1
|
Maksimoski AN, Levenson TA, Zhao C, Riters LV. Evidence that flocking behavior is rewarded by singing, flock mates, and mu opioid receptors in the nucleus accumbens. PLoS One 2025; 20:e0318340. [PMID: 39874370 PMCID: PMC11774370 DOI: 10.1371/journal.pone.0318340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
It has been proposed that social groups are maintained both by reward resulting from positive social interactions and by the reduction of a negative state that would otherwise be caused by social separation. European starlings, Sturnus vulgaris, develop strong conditioned place preferences for places associated with the production of song in flocks outside the breeding season (gregarious song) and singers are motivated to rejoin the flock following removal. This indicates that the act of singing in flocks is associated with a positive affective state and raises the possibility that reward induced by song in flocks may play a role in flock maintenance. The goal of this study was to begin to test this hypothesis. We found that birds that sang full songs developed stronger conditioned place preferences than non-singing birds for places associated with flock mates, indicating that singers find the presence of flock mates to be rewarding. Regardless of song rate, the presence of flock mates also induced analgesia (a reflection of the reduction of a negative state). This form of analgesia has been shown to be an indirect measure of opioid release, suggesting that the presence of flock mates may induce opioid-mediated reward. Consistent with this possibility, the numbers of mu opioid receptor immunolabeled cells in the nucleus accumbens correlated positively with measurements of gregarious song and other social behaviors. Results suggest that both gregarious song and social contact promote flock cohesion and that opioids released onto mu opioid receptors in the nucleus accumbens may play an important role.
Collapse
Affiliation(s)
- Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Taviah A. Levenson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Zhao C, Riters LV. The medial preoptic area and its projections to the ventral tegmental area and the periaqueductal gray are activated in response to social play behavior in juvenile rats. Behav Neurosci 2023; 137:223-235. [PMID: 36877484 PMCID: PMC10363185 DOI: 10.1037/bne0000555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The medial preoptic area (MPOA) is well known for its role in sexual and maternal behaviors. This region also plays an important role in affiliative social behaviors outside reproductive contexts. We recently demonstrated that the MPOA is a central nucleus in which opioids govern highly rewarding social play behavior in adolescent rats. However, the neural circuit mechanisms underlying MPOA-mediated social play remain largely unresolved. We hypothesized that the MPOA unites a complementary neural system through which social play induces reward via a projection to the ventral tegmental area (VTA) and reduces a negative affective state through a projection to the periaqueductal gray (PAG). To test whether the two projection pathways are activated in response to social play behavior, we combined retrograde tract tracing with immediate early gene (IEG) expression and immunofluorescent labeling to identify opioid-sensitive projection pathways from the MPOA to VTA and PAG that are activated after performance of social play. Retrograde tracer, fluoro-gold (FG), was microinjected into the VTA or PAG. IEG expression (i.e., Egr1) was assessed and triple immunofluorescent labeling for mu opioid receptor (MOR), Egr1, and FG in the MPOA was performed after social play. We revealed that play animals displayed an increase in neurons double labeled for Egr1 + FG and triple labeled for MOR + Egr1 + FG in the MPOA projecting to both the VTA and PAG when compared to no-play rats. The increased activation of projection neurons that express MORs from MPOA to VTA or PAG after social play suggests that opioids may act through these projection pathways to govern social play. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Polzin BJ, Maksimoski AN, Stevenson SA, Zhao C, Riters LV. Mu opioid receptor stimulation in the medial preoptic area or nucleus accumbens facilitates song and reward in flocking European starlings. Front Physiol 2022; 13:970920. [PMID: 36171974 PMCID: PMC9510710 DOI: 10.3389/fphys.2022.970920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
It has been proposed that social cohesion in gregarious animals is reinforced both by a positive affective state induced by social interactions and by the prevention of a negative state that would be caused by social separation. Opioids that bind to mu opioid receptors (MORs) act in numerous brain regions to induce positive and to reduce negative affective states. Here we explored a potential role for MORs in affective states that may impact flocking behavior in mixed-sex flocks of nonbreeding European starlings, Sturnus vulgaris. Singing behavior, which is considered central to flock cohesion, and other social behaviors were quantified after infusions of the MOR agonist D-Ala2, N-Me-Phe4, glycinol5-ENK (DAMGO) into either the medial preoptic area (POM) or the nucleus accumbens (NAC), regions previously implicated in affective state and flock cohesion. We focused on beak wiping, a potential sign of stress or redirected aggression in this species, to provide insight into a presumed negative state. We also used conditioned place preference (CPP) tests to provide insight into the extent to which infusions of DAMGO into POM or NAC that stimulated song might be rewarding. We found that MOR stimulation in either POM or NAC dose-dependently promoted singing behavior, reduced beak wiping, and induced a CPP. Subtle differences in responses to MOR stimulation between NAC and POM also suggest potential functional differences in the roles of these two regions. Finally, because the location of NAC has only recently been identified in songbirds, we additionally performed a tract tracing study that confirmed the presence of dopaminergic projections from the ventral tegmental area to NAC, suggesting homology with mammalian NAC. These findings support the possibility that MORs in POM and NAC play a dual role in reinforcing social cohesion in flocks by facilitating positive and reducing negative affective states.
