1
|
Ortiz Y, Lechuga V, Ortiz C, Palomino E, Franco E, Heredia N, García S. Exacerbation of virulence of multi-drug resistant Escherichia coli O104:H4 by subinhibitory concentrations of ampicillin. Res Microbiol 2025; 176:104266. [PMID: 39793844 DOI: 10.1016/j.resmic.2025.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Little is known about how subinhibitory concentrations of antibiotics to which bacteria are resistant affect bacterial virulence. In this study, the effect of subinhibitory concentrations of ampicillin on the virulence of E. coli O104:H4 was analyzed. Bacteria were pre-exposed to 0.1, 0.3, or 0.5 mg/mL of ampicillin in LB media and incubated for 4 h at 37 °C. Transformation capacity (using plasmids and PCR-amplified DNA sequences), swarming motility, biofilm production, curli formation, and virulence gene expression were determined. Ampicillin increased the transformation of E. coli O104:H4, with the highest number of transformants (>104 CFU/ng DNA; p ≤ 0.05) detected after exposure to DNA sequences of spectinomycin. In addition, bacteria pre-treated with 0.5 mg/mL of ampicillin exhibited higher swarming motility (7.6 cm, vs 6.0 cm for control; p ≤ 0.05) and biofilm production (up to 1.9-fold; p ≤ 0.05) when subsequently exposed to 0.1 and 0.3 mg/mL of antibiotic compared with the control. Also, significant overexpression of the virulence-related genes flhC (≤16.1-fold), fliA (≤22.1-fold), csgA (≤3.6-fold), csgD (≤9.1-fold), stx2a (≤32.2-fold), and the antibiotic resistance gene blaTEM-1 (≤5.5-fold) was observed. In conclusion, ampicillin-resistant E. coli O104:H4 increased the expression of its virulence factors when exposed to most subinhibitory concentrations of ampicillin analyzed in this study.
Collapse
Affiliation(s)
- Yaraymi Ortiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Vianey Lechuga
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Carolina Ortiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Eduardo Palomino
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Eduardo Franco
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Norma Heredia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Santos García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| |
Collapse
|
2
|
Kimura R, Kimura H, Shirai T, Hayashi Y, Sato-Fujimoto Y, Kamitani W, Ryo A, Tomita H. Molecular Evolutionary Analyses of Shiga toxin type 2 subunit A Gene in the Enterohemorrhagic Escherichia coli (EHEC). Microorganisms 2024; 12:1812. [PMID: 39338486 PMCID: PMC11434168 DOI: 10.3390/microorganisms12091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
To better understand the molecular genetics of the Shiga toxin type 2 subunit A gene (stx2A gene), we collected many subtypes of stx2A genes and performed detailed molecular evolutionary analyses of the gene. To achieve the aim of the study, we used several bioinformatics technologies, including time-scaled phylogenetic analyses, phylogenetic distance analyses, phylodynamics analyses, selective pressure analyses, and conformational epitope analyses. A time-scaled phylogeny showed that the common ancestor of the stx2A gene dated back to around 18,600 years ago. After that, the gene diverged into two major lineages (Lineage 1 and 2). Lineage 1 comprised the stx2a-2d subtypes, while Lineage 2 comprised the stx2e, 2g, 2h, and 2o subtypes. The evolutionary rates of the genes were relatively fast. Phylogenetic distances showed that the Lineage 2 strains had a wider genetic divergence than Lineage 1. Phylodynamics also indicated that the population size of the stx2A gene increased after the 1930s and spread globally. Moreover, negative selection sites were identified in the Stx2A proteins, and these sites were diffusely distributed throughout the protein. Two negative selection sites were located adjacent to an active site of the common Stx2A protein. Many conformational epitopes were also estimated in these proteins, while no conformational epitope was found adjacent to the active site. The results suggest that the stx2A gene has uniquely evolved and diverged over an extremely long time, resulting in many subtypes. The dominance of the strains belonging to Lineage 1 suggests that differences in virulence may be involved in the prosperity of the offspring. Furthermore, some subtypes of Stx2A proteins may be able to induce effective neutralizing antibodies against the proteins in humans.
Collapse
Affiliation(s)
- Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Hirokazu Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Gunma, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yuriko Hayashi
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (T.S.); (Y.H.)
| | - Yuka Sato-Fujimoto
- Faculty of Healthcare, Tokyo Healthcare University, Tokyo 141-8648, Japan;
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi-shi 371-8511, Gunma, Japan;
| | - Akihide Ryo
- Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan; (R.K.); (H.T.)
| |
Collapse
|
3
|
Mei Z, Wang F, Bhosle A, Dong D, Mehta R, Ghazi A, Zhang Y, Liu Y, Rinott E, Ma S, Rimm EB, Daviglus M, Willett WC, Knight R, Hu FB, Qi Q, Chan AT, Burk RD, Stampfer MJ, Shai I, Kaplan RC, Huttenhower C, Wang DD. Strain-specific gut microbial signatures in type 2 diabetes identified in a cross-cohort analysis of 8,117 metagenomes. Nat Med 2024; 30:2265-2276. [PMID: 38918632 PMCID: PMC11620793 DOI: 10.1038/s41591-024-03067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
The association of gut microbial features with type 2 diabetes (T2D) has been inconsistent due in part to the complexity of this disease and variation in study design. Even in cases in which individual microbial species have been associated with T2D, mechanisms have been unable to be attributed to these associations based on specific microbial strains. We conducted a comprehensive study of the T2D microbiome, analyzing 8,117 shotgun metagenomes from 10 cohorts of individuals with T2D, prediabetes, and normoglycemic status in the United States, Europe, Israel and China. Dysbiosis in 19 phylogenetically diverse species was associated with T2D (false discovery rate < 0.10), for example, enriched Clostridium bolteae and depleted Butyrivibrio crossotus. These microorganisms also contributed to community-level functional changes potentially underlying T2D pathogenesis, for example, perturbations in glucose metabolism. Our study identifies within-species phylogenetic diversity for strains of 27 species that explain inter-individual differences in T2D risk, such as Eubacterium rectale. In some cases, these were explained by strain-specific gene carriage, including loci involved in various mechanisms of horizontal gene transfer and novel biological processes underlying metabolic risk, for example, quorum sensing. In summary, our study provides robust cross-cohort microbial signatures in a strain-resolved manner and offers new mechanistic insights into T2D.
