1
|
Nkuwi E, Judicate GP, Tan TS, Barabona G, Toyoda M, Sunguya B, Kamori D, Ueno T. Relative resistance of patient-derived envelope sequences to SERINC5-mediated restriction of HIV-1 infectivity. J Virol 2023; 97:e0082323. [PMID: 37768085 PMCID: PMC10617508 DOI: 10.1128/jvi.00823-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Pathogenesis of HIV-1 is enhanced through several viral-encoded proteins that counteract a range of host restriction molecules. HIV-1 Nef counteracts the cell membrane protein SERINC5 by downregulating it from the cell surface, thereby enhancing virion infectivity. Some subtype B reference Envelope sequences have shown the ability to bypass SERINC5 infectivity restriction independent of Nef. However, it is not clear if and to what extent circulating HIV-1 strains can exhibit resistance to SERINC5 restriction. Using a panel of Envelope sequences isolated from 50 Tanzanians infected with non-B HIV-1 subtypes, we show that the lentiviral reporters pseudotyped with patient-derived Envelopes have reduced sensitivity to SERINC5 and that this sensitivity differed among viral subtypes. Moreover, we found that SERINC5 sensitivity within patient-derived Envelopes can be modulated by separate regions, highlighting the complexity of viral/host interactions.
Collapse
Affiliation(s)
- Emmanuel Nkuwi
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Microbiology and Parasitology, The University of Dodoma, Dodoma, Tanzania
| | - George P. Judicate
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Toong Seng Tan
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Godfrey Barabona
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Mako Toyoda
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Bruno Sunguya
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Community Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Doreen Kamori
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Baxter J, Langhorne S, Shi T, Tully DC, Villabona-Arenas CJ, Hué S, Albert J, Leigh Brown A, Atkins KE. Inferring the multiplicity of founder variants initiating HIV-1 infection: a systematic review and individual patient data meta-analysis. THE LANCET. MICROBE 2023; 4:e102-e112. [PMID: 36642083 DOI: 10.1016/s2666-5247(22)00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, The University of Edinburgh, Edinburgh, UK.
| | - Sarah Langhorne
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Damien C Tully
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ch Julián Villabona-Arenas
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Stéphane Hué
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E Atkins
- Usher Institute, The University of Edinburgh, Edinburgh, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Adhiambo M, Makwaga O, Adungo F, Kimani H, Mulama DH, Korir JC, Mwau M. Human immunodeficiency virus (HIV) type 1 genetic diversity in HIV positive individuals on antiretroviral therapy in a cross-sectional study conducted in Teso, Western Kenya. Pan Afr Med J 2021; 38:335. [PMID: 34046145 PMCID: PMC8140725 DOI: 10.11604/pamj.2021.38.335.26357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction high HIV-1 infection rates and genetic diversity especially in African population pose significant challenges in HIV-1 clinical management and drug design and development. HIV-1 is a major health challenge in Kenya and causes mortality and morbidity in the country as well as straining the healthcare system and the economy. This study sought to identify HIV-1 genetic subtypes circulating in Teso, Western Kenya which borders the Republic of Uganda. Methods a cross-sectional study was conducted in January 2019 to December 2019. Sequencing of the partial pol gene was carried out on 80 HIV positive individuals on antiretroviral therapy. Subtypes and recombinant forms were generated using the jumping profile hidden Markov model. Alignment of the sequences was done using ClustalW program and phylogenetic tree constructed using MEGA7 neighbor-joining method. Results sixty three samples were successful sequenced. In the analysis of these sequences, it was observed that HIV-1 subtype A1 was predominant 43 (68.3%) followed by D 8 (12.7%) and 1 (1.6%) each of C, G and B and inter-subtype recombinants A1-D 3 (4.8%), A1-B 2 (3.2%) and 1 (1.6%) each of A1-A2, A1-C, BC and BD. Phylogenetic analysis of these sequences showed close clustering of closely related and unrelated sequences with reference sequences. Conclusion there was observed increased genetic diversity of HIV-1 subtypes which not only pose a challenge in disease control and management but also drug design and development. Therefore, there is need for continued surveillance to enhance future understanding of the geographical distribution and transmission patterns of the HIV epidemic.