Collapse
|
4
|
μ-Opioid Receptor Stimulation in the Nucleus Accumbens Increases Vocal-Social Interactions in Flocking European Starlings, Sturnus Vulgaris. eNeuro 2021; 8:ENEURO.0219-21.2021. [PMID: 34475266 PMCID: PMC8474649 DOI: 10.1523/eneuro.0219-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Social connections in gregarious species are vital for safety and survival. For these reasons, many bird species form large flocks outside the breeding season. It has been proposed that such large social groups may be maintained via reward induced by positive interactions with conspecifics and via the reduction of a negative affective state caused by social separation. Moreover, within a flock optimal social spacing between conspecifics is important, indicating that individuals may optimize spacing to be close but not too close to conspecifics. The μ-opioid receptors (MORs) in the nucleus accumbens (NAc) are well known for their role in both reward and the reduction of negative affective states, suggesting that MOR stimulation in NAc may play a critical role in flock cohesion. To begin to test this hypothesis, social and nonsocial behaviors were examined in male and female European starlings (Sturnus vulgaris) in nonbreeding flocks after intra-NAc infusion of saline and three doses of the selective MOR agonist d-Ala2-N-Me-Phe4-Glycol5-enkephalin (DAMGO). DAMGO in NAc dose-dependently increased singing behavior and facilitated social approaches while at the same time promoting displacements potentially used to maintain social spacing. These findings support the hypothesis that MORs in NAc promote social interactions important for group cohesion in nonsexual contexts and suggest the possibility that MORs in the NAc play a role in optimizing the pull of joining a flock with the push of potential agonistic encounters.
Collapse
|
5
|
Stevenson SA, Piepenburg A, Spool JA, Angyal CS, Hahn AH, Zhao C, Riters LV. Endogenous opioids facilitate intrinsically-rewarded birdsong. Sci Rep 2020; 10:11083. [PMID: 32632172 PMCID: PMC7338348 DOI: 10.1038/s41598-020-67684-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
Many songbirds sing in non-reproductive contexts while in flocks. Singing in such gregarious contexts is critical for maintaining and learning songs; however, song is not directed towards other individuals and has no obvious, immediate social consequences. Studies using conditioned place preference (CPP) tests of reward indicate that song production in gregarious contexts correlates positively with a bird’s intrinsic reward state and with opioid markers in the medial preoptic nucleus (mPOA). However, the causal involvement of opioids in gregarious song is unknown. Here we report that the selective mu opioid receptor (MOR) agonist fentanyl dose-dependently facilitates gregarious song and reduces stress/anxiety-related behavior in male and female European starlings. Furthermore, infusion of siRNA targeting MORs specifically in mPOA both suppresses gregarious song and disrupts the positive association between affective state and singing behavior, as revealed using CPP tests of song-associated reward. Results strongly implicate opioids in gregarious song and suggest that endogenous opioids in the mPOA may facilitate song by influencing an individual’s intrinsic reward state.