Collapse
Affiliation(s)
- Zhendong Mei
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fenglei Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amrisha Bhosle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Danyue Dong
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raaj Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Andrew Ghazi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuxi Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ehud Rinott
- Department of Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rob Knight
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qibin Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meir J Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Iris Shai
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculty of Health Sciences, The Health and Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Dong D Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Machado MAM, Chapartegui-González I, Castro VS, Figueiredo EEDS, Conte-Junior CA, Torres AG. Biofilm-producing Escherichia coli O104:H4 overcomes bile salts toxicity by expressing virulence and resistance proteins. Lett Appl Microbiol 2024; 77:ovae032. [PMID: 38573831 DOI: 10.1093/lambio/ovae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
We investigated bile salts' ability to induce phenotypic changes in biofilm production and protein expression of pathogenic Escherichia coli strains. For this purpose, 82 pathogenic E. coli strains isolated from humans (n = 70), and animals (n = 12), were examined for their ability to form biofilms in the presence or absence of bile salts. We also identified bacterial proteins expressed in response to bile salts using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-electrophoresis) and liquid chromatography-mass spectrometry (LC-MS/MS). Lastly, we evaluated the ability of these strains to adhere to Caco-2 epithelial cells in the presence of bile salts. Regarding biofilm formation, two strains isolated from an outbreak in Republic of Georgia in 2009 were the only ones that showed a high and moderate capacity to form biofilm in the presence of bile salts. Further, we observed that those isolates, when in the presence of bile salts, expressed different proteins identified as outer membrane proteins (i.e. OmpC), and resistance to adverse growth conditions (i.e. F0F1, HN-S, and L7/L12). We also found that these isolates exhibited high adhesion to epithelial cells in the presence of bile salts. Together, these results contribute to the phenotypic characterization of E. coli O104: H4 strains.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Food Science Program (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil
| | - Itziar Chapartegui-González
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Vinicius Silva Castro
- Animal Science Program (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
- Nutrition, Food and Metabolism Program (PPGNAM). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Animal Science Program (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
- Nutrition, Food and Metabolism Program (PPGNAM). Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso 78060-900, Brazil
| | - Carlos Adam Conte-Junior
- Food Science Program (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-909, RJ, Brazil
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| |
Collapse
|
5
|
Carter MQ, Quiñones B, Laniohan N, Carychao D, Pham A, He X, Cooley M. Pathogenicity assessment of Shiga toxin-producing Escherichia coli strains isolated from wild birds in a major agricultural region in California. Front Microbiol 2023; 14:1214081. [PMID: 37822735 PMCID: PMC10562709 DOI: 10.3389/fmicb.2023.1214081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one E. coli strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow (Corvus brachyrhynchos) strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird (Agelaius phoeniceus) strain RM14516 in phylogroup D with serotype O17:H18, were examined. Shiga toxin genes were identified in RM9088 (stx1a), RM10410 (stx1a + stx2d), and RM14516 (stx2a). Unlike STEC O157:H7 strain EDL933, none of the avian STEC strains harbored the pathogenicity islands OI-122, OI-57, and the locus of enterocyte effacement, therefore the type III secretion system biogenesis genes and related effector genes were absent in the three avian STEC genomes. Interestingly, all avian STEC strains exhibited greater (RM9088 and RM14516) or comparable (RM10410) cytotoxicity levels compared with EDL933. Comparative pathogenomic analyses revealed that RM9088 harbored numerous genes encoding toxins, toxins delivery systems, and adherence factors, including heat-labile enterotoxin, serine protease autotransporter toxin Pic, type VI secretion systems, protein adhesin Paa, fimbrial adhesin K88, and colonization factor antigen I. RM9088 also harbored a 36-Kb high pathogenicity island, which is related to iron acquisition and pathogenicity in Yersinia spp. Strain RM14516 carried an acid fitness island like the one in EDL933, containing a nine gene cluster involved in iron acquisition. Genes encoding extracellular serine protease EspP, subtilase cytotoxin, F1C fimbriae, and inverse autotransporter adhesin IatC were only detected in RM14516, and genes encoding serine protease autotransporter EspI and P fimbriae were only identified in RM10410. Although all curli genes were present in avian STEC strains, production of curli fimbriae was only detected for RM9088 and RM14516. Consistently, strong, moderate, and little biofilms were observed for RM9088, RM14516, and RM10410, respectively. Our study revealed novel combinations of virulence factors in two avian strains, which exhibited high level of cytotoxicity and strong biofilm formation. Comparative pathogenomics is powerful in assessing pathogenicity and health risk of STEC strains.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Nicole Laniohan
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Michael Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
6
|