Collapse
Affiliation(s)
- Maureen Adhiambo
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.,Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Olipher Makwaga
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.,Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ferdinard Adungo
- Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Humphrey Kimani
- Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - David Hughes Mulama
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Jackson Cheruiyot Korir
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Matilu Mwau
- Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
4
|
Hebberecht L, Vancoillie L, Schauvliege M, Staelens D, Dauwe K, Mortier V, Verhofstede C. Frequency of occurrence of HIV-1 dual infection in a Belgian MSM population. PLoS One 2018; 13:e0195679. [PMID: 29624605 PMCID: PMC5889168 DOI: 10.1371/journal.pone.0195679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction HIV-1 dual infection is a condition that results from infection with at least two HIV-1 variants from different sources. The scarceness of information on this condition is partly due to the fact that its detection is technically challenging. Using next-generation sequencing we defined the extent of HIV-1 dual infection in a cohort of men who have sex with men (MSM). Material & methods Eighty-six MSM, diagnosed with HIV-1 subtype B infection between 2008 and 2013 were selected for next-generation sequencing of the HIV-1 envelope V3. Sequencing was performed on 2 plasma samples collected with an interval of > 6 months before the initiation of antiretroviral therapy. Maximum likelihood phylogenetic trees were inspected for dual infection, defined as the presence of two or more monophyletic clusters with ≥ 90% bootstrap support and a mean between-cluster genetic distance of ≥ 10%. To confirm dual infection, deep V3 sequencing of intermediate samples was performed as well as clonal sequencing of the HIV-1 protease-reverse transcriptase gene. Results Five of the 74 patients (6.8%) for whom deep sequencing was successful, showed clear evidence of dual infection. In 4 of them, the second strain was absent in the first sample but occurred in subsequent samples. This was highly suggestive for superinfection. In 3 patients both virus variants were of subtype B, in 2 patients at least one of the variants was a subtype B/non-B recombinant virus. Conclusions Dual infection was confirmed in 6.8% of MSM diagnosed with HIV-1 in Belgium. This prevalence is probably an underestimation, because stringent criteria were used to classify viral variants as originating from a new infection event.
Collapse
Affiliation(s)
- Laura Hebberecht
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Leen Vancoillie
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Marlies Schauvliege
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Delfien Staelens
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kenny Dauwe
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
5
|
Billings E, Sanders-Buell E, Bose M, Kijak GH, Bradfield A, Crossler J, Arroyo MA, Maboko L, Hoffmann O, Geis S, Birx DL, Kim JH, Michael NL, Robb ML, Hoelscher M, Tovanabutra S. HIV-1 Genetic Diversity Among Incident Infections in Mbeya, Tanzania. AIDS Res Hum Retroviruses 2017; 33:373-381. [PMID: 27841669 PMCID: PMC5372774 DOI: 10.1089/aid.2016.0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In preparation for vaccine trials, HIV-1 genetic diversity was surveyed between 2002 and 2006 through the Cohort Development study in the form of a retrospective and prospective observational study in and around the town of Mbeya in Tanzania's Southwest Highlands. This study describes the molecular epidemiology of HIV-1 strains obtained from 97 out of 106 incident HIV-1 infections identified in three subpopulations of participants (one rural, two urban) from the Mbeya area. Near full-genome or half-genome sequencing showed a subtype distribution of 40% C, 17% A1, 1% D, and 42% inter-subtype recombinants. Compared to viral subtyping results previously obtained from the retrospective phase of this study, the overall proportion of incident viral strains did not change greatly during the study course, suggesting maturity of the epidemic. A comparison to a current Phase I-II vaccine being tested in Africa shows ∼17% amino acid sequence difference between the gp120 of the vaccine and subtype C incident strains. Phylogenetic and recombinant breakpoint analysis of the incident strains revealed the emergence of CRF41_CD and many unique recombinants, as well as the presence of six local transmission networks most of which were confined to the rural subpopulation. In the context of vaccine cohort selection, these results suggest distinct infection transmission dynamics within these three geographically close subpopulations. The diversity and genetic sequences of the HIV-1 strains obtained during this study will greatly contribute to the planning, immunogen selection, and analysis of vaccine-induced immune responses observed during HIV-1 vaccine trials in Tanzania and neighboring countries.