Collapse
Affiliation(s)
- Sharon A Stevenson
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Alice Piepenburg
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.,Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Caroline S Angyal
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Allison H Hahn
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.,Department of Psychology, St. Norbert College, De Pere, WI, 54115, USA
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Hahn AH, Spool JA, Angyal CS, Stevenson SA, Riters LV. Conditioned place preferences induced by hearing song outside the breeding season relate to neural dopamine D 1 and cannabinoid CB 1 receptor gene expression in female European starlings (Sturnus vulgaris). Behav Brain Res 2019; 371:111970. [PMID: 31128162 DOI: 10.1016/j.bbr.2019.111970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023]
Abstract
The affective state induced by sensory stimuli changes to adaptively modify behaviors that are critical for survival and reproduction. In European starlings, during the spring breeding season, male courtship song is rewarding to females, but only to those that possess resources that are necessary for reproduction (i.e., nesting sites). In fall, starling song is non-sexual and proposed to maintain flocks. This suggests that in fall it may be adaptive for females to be rewarded by fall rather than spring, courtship song. We used a conditioned place preference (CPP) test to evaluate song-induced affective state in fall condition females and quantitative real-time PCR to measure expression of genes that modulate affective state (CB1 endocannabinoid and D1 dopamine receptors) in brain regions that were previously implicated in song-induced reward (i.e., the medial preoptic nucleus (mPOA) and ventromedial hypothalamus (VMH)). Fall condition females developed an aversion to a place that had been paired with playback of both male fall and courtship song, indicating that in general male song induces a negative affective state outside the breeding season. Song-induced aversion was stronger in birds conditioned towards an initial place preference. For mPOA, CB1 receptor expression correlated positively with fall and spring song-induced CPP. D1 receptor expression correlated negatively with fall (but not spring) song-induced CPP, and the ratio of CB1 to D1 receptor expression correlated positively with fall (but not spring) song-induced CPP. These correlations suggest that interactions between D1 and CB1 receptors in mPOA may play a role in modifying affective responses to song.
Collapse
Affiliation(s)
- Allison H Hahn
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jeremy A Spool
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Caroline S Angyal
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sharon A Stevenson
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lauren V Riters
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Riters LV, Kelm-Nelson CA, Spool JA. Why Do Birds Flock? A Role for Opioids in the Reinforcement of Gregarious Social Interactions. Front Physiol 2019; 10:421. [PMID: 31031641 PMCID: PMC6473117 DOI: 10.3389/fphys.2019.00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
The formation of social groups provides safety and opportunities for individuals to develop and practice important social skills. However, joining a social group does not result in any form of obvious, immediate reinforcement (e.g., it does not result in immediate copulation or a food reward), and individuals often remain in social groups despite agonistic responses from conspecifics. Much is known about neural and endocrine mechanisms underlying the motivation to perform mate- or offspring-directed behaviors. In contrast, relatively little is known about mechanisms underlying affiliative behaviors outside of these primary reproductive contexts. Studies on flocking behavior in songbirds are beginning to fill this knowledge gap. Here we review behavioral evidence that supports the hypothesis that non-sexual affiliative, flocking behaviors are both (1) rewarded by positive social interactions with conspecifics, and (2) reinforced because affiliative contact reduces a negative affective state caused by social isolation. We provide evidence from studies in European starlings, Sturnus vulgaris, that mu opioid receptors in the medial preoptic nucleus (mPOA) play a central role in both reward and the reduction of a negative affective state induced by social interactions in flocks, and discuss potential roles for nonapeptide/opioid interactions and steroid hormones. Finally, we develop the case that non-sexual affiliative social behaviors may be modified by two complementary output pathways from mPOA, with a projection from mPOA to the periaqueductal gray integrating information during social interactions that reduces negative affect and a projection from mPOA to the ventral tegmental area integrating information leading to social approach and reward.
Collapse
Affiliation(s)
- Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, United States
| | - Cynthia A. Kelm-Nelson
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison, Madison, WI, United States
| | - Jeremy A. Spool
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
8
|
Messina S, Eens M, Casasole G, AbdElgawad H, Asard H, Pinxten R, Costantini D. Experimental inhibition of a key cellular antioxidant affects vocal communication. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Giulia Casasole
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Department of Biology University of Antwerp Antwerp Belgium
- Department of Botany Faculty of Science University of Beni‐Suef Beni‐Suef62511 Egypt
| | - Han Asard
- Integrated Molecular Plant Physiology Research Department of Biology University of Antwerp Antwerp Belgium
| | - Rianne Pinxten
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
- Faculty of Social Sciences Antwerp School of Education University of Antwerp Antwerp Belgium
| | - David Costantini
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
- UMR 7221 Muséum National d'Histoire Naturelle 7 rue Cuvier 75231 Paris Cedex 05 France
| |
Collapse
|
9
|
Hahn AH, Merullo DP, Spool JA, Angyal CS, Stevenson SA, Riters LV. Song-associated reward correlates with endocannabinoid-related gene expression in male European starlings (Sturnus vulgaris). Neuroscience 2017; 346:255-266. [PMID: 28147243 DOI: 10.1016/j.neuroscience.2017.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Vocal communication is required for successful social interactions in numerous species. During the breeding season, songbirds produce songs that are reinforced by behavioral consequences (e.g., copulation). However, some songbirds also produce songs not obviously directed at other individuals. The consequences maintaining or reinforcing these songs are less obvious and the neural mechanisms associated with undirected communication are not well-understood. Previous studies indicate that undirected singing is intrinsically rewarding and mediated by opioid or dopaminergic systems; however, endocannabinoids are also involved in regulating reward and singing behavior. We used a conditioned place preference paradigm to examine song-associated reward in European starlings and quantitative real-time PCR to measure expression of endocannabinoid-related neural markers (CB1, FABP7, FABP5, FAAH, DAGLα), in brain regions involved in social behavior, reward and motivation (ventral tegmental area [VTA], periaqueductal gray [PAG], and medial preoptic nucleus [POM]), and a song control region (Area X). Our results indicate that starlings producing high rates of song developed a conditioned place preference, suggesting that undirected song is associated with a positive affective state. We found a significant positive relationship between song-associated reward and CB1 receptors in VTA and a significant negative relationship between song-associated reward and CB1 in PAG. There was a significant positive relationship between reward and the cannabinoid transporter FABP7 in POM and a significant negative relationship between reward and FABP7 in PAG. In Area X, FABP5 and DAGLα correlated positively with singing. These results suggest a role for endocannabinoid signaling in vocal production and reward associated with undirected communication.