Amemiya K, Rozak DA, Dankmeyer JL, Dorman WR, Marchand C, Fetterer DP, Worsham PL, Purcell BK. Shiga-Toxin-Producing Strains of Escherichia coli O104:H4 and a Strain of O157:H7, Which Can Cause Human Hemolytic Uremic Syndrome, Differ in Biofilm Formation in the Presence of CO 2 and in Their Ability to Grow in a Novel Cell Culture Medium. Microorganisms 2023; 11:1744. [PMID: 37512916 PMCID: PMC10384166 DOI: 10.3390/microorganisms11071744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
One pathogen that commonly causes gastrointestinal illnesses from the consumption of contaminated food is Escherichia coli O157:H7. In 2011 in Germany, however, there was a prominent outbreak of bloody diarrhea with a high incidence of hemolytic uremic syndrome (HUS) caused by an atypical, more virulent E. coli O104:H4 strain. To facilitate the identification of this lesser-known, atypical E. coli O104:H4 strain, we wanted to identify phenotypic differences between it and a strain of O157:H7 in different media and culture conditions. We found that E. coli O104:H4 strains produced considerably more biofilm than the strain of O157:H7 at 37 °C (p = 0.0470-0.0182) Biofilm production was significantly enhanced by the presence of 5% CO2 (p = 0.0348-0.0320). In our study on the innate immune response to the E. coli strains, we used HEK293 cells that express Toll-like receptors (TLRs) 2 or 4. We found that E. coli O104:H4 strains had the ability to grow in a novel HEK293 cell culture medium, while the E. coli O157:H7 strain could not. Thus, we uncovered previously unknown phenotypic properties of E. coli O104:H4 to further differentiate this pathogen from E. coli O157:H7.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David A Rozak
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - William R Dorman
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles Marchand
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Brett K Purcell
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Department of Medicine, University of Florida, Orlando, FL 32816, USA
| |
Collapse
|
7
|
Fagerquist CK, Shi Y, Dodd CE. Toxin and phage production from pathogenic E. coli by antibiotic induction analyzed by chemical reduction, MALDI-TOF-TOF mass spectrometry and top-down proteomic analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9505. [PMID: 36905351 DOI: 10.1002/rcm.9505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Shiga toxin-producing Escherichia coli (STEC) are an ongoing threat to public health and agriculture. Our laboratory has developed a rapid method for identification of Shiga toxin (Stx), bacteriophage, and host proteins produced from STEC. We demonstrate this technique on two genomically sequenced STEC O145:H28 strains linked to two major outbreaks of foodborne illness occurring in 2007 (Belgium) and 2010 (Arizona). METHODS Our approach was to induce expression of stx, prophage, and host genes by antibiotic exposure, chemically reduce samples, and identify protein biomarkers from unfractionated samples using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, tandem mass spectrometry (MS/MS), and post-source decay (PSD). The protein mass and prominent fragment ions were used to identify protein sequences using top-down proteomic software developed in-house. Prominent fragment ions are the result of polypeptide backbone cleavage resulting from the aspartic acid effect fragmentation mechanism. RESULTS The B-subunit of Stx and acid-stress proteins HdeA and HdeB were identified in both STEC strains in their intramolecular disulfide bond-intact and reduced states. In addition, two cysteine-containing phage tail proteins were detected and identified from the Arizona strain but only under reducing conditions, which suggests that bacteriophage complexes are bound by intermolecular disulfide bonds. An acyl carrier protein (ACP) and a phosphocarrier protein were also identified from the Belgium strain. ACP was post-translationally modified with attachment of a phosphopantetheine linker at residue S36. The abundance of ACP (plus linker) was significantly increased on chemical reduction, suggesting the release of fatty acids bound to the ACP + linker at a thioester bond. MS/MS-PSD revealed dissociative loss of the linker from the precursor ion as well as fragment ions with and without the attached linker consistent with its attachment at S36. CONCLUSIONS This study demonstrates the advantages of chemical reduction in facilitating the detection and top-down identification of protein biomarkers of pathogenic bacteria.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- US Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - Yanlin Shi
- US Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - Claire E Dodd
- US Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| |
Collapse
|
8
|
Kislichkina AA, Kartsev NN, Skryabin YP, Sizova AA, Kanashenko ME, Teymurazov MG, Kuzina ES, Bogun AG, Fursova NK, Svetoch EA, Dyatlov IA. Genomic Analysis of a Hybrid Enteroaggregative Hemorrhagic Escherichia coli O181:H4 Strain Causing Colitis with Hemolytic-Uremic Syndrome. Antibiotics (Basel) 2022; 11:antibiotics11101416. [PMID: 36290074 PMCID: PMC9598891 DOI: 10.3390/antibiotics11101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid diarrheagenic E. coli strains combining genetic markers belonging to different pathotypes have emerged worldwide and have been reported as a public health concern. The most well-known hybrid strain of enteroaggregative hemorrhagic E. coli is E. coli O104:H4 strain, which was an agent of a serious outbreak of acute gastroenteritis and hemolytic uremic syndrome (HUS) in Germany in 2011. A case of intestinal infection with HUS in St. Petersburg (Russian Federation) occurred in July 2018. E. coli strain SCPM-O-B-9427 was obtained from the rectal swab of the patient with HUS. It was determined as O181:H4-, stx2-, and aggR-positive and belonged to the phylogenetic group B2. The complete genome assembly of the strain SCPM-O-B-9427 contained one chromosome and five plasmids, including the plasmid coding an aggregative adherence fimbriae I. MLST analysis showed that the strain SCPM-O-B-9427 belonged to ST678, and like E. coli O104:H4 strains, 2011C-3493 caused the German outbreak in 2011, and 2009EL-2050 was isolated in the Republic of Georgia in 2009. Comparison of three strains showed almost the same structure of their chromosomes: the plasmids pAA and the stx2a phages are very similar, but they have distinct sets of the plasmids and some unique regions in the chromosomes.
