the MS CNS are clonally related and display the characteristics of an antigen-driven response. However, the antigen(s) driving this response have yet to be conclusively defined. To explore the antigen specificity of the MS B cell response, we produced recombinant human immunoglobulin (rIgG) from a series of expanded B cell clones that we isolated from the CNS tissue of six MS brains. The specificity of these MS-derived rIgG and control rIgG derived from non-MS tissues was then examined using multiple methodologies that included testing individual candidate antigens, screening with high-throughput antigen arrays and evaluating binding to CNS-derived cell lines. We report that while several MS-derived rIgG recognized particular antigens, including neurofilament light and a protocadherin isoform, none were unique to MS, as non-MS-derived rIgG used as controls invariably displayed similar binding specificities. We conclude that while MS CNS resident B cells display the characteristics of an antigen-driven B cell response, the antigen(s) driving this response remain at large.
Collapse
Affiliation(s)
- Simon N Willis
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA ; Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, University of Melbourne , Parkville, VIC , Australia
| | | | - Anne Chastre
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| | - Shannon D Compton
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale School of Medicine , New Haven, CT , USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| |
Collapse
|
13
|
Albrecht I, Wick C, Hallgren Å, Tjärnlund A, Nagaraju K, Andrade F, Thompson K, Coley W, Phadke A, Diaz-Gallo LM, Bottai M, Nennesmo I, Chemin K, Herrath J, Johansson K, Wikberg A, Ytterberg AJ, Zubarev RA, Danielsson O, Krystufkova O, Vencovsky J, Landegren N, Wahren-Herlenius M, Padyukov L, Kämpe O, Lundberg IE. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J Clin Invest 2015; 125:4612-24. [PMID: 26551678 DOI: 10.1172/jci81031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022] Open
Abstract
Mutations of the gene encoding four-and-a-half LIM domain 1 (FHL1) are the causative factor of several X-linked hereditary myopathies that are collectively termed FHL1-related myopathies. These disorders are characterized by severe muscle dysfunction and damage. Here, we have shown that patients with idiopathic inflammatory myopathies (IIMs) develop autoimmunity to FHL1, which is a muscle-specific protein. Anti-FHL1 autoantibodies were detected in 25% of IIM patients, while patients with other autoimmune diseases or muscular dystrophies were largely anti-FHL1 negative. Anti-FHL1 reactivity was predictive for muscle atrophy, dysphagia, pronounced muscle fiber damage, and vasculitis. FHL1 showed an altered expression pattern, with focal accumulation in the muscle fibers of autoantibody-positive patients compared with a homogeneous expression in anti-FHL1-negative patients and healthy controls. We determined that FHL1 is a target of the cytotoxic protease granzyme B, indicating that the generation of FHL1 fragments may initiate FHL1 autoimmunity. Moreover, immunization of myositis-prone mice with FHL1 aggravated muscle weakness and increased mortality, suggesting a direct link between anti-FHL1 responses and muscle damage. Together, our findings provide evidence that FHL1 may be involved in the pathogenesis not only of genetic FHL1-related myopathies but also of autoimmune IIM. Importantly, these results indicate that anti-FHL1 autoantibodies in peripheral blood have promising potential as a biomarker to identify a subset of severe IIM.
Collapse
|
14
|
Benveniste O, Stenzel W, Hilton-Jones D, Sandri M, Boyer O, van Engelen BGM. Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol 2015; 129:611-24. [PMID: 25579751 PMCID: PMC4405277 DOI: 10.1007/s00401-015-1384-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the most frequently acquired myopathy in patients over 50 years of age. It is imperative that neurologists and rheumatologists recognize this disorder which may, through clinical and pathological similarities, mimic other myopathies, especially polymyositis. Whereas polymyositis responds to immunosuppressant drug therapy, sIBM responds poorly, if at all. Controversy reigns as to whether sIBM is primarily an inflammatory or a degenerative myopathy, the distinction being vitally important in terms of directing research for effective specific therapies. We review here the pros and the cons for the respective hypotheses. A possible scenario, which our experience leads us to favour, is that sIBM may start with inflammation within muscle. The rush of leukocytes attracted by chemokines and cytokines may induce fibre injury and HLA-I overexpression. If the protein degradation systems are overloaded (possibly due to genetic predisposition, particular HLA-I subtypes or ageing), amyloid and other protein deposits may appear within muscle fibres, reinforcing the myopathic process in a vicious circle.