Collapse
Affiliation(s)
- Allison H Hahn
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Devin P Merullo
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy A Spool
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline S Angyal
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Zhao X, Marler CA. Social and physical environments as a source of individual variation in the rewarding effects of testosterone in male California mice (Peromyscus californicus). Horm Behav 2016; 85:30-35. [PMID: 27476433 DOI: 10.1016/j.yhbeh.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 11/23/2022]
Abstract
Despite extensive research revealing the occurrence of testosterone (T) pulses following social encounters, it is unclear how they lead to varied behavioral responses. We investigated the influence of residency (home versus unfamiliar environment) and social/sexual experience (pair-bonded, isolated or housed with siblings) on the plasticity of T's rewarding effects by measuring the development of conditioned place preferences (CPPs), a classical paradigm used to measure the rewarding properties of drugs. For pair-bonded males, T-induced CPPs were only produced in the environment wherein the social/sexual experience was accrued and residency status had been achieved. For isolated males, the T-induced CPPs only occurred when the environment was unfamiliar. For males housed with a male sibling, the T-induced CPPs were prevented in both the home and unfamiliar chambers. Our results reveal the plasticity of T's rewarding effects, and suggest that the behavioral functions of T-pulses can vary based on social/sexual experience and the environment in which residency was established. The formation of CPPs or reward-like properties of drugs and natural compounds can therefore exhibit malleability based on past experience and the current environment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
11
|
Cordes MA, Stevenson SA, Driessen TM, Eisinger BE, Riters LV. Sexually-motivated song is predicted by androgen-and opioid-related gene expression in the medial preoptic nucleus of male European starlings (Sturnus vulgaris). Behav Brain Res 2015; 278:12-20. [PMID: 25264575 PMCID: PMC4559756 DOI: 10.1016/j.bbr.2014.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
Across vertebrates, communication conveys information about an individual's motivational state, yet little is known about the neuroendocrine regulation of motivational aspects of communication. For seasonally breeding songbirds, increases in testosterone in spring stimulate high rates of sexually-motivated courtship song, though not all birds sing at high rates. It is generally assumed that testosterone or its metabolites act within the medial preoptic nucleus (POM) to stimulate the motivation to sing. In addition to androgen receptors (ARs) and testosterone, opioid neuropeptides in the POM influence sexually-motivated song production, and it has been proposed that testosterone may in part regulate song by modifying opioid systems. To gain insight into a possible role for androgen-opioid interactions in the regulation of communication we examined associations between sexually-motivated song and relative expression of ARs, mu opioid receptors (muORs), and preproenkephalin (PENK) in the POM (and other regions) of male European starlings using qPCR. Both AR and PENK expression in POM correlated positively with singing behavior, whereas muOR in POM correlated negatively with song. Furthermore, the ratio of PENK/muOR expression correlated negatively with AR expression in POM. Finally, in the ventral tegmental area (VTA), PENK expression correlated negatively with singing behavior. Results support the hypothesis that ARs may alter opioid gene expression in POM to fine-tune singing to reflect a male's motivational state. Data also suggest that bidirectional relationships may exist between opioids and ARs in POM and song, and additionally support a role for opioids in the VTA, independent of AR activity in this region.