Collapse
Affiliation(s)
- Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Correspondence:
| | - Nikolay N. Kartsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Yury P. Skryabin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Maria E. Kanashenko
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Marat G. Teymurazov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Alexander G. Bogun
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Edward A. Svetoch
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Ivan A. Dyatlov
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| |
Collapse
|
9
|
Molecular Characterization of pBOq-IncQ and pBOq-95LK Plasmids of Escherichia coli BOq 01, a New Isolated Strain from Poultry Farming, Involved in Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10081509. [PMID: 35893567 PMCID: PMC9331969 DOI: 10.3390/microorganisms10081509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
The increase in antimicrobial resistance has raised questions about how to use these drugs safely, especially in veterinary medicine, animal nutrition, and agriculture. Escherichia coli is an important human and animal pathogen that frequently contains plasmids carrying antibiotic resistance genes. Extra chromosomal elements are required for various functions or conditions in microorganisms. Several phage-like plasmids have been identified, which are important in antibiotic resistance. In this work, the molecular characterization of the pBOq-IncQ (4.5 kb) and pBOq-95LK (95 kb) plasmids found in the E. coli strain BOq 01, a multidrug resistant bacteria isolated from a poultry farm, are considered. Plasmid pBOq-IncQ belongs to the incQ incompatibility plasmid family and is involved in sulfonamide resistance. Plasmid pBOq-95LK is a lytic phage-like plasmid that is involved in the lysis of the E. coli BOq 01 strain and carries a bleomycin resistance gene and a strain cured of this plasmid shows bleomycin sensitivity. Induction of the lytic cycle indicates that this phage-like plasmid is an active phage. This type of plasmid has been reported to acquire genes such as mcr-1, which codes for colistin resistance and bacterial persistence and is a significant public health threat. A genome comparison, a pangenomic and phylogenomic analysis with other phage-like plasmids reported in the literature were performed to understand better the evolution of this kind of plasmid in bacteria and its potential importance in antibiotic resistance.
Collapse
|
10
|
Sim EM, Kim R, Gall M, Arnott A, Howard P, Valcanis M, Howden BP, Sintchenko V. Added Value of Genomic Surveillance of Virulence Factors in Shiga Toxin-Producing Escherichia coli in New South Wales, Australia. Front Microbiol 2022; 12:713724. [PMID: 35002991 PMCID: PMC8733641 DOI: 10.3389/fmicb.2021.713724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
The disease caused by Shiga toxin-producing Escherichia coli (STEC) remains a significant public health challenge globally, but the incidence of human STEC infections in Australia remains relatively low. This study examined the virulence characteristics and diversity of STEC isolates in the state of New South Wales between December 2017 and May 2020. Utilisation of both whole and core genome multi-locus sequence typing (MLST) allowed for the inference of genomic diversity and detection of isolates that were likely to be epidemiologically linked. The most common STEC serotype and stx subtype detected in this study were O157:H7 and stx1a, respectively. A genomic scan of other virulence factors present in STEC suggested interplay between iron uptake system and virulence factors that mediate either iron release or countermeasures against host defence that could result in a reduction of stx1a expression. This reduced expression of the dominant stx genotype could contribute to the reduced incidence of STEC-related illness in Australia. Genomic surveillance of STEC becomes an important part of public health response and ongoing interrogation of virulence factors in STEC offers additional insights for the public health risk assessment.
Collapse
Affiliation(s)
- Eby M Sim
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Ryan Kim
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Mailie Gall
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Alicia Arnott
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Peter Howard
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Vitali Sintchenko
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
11
|
Fagerquist CK, Dodd CE. Top-down proteomic identification of plasmid and host proteins produced by pathogenic Escherichia coli using MALDI-TOF-TOF tandem mass spectrometry. PLoS One 2021; 16:e0260650. [PMID: 34843608 PMCID: PMC8629258 DOI: 10.1371/journal.pone.0260650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Fourteen proteins produced by three pathogenic Escherichia coli strains were identified using antibiotic induction, MALDI-TOF-TOF tandem mass spectrometry (MS/MS) and top-down proteomic analysis using software developed in-house. Host proteins as well as plasmid proteins were identified. Mature, intact protein ions were fragmented by post-source decay (PSD), and prominent fragment ions resulted from the aspartic acid effect fragmentation mechanism wherein polypeptide backbone cleavage (PBC) occurs on the C-terminal side of aspartic acid (D), glutamic acid (E) and asparagine (N) residues. These highly specific MS/MS-PSD fragment ions were compared to b- and y-type fragment ions on the C-terminal side of D-, E- and N-residues of in silico protein sequences derived from whole genome sequencing. Nine proteins were found to be post-translationally modified with either removal of an N-terminal methionine or a signal peptide. The protein sequence truncation algorithm of our software correctly identified all full and truncated protein sequences. Truncated sequences were compared to those predicted by SignalP. Nearly complete concurrence was obtained except for one protein where SignalP mis-identified the cleavage site by one residue. Two proteins had intramolecular disulfide bonds that were inferred by the absence of PBC on the C-terminal side of a D-residue located within the disulfide loop. These results demonstrate the utility of MALDI-TOF-TOF for identification of full and truncated bacterial proteins.