Collapse
Affiliation(s)
- Erik Billings
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| | - Eric Sanders-Buell
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| | - Meera Bose
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| | - Gustavo H. Kijak
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| | - Andrea Bradfield
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| | - Jacqueline Crossler
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| | - Miguel A. Arroyo
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Oliver Hoffmann
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
- NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Steffen Geis
- NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany
| | - Deborah L. Birx
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Nelson L. Michael
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Merlin L. Robb
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany
- German Centre for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Sodsai Tovanabutra
- United States Military HIV Research Program/Henry M. Jackson Foundation, Silver Spring, Maryland
| |
Collapse
|
6
|
Novitsky V, Moyo S, Wang R, Gaseitsiwe S, Essex M. Deciphering Multiplicity of HIV-1C Infection: Transmission of Closely Related Multiple Viral Lineages. PLoS One 2016; 11:e0166746. [PMID: 27893822 PMCID: PMC5125632 DOI: 10.1371/journal.pone.0166746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A single viral variant is transmitted in the majority of HIV infections. However, about 20% of heterosexually transmitted HIV infections are caused by multiple viral variants. Detection of transmitted HIV variants is not trivial, as it involves analysis of multiple viral sequences representing intra-host HIV-1 quasispecies. METHODOLOGY We distinguish two types of multiple virus transmission in HIV infection: (1) HIV transmission from the same source, and (2) transmission from different sources. Viral sequences representing intra-host quasispecies in a longitudinally sampled cohort of 42 individuals with primary HIV-1C infection in Botswana were generated by single-genome amplification and sequencing and spanned the V1C5 region of HIV-1C env gp120. The Maximum Likelihood phylogeny and distribution of pairwise raw distances were assessed at each sampling time point (n = 217; 42 patients; median 5 (IQR: 4-6) time points per patient, range 2-12 time points per patient). RESULTS Transmission of multiple viral variants from the same source (likely from the partner with established HIV infection) was found in 9 out of 42 individuals (21%; 95 CI 10-37%). HIV super-infection was identified in 2 patients (5%; 95% CI 1-17%) with an estimated rate of 3.9 per 100 person-years. Transmission of multiple viruses combined with HIV super-infection at a later time point was observed in one individual. CONCLUSIONS Multiple HIV lineages transmitted from the same source produce a monophyletic clade in the inferred phylogenetic tree. Such a clade has transiently distinct sub-clusters in the early stage of HIV infection, and follows a predictable evolutionary pathway. Over time, the gap between initially distinct viral lineages fills in and initially distinct sub-clusters converge. Identification of cases with transmission of multiple viral lineages from the same source needs to be taken into account in cross-sectional estimation of HIV recency in epidemiological and population studies.