Collapse
Affiliation(s)
- M A Cordes
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA.
| | - S A Stevenson
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA
| | - T M Driessen
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA; Washington State University, Integrated Physiology and Neuroscience Department, 1815 Ferdinand's Lane, Pullman, WA, USA
| | - B E Eisinger
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA; University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center and Department of Neuroscience, 1500 Highland Ave., Madison, WI 53705, USA
| | - L V Riters
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA
| |
Collapse
|
12
|
Riters LV, Stevenson SA, DeVries MS, Cordes MA. Reward associated with singing behavior correlates with opioid-related gene expression in the medial preoptic nucleus in male European starlings. PLoS One 2014; 9:e115285. [PMID: 25521590 PMCID: PMC4270752 DOI: 10.1371/journal.pone.0115285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022] Open
Abstract
Birdsong consists of species-specific learned vocal sequences that are used primarily to attract mates and to repel competitors during the breeding season. However, many birds continue to sing at times when vocal production has no immediate or obvious impact on conspecific behavior. The mechanisms that ensure that animals produce important behaviors in contexts in which the function of these behaviors is not immediate or obvious are not known. One possibility is that animals engage in such behaviors because they are associated with pleasure. Here we examined the hypothesis that male European starlings sing outside of the breeding season in part because the act of singing in this context is facilitated and/or maintained by opioid-mediated reward. We measured song-associated reward using a conditioned place preference (CPP) test in male starlings producing fall, non-breeding season-typical song. We used quantitative real time PCR to measure expression of the enkephalin opioid precursor preproenkephalin (PENK) and mu opioid receptors (MOR) in the medial preoptic nucleus (POM; a region in which opioids are implicated in both reward and starling fall song) and additionally the song control region HVC as a control. Starlings developed a strong preference for a place that had been paired previously with the act of producing fall-typical song, indicating that fall song production was associated with a positive affective state. Both PENK and MOR mRNA expression in the POM, but not HVC, correlated positively with both individual reward state (as reflected in CPP) and undirected singing behavior. These results suggest that singing induces opioid receptor and enkephalin expression in the POM and consequent reward, and/or that opioid release in the POM induced by individual or environmental factors (e.g., the presence of food, safety of a flock or the absence of predators) induces a positive affective state which then facilitates singing behavior.
Collapse
Affiliation(s)
- Lauren V. Riters
- Department of Zoology, University of Wisconsin Madison, 428 Birge Hall, Madison, Wisconsin, United States of America
- * E-mail:
| | - Sharon A. Stevenson
- Department of Zoology, University of Wisconsin Madison, 428 Birge Hall, Madison, Wisconsin, United States of America
| | - M. Susan DeVries
- Department of Zoology, University of Wisconsin Madison, 428 Birge Hall, Madison, Wisconsin, United States of America
| | - Melissa A. Cordes
- Department of Zoology, University of Wisconsin Madison, 428 Birge Hall, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Kelm-Nelson CA, Riters LV. Curvilinear relationships between mu-opioid receptor labeling and undirected song in male European starlings (Sturnus vulgaris). Brain Res 2013; 1527:29-39. [PMID: 23774651 DOI: 10.1016/j.brainres.2013.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/22/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Female-directed communication in male songbirds has been reasonably well studied; yet, relatively little is known about communication in other social contexts. Songbirds also produce song that is not clearly directed towards another individual (undirected song) when alone or in flocks. Although the precise functions of undirected song may differ across species, this type of song is considered important for flock maintenance, song learning or practice. Past studies show that undirected song is tightly coupled to analgesia and positive affective state, which are both mediated by opioid activity. Furthermore, labeling for the opioid met-enkephalin in the medial preoptic nucleus (POM) correlates positively with undirected song production. We propose that undirected song is facilitated and maintained by opioid receptor activity in the POM and other brain regions involved in affective state, analgesia, and social behavior. To provide insight into this hypothesis, we used immunohistochemistry to examine relationships between undirected song and mu-opioid receptors in male starlings. Polynomial regression analyses revealed significant inverted-U shaped relationships between measures of undirected song and mu-opioid receptor labeling in the POM, medial bed nucleus of the stria terminalis (BSTm), and periaqueductal gray (PAG). These results suggest that low rates of undirected song may stimulate and/or be maintained by mu-opioid receptor activity; however, it may be that sustained levels of mu-opioid receptor activity associated with high rates of undirected song cause mu-opioid receptor down-regulation. The results indicate that mu-opioid receptor activity in POM, BSTm, and PAG may underlie previous links identified between undirected song, analgesia, and affective state.
Collapse
Affiliation(s)
- Cynthia A Kelm-Nelson
- Department of Zoology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.
| | | |
Collapse
|