Collapse
Affiliation(s)
- Clifton K. Fagerquist
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Claire E. Dodd
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| |
Collapse
|
12
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
13
|
Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 2021; 22:366. [PMID: 34011288 PMCID: PMC8136144 DOI: 10.1186/s12864-021-07685-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. Results We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis–lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. Conclusions This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07685-0.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
14
|
Llarena AK, Aspholm M, O'Sullivan K, Wêgrzyn G, Lindbäck T. Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Front Microbiol 2021; 12:640945. [PMID: 33868197 PMCID: PMC8044961 DOI: 10.3389/fmicb.2021.640945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Grzegorz Wêgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
15
|
Harrand AS, Guariglia-Oropeza V, Skeens J, Kent D, Wiedmann M. Nature versus Nurture: Assessing the Impact of Strain Diversity and Pregrowth Conditions on Salmonella enterica, Escherichia coli, and Listeria Species Growth and Survival on Selected Produce Items. Appl Environ Microbiol 2021; 87:e01925-20. [PMID: 33397695 PMCID: PMC8105001 DOI: 10.1128/aem.01925-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Inoculation studies are important when assessing microbial survival and growth in food products. These studies typically involve the pregrowth of multiple strains of a target pathogen under a single condition; this emphasizes strain diversity. To gain a better understanding of the impacts of strain diversity ("nature") and pregrowth conditions ("nurture") on subsequent bacterial growth in foods, we assessed the growth and survival of Salmonella enterica (n = 5), Escherichia coli (n = 6), and Listeria (n = 5) inoculated onto tomatoes, precut lettuce, and cantaloupe rind, respectively. Pregrowth conditions included (i) 37°C to stationary phase (baseline), (ii) low pH, (iii) high salt, (iv) reduced water activity, (v) log phase, (vi) minimal medium, and (vii) 21°C. Inoculated tomatoes were incubated at 21°C; lettuce and cantaloupe were incubated at 7°C. Bacterial counts were assessed over three phases, including initial reduction (phase 1), change in bacterial numbers over the first 24 h of incubation (phase 2), and change over the 7-day incubation (phase 3). E. coli showed overall decline in counts (<1 log) over the 7-day period, except for a <1-log increase after pregrowth in high salt and to mid-log phase. In contrast, S. enterica and Listeria showed regrowth after an initial reduction. Pregrowth conditions had a substantial and significant effect on all three phases of S. enterica and E. coli population dynamics on inoculated produce, whereas strain did not show a significant effect. For Listeria, both pregrowth conditions and strain affected changes in phase 2 but not phases 1 and 3.IMPORTANCE Our findings suggest that inclusion of multiple pregrowth conditions in inoculation studies can best capture the range of growth and survival patterns expected for Salmonella enterica and Escherichia coli present on produce. This is particularly important for fresh and fresh-cut produce, where stress conditions encountered by pathogens prior to contamination can vary widely, making selection of a typical pregrowth condition virtually impossible. Pathogen growth and survival data generated using multiple pregrowth conditions will allow for more robust microbial risk assessments that account more accurately for uncertainty.
Collapse
Affiliation(s)
| | | | - Jordan Skeens
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - David Kent
- Department of Statistical Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. Int J Food Microbiol 2020; 339:109029. [PMID: 33360585 DOI: 10.1016/j.ijfoodmicro.2020.109029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is a major serotype associated with severe human disease. Production of Shiga toxins (Stxs), especially Stx2a, is thought to be correlated with STEC virulence. Since stx genes are located in prophages genomes, induction of prophages is required for effective Stxs production. Here, we investigated the production of Stxs in 12 environmental STEC O145:H28 strains under stresses STEC encounter in natural habitats and performed comparative analysis with two O145:H28 clinical strains, one linked to a 2010 U.S. lettuce-associated outbreak (RM13514) and the other linked to a 2007 Belgium ice cream-associated outbreak (RM13516). Similar to the outbreak strains, all environmental strains belong to Sequence Type (ST)-78 using the EcMLST typing scheme. Although all Stx1a-prophages were grouped together, variations in Stx1a production were observed prior to or following the inductions. Among all stx2a positive environmental strains, only the Stx2a-prophage in cattle isolate RM9154-C1 was clustered with the Stx2a-prophages in RM13514, the Stx2a-phage induced from a STEC O104:H4 strain linked to the 2011 outbreak of enterohemorrhagic infection in Germany, and the Stx2a-prophage in STEC O157:H7 strain EDL933, a prototype of enterohemorrhagic E. coli. Furthermore, the Stx2a-prophage in RM9154-C1 shared the same chromosomal insertion site and carried the same antiterminator Q gene and the late promoter PR' as the Stx2a-prophage in RM13514. Following mitomycin C or enrofloxacin treatment, the production of Stx2a in RM9154-C1 was the highest among all environmental strains tested. In contrast, following acid challenge and recovery, the production of Stx2a in RM9154-C1 was the lowest among all the environmental strains tested, at a level comparable to the clinical strains. A significant increase in Stx2a production was detected in all strains when exposed to H2O2, although the induction fold was much lower than those by other inducers. This low-efficiency induction of Stx-prophages by H2O2, a natural inducer of Stx-prophages, supports the hypothesis of bacterial altruism in controlling Stxs production, a strategy that assures the survival of the STEC population as a whole by sacrificing a small fraction of cells for Stxs production and release. Differential induction of Stxs among strains carrying nearly identical Stx-prophages suggests a role of host bacteria in regulating Stxs production. Our study revealed diverse Stx-prophages in STEC O145:H28 strains that were genotypically indistinguishable. Identification of a cattle isolate harboring a Stx2a-prophage associated with high virulence supports the premise that cattle, a natural reservoir of STEC, serve as a source of hypervirulent STEC strains.