Collapse
Affiliation(s)
- Vlad Novitsky
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Medical Virology, Stellenbosch University, Tygerberg, South Africa
| | - Rui Wang
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | | | - M. Essex
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| |
Collapse
|
7
|
Moyo S, Vandormael A, Wilkinson E, Engelbrecht S, Gaseitsiwe S, Kotokwe KP, Musonda R, Tanser F, Essex M, Novitsky V, de Oliveira T. Analysis of Viral Diversity in Relation to the Recency of HIV-1C Infection in Botswana. PLoS One 2016; 11:e0160649. [PMID: 27552218 PMCID: PMC4994946 DOI: 10.1371/journal.pone.0160649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/23/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cross-sectional, biomarker methods to determine HIV infection recency present a promising and cost-effective alternative to the repeated testing of uninfected individuals. We evaluate a viral-based assay that uses a measure of pairwise distances (PwD) to identify HIV infection recency, and compare its performance with two serologic incidence assays, BED and LAg. In addition, we assess whether combination BED plus PwD or LAg plus PwD screening can improve predictive accuracy by reducing the likelihood of a false-recent result. METHODS The data comes from 854 time-points and 42 participants enrolled in a primary HIV-1C infection study in Botswana. Time points after treatment initiation or with evidence of multiplicity of infection were excluded from the final analysis. PwD was calculated from quasispecies generated using single genome amplification and sequencing. We evaluated the ability of PwD to correctly classify HIV infection recency within <130, <180 and <360 days post-seroconversion using Receiver Operator Characteristics (ROC) methods. Following a secondary PwD screening, we quantified the reduction in the relative false-recency rate (rFRR) of the BED and LAg assays while maintaining a sensitivity of either 75, 80, 85 or 90%. RESULTS The final analytic sample consisted of 758 time-points from 40 participants. The PwD assay was more accurate in classifying infection recency for the 130 and 180-day cut-offs when compared with the recommended LAg and BED thresholds. A higher AUC statistic confirmed the superior predictive performance of the PwD assay for the three cut-offs. When used for combination screening, the PwD assay reduced the rFRR of the LAg assay by 52% and the BED assay by 57.8% while maintaining a 90% sensitivity for the 130 and 180-day cut-offs respectively. CONCLUSION PwD can accurately determine HIV infection recency. A secondary PwD screening reduces misclassification and increases the accuracy of serologic-based assays.
Collapse
Affiliation(s)
- Sikhulile Moyo
- Division of Medical Virology, Stellenbosch University, Tygerberg, South Africa
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- * E-mail:
| | - Alain Vandormael
- Wellcome Trust Africa Centre for Health and Population Studies, Dorris Duke Medical Research Centre, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Eduan Wilkinson
- Wellcome Trust Africa Centre for Health and Population Studies, Dorris Duke Medical Research Centre, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University, Tygerberg, South Africa
- National Health Laboratory Services (NHLS), Tygerberg Coastal, South Africa
| | - Simani Gaseitsiwe
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | | | - Rosemary Musonda
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Frank Tanser
- Wellcome Trust Africa Centre for Health and Population Studies, Dorris Duke Medical Research Centre, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Max Essex
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Vladimir Novitsky
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Tulio de Oliveira
- Wellcome Trust Africa Centre for Health and Population Studies, Dorris Duke Medical Research Centre, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Research Department of Infection, University College London, London, United Kingdom
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Hawkins C, Ulenga N, Liu E, Aboud S, Mugusi F, Chalamilla G, Sando D, Aris E, Carpenter D, Fawzi W. HIV virological failure and drug resistance in a cohort of Tanzanian HIV-infected adults. J Antimicrob Chemother 2016; 71:1966-74. [PMID: 27076106 DOI: 10.1093/jac/dkw051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES There are few data on ART failure rates and drug resistance from Tanzania, where there is a wide diversity of non-B HIV subtypes. We assessed rates and predictors of virological failure in HIV-infected Tanzanians and describe drug resistance patterns in a subgroup of these patients. METHODS ART-naive, HIV-1-infected adults enrolled in a randomized controlled trial between November 2006 and 2008 and on ≥24 weeks of first-line NNRTI-containing ART were included. Population-based genotyping of HIV-1 protease and reverse transcriptase was performed on stored plasma from patients with virological failure (viral load >1000 copies/mL at ≥24 weeks of ART) and at baseline, where available. RESULTS A total of 2403 patients [median (IQR) age 37 (32-43) years; 70% female] were studied. The median (IQR) baseline CD4+ T cell count was 128 (62-190) cells/μL. Predominant HIV subtypes were A, C and D (92.2%). The overall rate of virological failure was 14.9% (95% CI 13.2%-16.1%). In adjusted analyses, significant predictors of virological failure were lower CD4+ T cell count (P = 0.01) and non-adherence to ART (P < 0.01). Drug resistance mutations were present in 87/115 samples (75.7%); the most common were M184V/I (52.2%) and K103N (35%). Thymidine analogue mutations were uncommon (5.2%). The prevalence of mutations in 45 samples pre-ART was 22%. CONCLUSIONS High levels of early ART failure and drug resistance were observed among Tanzanian HIV-1-infected adults enrolled in a well-monitored study. Initiating treatment early and ensuring optimal adherence are vital for the success and durability of first-line ART in these settings.