Collapse
Affiliation(s)
- Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Université Pierre et Marie Curie, Inserm, U974, DHU I2B, Paris, France,
| | | | | | | | | | | |
Collapse
|
15
|
Sciorati C, Monno A, Ascherman DP, Seletti E, Manfredi AA, Rovere-Querini P. Required role of apoptotic myogenic precursors and toll-like receptor stimulation for the establishment of autoimmune myositis in experimental murine models. Arthritis Rheumatol 2015; 67:809-22. [PMID: 25504878 DOI: 10.1002/art.38985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 12/02/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Muscle regeneration is a hallmark of the idiopathic inflammatory myopathies (IIMs), a group of autoimmune disorders that are characterized by leukocyte infiltration and dysfunction of the skeletal muscle. Despite detailed studies describing the clinical and histopathologic features of IIMs, the immunopathogenesis of these disorders remains undefined. The aim of this study was to investigate the immunopathologic processes of autoimmune myositis in experimental murine models. METHODS Expression of the autoantigen histidyl-transfer RNA synthetase (HisRS) was analyzed in mice with acutely injured or dystrophic muscles, in inflammatory leukocytes, and in purified satellite cells. Anti-HisRS antibodies and myositis induction were assessed in mice after muscle injury and immunization with apoptotic satellite cells or C2C12 myoblasts, in the presence or absence of the Toll-like receptor 7 (TLR-7) agonist R848. RESULTS Muscle necrosis, leukocyte infiltration, and myofiber regeneration induced by toxic agents (cardiotoxin or glycerol) or promoted by genetic disruption of the α-sarcoglycan/dystrophin complex in mice were uniformly associated with up-regulated expression of HisRS. Although regenerating myofibers and purified satellite cells are known to show increased expression of HisRS in these settings, anti-HisRS antibodies were not detectable. However, intramuscular immunization with ultraviolet B-irradiated, HisRS-expressing apoptotic myoblasts in the presence of R848 triggered the production of anti-HisRS IgG antibodies as well as persistent lymphocyte infiltration and prolonged/delayed muscle regeneration. Conversely, intramuscular administration of R848 alone or in combination with living or postapoptotic/necrotic myoblasts failed to generate this myositis phenotype. CONCLUSION In the presence of TLR/adjuvant signals and underlying muscle injury, apoptotic myogenic precursors expressing high levels of autoantigen can provoke autoantibody formation and lymphocytic infiltration of muscle tissue, effectively replicating the features of IIM.
Collapse
|
16
|
Lundberg IE. Inflammatory muscle disease: etiology and pathogenesis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
18
|
Carstens PO, Schmidt J. Diagnosis, pathogenesis and treatment of myositis: recent advances. Clin Exp Immunol 2014; 175:349-58. [PMID: 23981102 DOI: 10.1111/cei.12194] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 11/28/2022] Open
Abstract
Dermatomyositis (DM), polymyositis (PM), necrotizing myopathy (NM) and inclusion body myositis (IBM) are four distinct subtypes of idiopathic inflammatory myopathies - in short myositis. Recent studies have shed some light on the unique pathogenesis of each entity. Some of the clinical features are distinct, but muscle biopsy is indispensable for making a reliable diagnosis. The use of magnetic resonance imaging of skeletal muscles and detection of myositis-specific autoantibodies have become useful additions to our diagnostic repertoire. Only few controlled trials are available to substantiate current treatment approaches for myositis and hopes are high that novel modalities will become available within the next few years. In this review we provide an up-to-date overview of the pathogenesis and diagnostic approach of myositis. We aim to present a guide towards therapeutic and general management.
Collapse
Affiliation(s)
- P-O Carstens
- Clinic for Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | | |
Collapse
|
19
|
Catalán M, Selva-O'Callaghan A, Grau JM. Diagnosis and classification of sporadic inclusion body myositis (sIBM). Autoimmun Rev 2014; 13:363-6. [PMID: 24424185 DOI: 10.1016/j.autrev.2014.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 12/18/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the most common acquired muscle disease in elderly individuals, particularly men. Its prevalence varies among ethnic groups but is estimated at 35 per one million people over 50. Genetic as well as environmental factors and autoimmune processes might both have a role in its pathogenesis. Unlike other inflammatory myopathies, sIBM causes very slowly progressive muscular weakness and atrophy, having a distinctive pattern of muscle involvement and different forms of clinical presentation. In some cases a primary autoimmune disease coexists. Diagnosis is suspected on clinical grounds and is established by typical muscle pathology. As a rule sIBM is refractory to conventional forms of immunotherapy.
Collapse
Affiliation(s)
- M Catalán
- Fundació Privada Cellex, University of Barcelona, Spain.
| | | | - J M Grau
- Fundació Privada Cellex, University of Barcelona, Spain; Internal Medicine Service, Hospital Clínic of Barcelona, University of Barcelona, Spain.
| |
Collapse
|
20
|
|