Collapse
|
17
|
Sánchez-Osuna M, Cortés P, Llagostera M, Barbé J, Erill I. Exploration into the origins and mobilization of di-hydrofolate reductase genes and the emergence of clinical resistance to trimethoprim. Microb Genom 2020; 6:mgen000440. [PMID: 32969787 PMCID: PMC7725336 DOI: 10.1099/mgen.0.000440] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/08/2020] [Indexed: 01/23/2023] Open
Abstract
Trimethoprim is a synthetic antibacterial agent that targets folate biosynthesis by competitively binding to the di-hydrofolate reductase enzyme (DHFR). Trimethoprim is often administered synergistically with sulfonamide, another chemotherapeutic agent targeting the di-hydropteroate synthase (DHPS) enzyme in the same pathway. Clinical resistance to both drugs is widespread and mediated by enzyme variants capable of performing their biological function without binding to these drugs. These mutant enzymes were assumed to have arisen after the discovery of these synthetic drugs, but recent work has shown that genes conferring resistance to sulfonamide were present in the bacterial pangenome millions of years ago. Here, we apply phylogenetics and comparative genomics methods to study the largest family of mobile trimethoprim-resistance genes (dfrA). We show that most of the dfrA genes identified to date map to two large clades that likely arose from independent mobilization events. In contrast to sulfonamide resistance (sul) genes, we find evidence of recurrent mobilization in dfrA genes. Phylogenetic evidence allows us to identify novel dfrA genes in the emerging pathogen Acinetobacter baumannii, and we confirm their resistance phenotype in vitro. We also identify a cluster of dfrA homologues in cryptic plasmid and phage genomes, but we show that these enzymes do not confer resistance to trimethoprim. Our methods also allow us to pinpoint the chromosomal origin of previously reported dfrA genes, and we show that many of these ancient chromosomal genes also confer resistance to trimethoprim. Our work reveals that trimethoprim resistance predated the clinical use of this chemotherapeutic agent, but that novel mutations have likely also arisen and become mobilized following its widespread use within and outside the clinic. Hence, this work confirms that resistance to novel drugs may already be present in the bacterial pangenome, and stresses the importance of rapid mobilization as a fundamental element in the emergence and global spread of resistance determinants.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Montserrat Llagostera
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
18
|
van Overbeek LS, Wichers JH, van Amerongen A, van Roermund HJW, van der Zouwen P, Willemsen PTJ. Circulation of Shiga Toxin-Producing Escherichia coli Phylogenetic Group B1 Strains Between Calve Stable Manure and Pasture Land With Grazing Heifers. Front Microbiol 2020; 11:1355. [PMID: 32714297 PMCID: PMC7340143 DOI: 10.3389/fmicb.2020.01355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli strains carrying Shiga toxins 1 and 2 (stx1 and stx2), intimin (eae), and hemolysin (ehxA) production genes were found in grass shoot, rhizosphere soil, and stable manure samples from a small-scale cattle farm located at the center of Netherlands, using cultivation-dependent and -independent microbiological detection techniques. Pasture land with grazing heifers in the first year of sampling in 2014 and without grazing cattle in 2015 was physically separated from the stable that housed rose calves during both years. Manure from the stable was applied to pasture via injection into soil once per year in early spring. Among a variety of 35 phylogenetic distinctly related E. coli strains, one large group consisting of 21 closely resembling E. coli O150:H2 (18), O98:H21 (2), and O84:H2 (1) strains, all belonging to phylogenetic group B1 and carrying all screened virulence traits, was found present on grass shoots (10), rhizosphere soil (3), and stable manure (8) in 2014, but not anymore in 2015 when grazing heifers were absent. Presence and absence of these strains, obtained via enrichments, were confirmed via molecular detection using PCR-NALFIA in all ecosystems in both years. We propose that this group of Shiga toxin-producing E. coli phylogenetic group B1 strains was originally introduced via stable manure injection into the pasture. Upon grazing, these potential pathogens proliferated in the intestinal track systems of the heifers resulting in defecation with higher loads of the STEC strain onto the grass cover. The STEC strain was further smeared over the field via the hooves of the heifers resulting in augmentation of the potential pathogen in the pasture in 2014, whereas in 2015, in the absence of heifers, no augmentation occurred and only a more diverse group of potentially mild virulent E. coli phylogenetic group A and B1 strains, indigenous to pasture plants, remained present. Via this model, it was postulated that human pathogens can circulate between plants and farm animals, using the plant as an alternative ecosystem. These data indicate that grazed pasture must be considered as a potential carrier of human pathogenic E. coli strains and possibly also of other pathogens.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Jan H Wichers
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Aart van Amerongen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | | | | | - Peter T J Willemsen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| |
Collapse
|
19
|
Tang L, Zhou YJ, Zhu S, Liang GD, Zhuang H, Zhao MF, Chang XY, Li HN, Liu Z, Guo ZR, Liu WQ, He X, Wang CX, Zhao DD, Li JJ, Mu XQ, Yao BQ, Li X, Li YG, Duo LB, Wang L, Johnston RN, Zhou J, Zhao JB, Liu GR, Liu SL. E. coli diversity: low in colorectal cancer. BMC Med Genomics 2020; 13:59. [PMID: 32252754 PMCID: PMC7133007 DOI: 10.1186/s12920-020-0704-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Escherichia coli are mostly commensals but also contain pathogenic lineages. It is largely unclear whether the commensal E. coli as the potential origins of pathogenic lineages may consist of monophyletic or polyphyletic populations, elucidation of which is expected to lead to novel insights into the associations of E. coli diversity with human health and diseases. METHODS Using genomic sequencing and pulsed field gel electrophoresis (PFGE) techniques, we analyzed E. coli from the intestinal microbiota of three groups of healthy individuals, including preschool children, university students, and seniors of a longevity village, as well as colorectal cancer (CRC) patients, to probe the commensal E. coli populations for their diversity. RESULTS We delineated the 2280 fresh E. coli isolates from 185 subjects into distinct genome types (genotypes) by PFGE. The genomic diversity of the sampled E. coli populations was so high that a given subject may have multiple genotypes of E. coli, with the general diversity within a host going up from preschool children through university students to seniors. Compared to the healthy subjects, the CRC patients had the lowest diversity level among their E. coli isolates. Notably, E. coli isolates from CRC patients could suppress the growth of E. coli bacteria isolated from healthy controls under nutrient-limited culture conditions. CONCLUSIONS The coexistence of multiple E. coli lineages in a host may help create and maintain a microbial environment that is beneficial to the host. As such, the low diversity of E. coli bacteria may be associated with unhealthy microenvironment in the intestine and hence facilitate the pathogenesis of diseases such as CRC.
Collapse
Affiliation(s)
- Le Tang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Departments of Ecosystems and Public Health, University of Calgary, Calgary, Canada
| | - Yu-Jie Zhou
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Present address: Department of Immunology, Capital Medical University, Beijing, China
| | - Songling Zhu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Gong-Da Liang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - He Zhuang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Man-Fei Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Xiao-Yun Chang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hai-Ning Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Present address: Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Rong Guo
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Wei-Qiao Liu
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Present address: Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Xiaoyan He
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Chun-Xiao Wang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Dan-Dan Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Jia-Jing Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xiao-Qin Mu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bing-Qing Yao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xia Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yong-Guo Li
- Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li-Bo Duo
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Wang
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Randal N Johnston
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Jin Zhou
- Department of Hematology of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing-Bo Zhao
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Gui-Rong Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China.