Collapse
Affiliation(s)
- Claudia Hawkins
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nzovu Ulenga
- Management and Development for Health, Dar es Salaam, Tanzania Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Enju Liu
- Departments of Nutrition, Epidemiology, Biostatistics, and Global Health and Population, Harvard School of Public Health, Boston, MA, USA
| | - Said Aboud
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ferdinand Mugusi
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - David Sando
- Management and Development for Health, Dar es Salaam, Tanzania
| | - Eric Aris
- Management and Development for Health, Dar es Salaam, Tanzania
| | | | - Wafaie Fawzi
- Department of Global Health and Population, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Growth characteristics and complete genomic sequence analysis of a novel pseudorabies virus in China. Virus Genes 2016; 52:474-83. [DOI: 10.1007/s11262-016-1324-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
|
10
|
Ostermann J, Njau B, Mtuy T, Brown DS, Mühlbacher A, Thielman N. One size does not fit all: HIV testing preferences differ among high-risk groups in Northern Tanzania. AIDS Care 2015; 27:595-603. [PMID: 25616562 DOI: 10.1080/09540121.2014.998612] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to maximize the effectiveness of "Seek, Test, and Treat" strategies for curbing the HIV epidemic, new approaches are needed to increase the uptake of HIV testing services, particularly among high-risk groups. Low HIV testing rates among such groups suggest that current testing services may not align well with the testing preferences of these populations. Female bar workers and male mountain porters have been identified as two important high-risk groups in the Kilimanjaro Region of Tanzania. We used conventional survey methods and a discrete choice experiment (DCE), a preference elicitation method increasingly applied by economists and policy-makers to inform health policy and services, to analyze trade-offs made by individuals and quantify preferences for HIV testing services. Bivariate descriptive statistics were used to analyze differences in survey responses across groups. Compared to 486 randomly selected community members, 162 female bar workers and 194 male Kilimanjaro porters reported 2-3 times as many lifetime sexual partners (p < 0.001), but similar numbers of lifetime HIV tests (median 1-2 across all groups). For the DCE, participants' stated choices across 12,978 hypothetical HIV testing scenarios (422 female and 299 male participants × 9 choice tasks × 2 alternatives) were analyzed using gender-specific mixed logit models. Direct assessments and the DCE data demonstrated that barworkers were less likely to prefer home testing and were more concerned about disclosure issues compared with their community counterparts. Male porters preferred testing in venues where antiretroviral therapy was readily available. Both high-risk groups were less averse to traveling longer distances to test compared to their community counterparts. These results expose systematic differences in HIV testing preferences across high-risk populations compared to their community peers. Tailoring testing options to the preferences of high-risk populations should be evaluated as a means of improving uptake of testing in these populations.
Collapse
Affiliation(s)
- Jan Ostermann
- a Duke Global Health Institute, Duke University , Durham , NC , USA
| | | | | | | | | | | |
Collapse
|
11
|
Kiwelu IE, Novitsky V, Kituma E, Margolin L, Baca J, Manongi R, Sam N, Shao J, McLane MF, Kapiga SH, Essex M. HIV-1 pol diversity among female bar and hotel workers in Northern Tanzania. PLoS One 2014; 9:e102258. [PMID: 25003939 PMCID: PMC4087014 DOI: 10.1371/journal.pone.0102258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
A national ART program was launched in Tanzania in October 2004. Due to the existence of multiple HIV-1 subtypes and recombinant viruses co-circulating in Tanzania, it is important to monitor rates of drug resistance. The present study determined the prevalence of HIV-1 drug resistance mutations among ART-naive female bar and hotel workers, a high-risk population for HIV-1 infection in Moshi, Tanzania. A partial HIV-1 pol gene was analyzed by single-genome amplification and sequencing in 45 subjects (622 pol sequences total; median number of sequences per subject, 13; IQR 5-20) in samples collected in 2005. The prevalence of HIV-1 subtypes A1, C, and D, and inter-subtype recombinant viruses, was 