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
- Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo CC, Chain PSG. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10:1723. [PMID: 32015354 PMCID: PMC6997174 DOI: 10.1038/s41598-020-58356-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
There is growing interest in reconstructing phylogenies from the copious amounts of genome sequencing projects that target related viral, bacterial or eukaryotic organisms. To facilitate the construction of standardized and robust phylogenies for disparate types of projects, we have developed a complete bioinformatic workflow, with a web-based component to perform phylogenetic and molecular evolutionary (PhaME) analysis from sequencing reads, draft assemblies or completed genomes of closely related organisms. Furthermore, the ability to incorporate raw data, including some metagenomic samples containing a target organism (e.g. from clinical samples with suspected infectious agents), shows promise for the rapid phylogenetic characterization of organisms within complex samples without the need for prior assembly.
Collapse
Affiliation(s)
- Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA.
| | - Sanaa A Ahmed
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Karen W Davenport
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Mark C Flynn
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Chien-Chi Lo
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA.
| |
Collapse
|
21
|
Yang X, Bai X, Zhang J, Sun H, Fu S, Fan R, He X, Scheutz F, Matussek A, Xiong Y. Escherichia coli strains producing a novel Shiga toxin 2 subtype circulate in China. Int J Med Microbiol 2019; 310:151377. [PMID: 31757694 DOI: 10.1016/j.ijmm.2019.151377] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin (Stx) is the key virulence factor in Shiga toxin producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with life-threatening complications. Stx comprises two toxin types, Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, which are variable in sequences, toxicity and host specificity. Here, we report the identification of a novel Stx2 subtype, designated Stx2k, in E. coli strains widely detected from diarrheal patients, animals, and raw meats in China over time. Stx2k exhibits varied cytotoxicity in vitro among individual strains. The Stx2k converting prophages displayed considerable heterogeneity in terms of insertion site, genetic content and structure. Whole genome analysis revealed that the stx2k-containing strains were genetically heterogeneous with diverse serotypes, sequence types, and virulence gene profiles. The nine stx2k-containing strains formed two major phylogenetic clusters closely with strains belonging to STEC, enterotoxigenic E. coli (ETEC), and STEC/ETEC hybrid. One stx2k-containing strain harbored one plasmid-encoded heat-stable enterotoxin sta gene and two identical copies of chromosome-encoded stb gene, exhibiting STEC/ETEC hybrid pathotype. Our finding enlarges the pool of Stx2 subtypes and highlights the extraordinary genomic plasticity of STEC strains. Given the wide distribution of the Stx2k-producing strains in diverse sources and their pathogenic potential, Stx2k should be taken into account in epidemiological surveillance of STEC infections and clinical diagnosis.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Ji Zhang
- EpiLab, New Zealand Food Safety Science & Research Centre, School of Veterinary Science, Massey University, New Zealand
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shanshan Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA, USA
| | - Flemming Scheutz
- The International Centre for Reference and Research on Escherichia and Klebsiella, Unit of Foodborne Bacteria and Typing, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
QseC Signaling in the Outbreak O104:H4 Escherichia coli Strain Combines Multiple Factors during Infection. J Bacteriol 2019; 201:JB.00203-19. [PMID: 31235511 DOI: 10.1128/jb.00203-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) from the O104:H4 specific serotype caused a large outbreak of bloody diarrhea with some complicated cases of hemolytic-uremic syndrome (HUS) in Europe in 2011. The outbreak strain consisted in an EAEC capable to produce the Shiga toxin (Stx) subtype 2a, a characteristic from enterohemorrhagic E. coli QseBC two-component system detects AI-3/Epi/NE and mediates the chemical signaling between pathogen and mammalian host. This system coordinates a cascade of virulence genes expression in important human enteropathogens. The blocking of QseC of EAEC C227-11 (Stx+) strain by N-phenyl-4-{[(phenylamino) thioxomethyl]amino}-benzenesulfonamide (also known as LED209) in vivo demonstrated a lower efficiency of colonization. The periplasmic protein VisP, which is related to survival mechanisms in a colitis model of infection, bacterial membrane maintenance, and stress resistance, here presented high levels of expression during the initial infection within the host. Under acid stress conditions, visP expression levels were differentiated in an Stx-dependent way. Together, these results emphasize the important role of VisP and the histidine kinase sensor QseC in the C227-11 (Stx+) outbreak strain for the establishment of the infectious niche process in the C57BL/6 mouse model and of LED209 as a promising antivirulence drug strategy against these enteric pathogens.IMPORTANCE EAEC is a remarkable etiologic agent of acute and persistent diarrhea worldwide. The isolates harbor specific subsets of virulence genes and their pathogenesis needs to be better understood. Chemical signaling via histidine kinase sensor QseC has been shown as a potential target to elucidate the orchestration of the regulatory cascade of virulence factors.
Collapse
|
23
|
Wang H, Jayaraman A, Menon R, Gejji V, Karthikeyan R, Fernando S. A non-beta-lactam antibiotic inhibitor for enterohemorrhagic Escherichia coli O104:H4. J Mol Med (Berl) 2019; 97:1285-1297. [PMID: 31254005 DOI: 10.1007/s00109-019-01803-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 01/29/2023]
Abstract
The overuse of antibiotics has caused an increased prevalence of drug-resistant bacteria. Bacterial resistance in E. coli is regulated via production of β-lactam-hydrolyzing β-lactamases enzymes. Escherichia coli O104: H4 is a multi-drug resistant strain known to resist β-lactam as well as several other antibiotics. Here, we report a molecular dynamic simulation-combined docking approach to identify, screen, and verify active pharmacophores against enterohemorrhagic Escherichia coli (EHEC). Experimental studies revealed a boronic acid cyclic monomer (BACM), a non-β-lactam compound, to inhibit the growth of E. coli O104: H4. In vitro Kirby Bauer disk diffusion susceptibility testing coupled interaction analysis suggests BACM inhibits E. coli O104:H4 growth by not only inhibiting the β-lactamase pathway but also via direct inhibition of the penicillin-binding protein. These results suggest that BACM could be used as a lead compound to develop potent drugs targeting beta-lactam resistant Gram-negative bacterial strains. KEY MESSAGES: • An in silico approach was reported to identify pharmacophores against E. coli O104: H4. • In vitro studies revealed a non-β-lactam compound to inhibit the growth of E. coli O104: H4. • This non-β-lactam compound could be used as a lead compound for targeting beta-lactam strains.