36%, 29%, 9% and 27%, respectively. Thirteen different recombination patterns included D/A1/D, C/A1, A1/C/A1, A1/U/A1, C/U/A1, C/A1, U/D/U, D/A1/D, A1/C, A1/C, A2/C/A2, CRF10_CD/C/CRF10_CD and CRF35_AD/A1/CRF35_AD. CRF35_AD was identified in Tanzania for the first time. All recombinant viruses in this study were unique, suggesting ongoing recombination processes among circulating HIV-1 variants. The prevalence of multiple infections in this population was 16% (n = 7). Primary HIV-1 drug resistance mutations to RT inhibitors were identified in three (7%) subjects (K65R plus Y181C; N60D; and V106M). In some subjects, polymorphisms were observed at the RT positions 41, 69, 75, 98, 101, 179, 190, and 215. Secondary mutations associated with NNRTIs were observed at the RT positions 90 (7%) and 138 (6%). In the protease gene, three subjects (7%) had M46I/L mutations. All subjects in this study had HIV-1 subtype-specific natural polymorphisms at positions 36, 69, 89 and 93 that are associated with drug resistance in HIV-1 subtype B. These results suggested that HIV-1 drug resistance mutations and natural polymorphisms existed in this population before the initiation of the national ART program. With increasing use of ARV, these results highlight the importance of drug resistance monitoring in Tanzania.
Collapse
Affiliation(s)
- Ireen E. Kiwelu
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vladimir Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Elimsaada Kituma
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
- Kilimanjaro Reproductive Health Program, Moshi, Tanzania
| | - Lauren Margolin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jeannie Baca
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rachel Manongi
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
- Kilimanjaro Reproductive Health Program, Moshi, Tanzania
| | - Noel Sam
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
- Kilimanjaro Reproductive Health Program, Moshi, Tanzania
| | - John Shao
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
| | - Mary F. McLane
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Saidi H. Kapiga
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Kilimanjaro Reproductive Health Program, Moshi, Tanzania
| | - M. Essex
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Njai HF, Ewings FM, Lyimo E, Foulongne V, Ngerageza D, Mongi A, Ssemwanga D, Andreasen A, Nyombi B, Ao T, Michael D, Urassa M, Todd J, Zaba B, Changalucha J, Hayes R, Kapiga SH. Deciphering the complex distribution of human immunodeficiency virus type 1 subtypes among different cohorts in Northern Tanzania. PLoS One 2013; 8:e81848. [PMID: 24349139 PMCID: PMC3859540 DOI: 10.1371/journal.pone.0081848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background Increased understanding of the genetic diversity of HIV-1 is challenging but important in the development of an effective vaccine. We aimed to describe the distribution of HIV-1 subtypes in northern Tanzania among women enrolled in studies preparing for HIV-1 prevention trials (hospitality facility-worker cohorts), and among men and women in an open cohort demographic surveillance system (Kisesa cohort). Methods The polymerase encompassing partial reverse transcriptase was sequenced and phylogenetic analysis performed and subtype determined. Questionnaires documented demographic data. We examined factors associated with subtype using multinomial logistic regression, adjusted for study, age, and sex. Results Among 140 individuals (125 women and 15 men), subtype A1 predominated (54, 39%), followed by C (46, 33%), D (25, 18%) and unique recombinant forms (URFs) (15, 11%). There was weak evidence to suggest different subtype frequencies by study (for example, 18% URFs in the Kisesa cohort versus 5–9% in the hospitality facility-worker cohorts; adjusted relative-risk ratio (aRR) = 2.35 [95% CI 0.59,9.32]; global p = 0.09). Compared to men, women were less likely to have subtype D versus A (aRR = 0.12 [95% CI 0.02,0.76]; global p = 0.05). There was a trend to suggest lower relative risk of subtype D compared to A with older age (aRR = 0.44 [95% CI 0.23,0.85] per 10 years; global p = 0.05). Conclusions We observed multiple subtypes, confirming the complex genetic diversity of HIV-1 strains circulating in northern Tanzania, and found some differences between cohorts and by age and sex. This has important implications for vaccine design and development, providing opportunity to determine vaccine efficacy in diverse HIV-1 strains.
Collapse
Affiliation(s)
- Harr F. Njai
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fiona M. Ewings
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eric Lyimo
- National Institute for Medical Research, Mwanza, Tanzania
| | - Vincent Foulongne
- Laboratoire de Virologie, University of Montpellier, Montpellier, France
| | | | - Aika Mongi
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | | | - Aura Andreasen
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Tony Ao
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Denna Michael
- National Institute for Medical Research, Mwanza, Tanzania
| | - Mark Urassa
- National Institute for Medical Research, Mwanza, Tanzania
| | - Jim Todd
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- National Institute for Medical Research, Mwanza, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Basia Zaba
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Richard Hayes
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Saidi H. Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Kiwelu IE, Novitsky V, Margolin L, Baca J, Manongi R, Sam N, Shao J, McLane MF, Kapiga SH, Essex M. Frequent intra-subtype recombination among HIV-1 circulating in Tanzania. PLoS One 2013; 8:e71131. [PMID: 23940702 PMCID: PMC3733632 DOI: 10.1371/journal.pone.0071131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022] Open
Abstract
The study estimated the prevalence of HIV-1 intra-subtype recombinant variants among female bar and hotel workers in Tanzania. While intra-subtype recombination occurs in HIV-1, it is generally underestimated. HIV-1 env gp120 V1-C5 quasispecies from 45 subjects were generated by single-genome amplification and sequencing (median (IQR) of 38 (28–50) sequences per subject). Recombination analysis was performed using seven methods implemented within the recombination detection program version 3, RDP3. HIV-1 sequences were considered recombinant if recombination signals were detected by at least three methods with p-values of ≤0.05 after Bonferroni correction for multiple comparisons. HIV-1 in 38 (84%) subjects showed evidence for intra-subtype recombination including 22 with HIV-1 subtype A1, 13 with HIV-1 subtype C, and 3 with HIV-1 subtype D. The distribution of intra-patient recombination breakpoints suggested ongoing recombination and showed selective enrichment of recombinant variants in 23 (60%) subjects. The number of subjects with evidence of intra-subtype recombination increased from 29 (69%) to 36 (82%) over one year of follow-up, although the increase did not reach statistical significance. Adjustment for intra-subtype recombination is important for the analysis of multiplicity of HIV infection. This is the first report of high prevalence of intra-subtype recombination in the HIV/AIDS epidemic in Tanzania, a region where multiple HIV-1 subtypes co-circulate. HIV-1 intra-subtype recombination increases viral diversity and presents additional challenges for HIV-1 vaccine design.
Collapse
Affiliation(s)
- Ireen E. Kiwelu
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vladimir Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren Margolin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jeannie Baca
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rachel Manongi
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
- Kilimanjaro Reproductive Health Program, Moshi, Tanzania
| | - Noel Sam
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
- Kilimanjaro Reproductive Health Program, Moshi, Tanzania
| | - John Shao
- Kilimanjaro Christian Medical Centre and College, Tumaini University, Moshi, Tanzania
| | - Mary F. McLane
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Saidi H. Kapiga
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Kilimanjaro Reproductive Health Program, Moshi, Tanzania
| | - M. Essex
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
At the end of 2011, about half of the 34.0 million [31.4-35.9 million] people living with HIV infection knew their HIV status. With large regional variations, an estimated 0.8% of all adults aged 15 to 49 years have HIV infection and HIV subtype diversity is increasing. Although HIV incidence has declined in 39 countries, it is stable or increasing in others. HIV prevalence continues to rise as antiretroviral treatment scale-up results in fewer HIV-related deaths while new infections continue to occur. Increased treatment uptake is likely reducing HIV transmission in countries with large mortality declines. Key populations, including sex workers, men who have sex with men, transgender people, people who inject drugs and young women in high prevalence settings require effective prevention programs urgently. Correcting mismatches in resource allocation and reducing community viral load will accelerate incidence declines and affect future epidemic trends, if concerted action is taken now.
Collapse
Affiliation(s)
- Catherine Hankins
- Department of Global Health, Academic Medical Centre, Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|