Collapse
Affiliation(s)
- Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Rani Menon
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Varun Gejji
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA
| | | | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
24
|
Harrand AS, Kovac J, Carroll LM, Guariglia-Oropeza V, Kent DJ, Wiedmann M. Assembly and Characterization of a Pathogen Strain Collection for Produce Safety Applications: Pre-growth Conditions Have a Larger Effect on Peroxyacetic Acid Tolerance Than Strain Diversity. Front Microbiol 2019; 10:1223. [PMID: 31231329 PMCID: PMC6558390 DOI: 10.3389/fmicb.2019.01223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Effective control of foodborne pathogens on produce requires science-based validation of interventions and control strategies, which typically involves challenge studies with a set of bacterial strains representing the target pathogens or appropriate surrogates. In order to facilitate these types of studies, a produce-relevant strain collection was assembled to represent strains from produce outbreaks or pre-harvest environments, including Listeria monocytogenes (n = 11), Salmonella enterica (n = 23), shiga-toxin producing Escherichia coli (STEC) (n = 13), and possible surrogate organisms (n = 8); all strains were characterized by whole genome sequencing (WGS). Strain diversity was assured by including the 10 most common S. enterica serotypes, L. monocytogenes lineages I-IV, and E. coli O157 as well as selected "non-O157" STEC serotypes. As it has previously been shown that strains and genetic lineages of a pathogen may differ in their ability to survive different stress conditions, a subset of representative strains for each "pathogen group" (e.g., Salmonella, STEC) was selected and assessed for survival of exposure to peroxyacetic acid (PAA) using strains pre-grown under different conditions including (i) low pH, (ii) high salt, (iii) reduced water activity, (iv) different growth phases, (v) minimal medium, and (vi) different temperatures (21°C, 37°C). The results showed that across the three pathogen groups pre-growth conditions had a larger effect on bacterial reduction after PAA exposure as compared to strain diversity. Interestingly, bacteria exposed to salt stress (4.5% NaCl) consistently showed the least reduction after exposure to PAA; however, for STEC, strains pre-grown at 21°C were as tolerant to PAA exposure as strains pre-grown under salt stress. Overall, our data suggests that challenge studies conducted with multi-strain cocktails (pre-grown under a single specific condition) may not necessarily reflect the relevant phenotypic range needed to appropriately assess different intervention strategies.
Collapse
Affiliation(s)
| | - Jasna Kovac
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Laura M. Carroll
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | | - David J. Kent
- Department of Statistical Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
25
|
Lang C, Fruth A, Holland G, Laue M, Mühlen S, Dersch P, Flieger A. Novel type of pilus associated with a Shiga-toxigenic E. coli hybrid pathovar conveys aggregative adherence and bacterial virulence. Emerg Microbes Infect 2018; 7:203. [PMID: 30514915 PMCID: PMC6279748 DOI: 10.1038/s41426-018-0209-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/31/2023]
Abstract
A large German outbreak in 2011 was caused by a locus of enterocyte effacement (LEE)-negative enterohemorrhagic E. coli (EHEC) strain of the serotype O104:H4. This strain harbors markers that are characteristic of both EHEC and enteroaggregative E. coli (EAEC), including aggregative adhesion fimbriae (AAF) genes. Such rare EHEC/EAEC hybrids are highly pathogenic due to their possession of a combination of genes promoting severe toxicity and aggregative adhesion. We previously identified novel EHEC/EAEC hybrids and observed that one strain exhibited aggregative adherence but had no AAF genes. In this study, a genome sequence analysis showed that this strain belongs to the genoserotype O23:H8, MLST ST26, and harbors a 5.2 Mb chromosome and three plasmids. One plasmid carries some EAEC marker genes, such as aatA and genes with limited protein homology (11–61%) to those encoding the bundle-forming pilus (BFP) of enteropathogenic E. coli. Due to significant protein homology distance to known pili, we designated these as aggregate-forming pili (AFP)-encoding genes and the respective plasmid as pAFP. The afp operon was arranged similarly to the operon of BFP genes but contained an additional gene, afpA2, which is homologous to afpA. The deletion of the afp operon, afpA, or a nearby gene (afpR) encoding an AraC-like regulator, but not afpA2, led to a loss of pilin production, piliation, bacterial autoaggregation, and importantly, a >80% reduction in adhesion and cytotoxicity toward epithelial cells. Gene sets similar to the afp operon were identified in a variety of aatA-positive but AAF-negative intestinal pathogenic E. coli. In summary, we characterized widely distributed and novel fimbriae that are essential for aggregative adherence and cytotoxicity in a LEE-negative Shiga-toxigenic hybrid.
Collapse
Affiliation(s)
- Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institut, Wernigerode, Saxony-Anhalt, 38855, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institut, Wernigerode, Saxony-Anhalt, 38855, Germany
| | - Gudrun Holland
- Division of Advanced Light and Electron Microscopy, Robert Koch Institut, Berlin, 13353, Germany
| | - Michael Laue
- Division of Advanced Light and Electron Microscopy, Robert Koch Institut, Berlin, 13353, Germany
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, 38124, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, 38124, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institut, Wernigerode, Saxony-Anhalt, 38855, Germany.
| |
Collapse
|
26
|
Berger M, Berger P, Denamur E, Mellmann A, Dobrindt U. Core elements of the vegetative replication control of the Inc1 plasmid pO104_90 of Escherichia coli O104:H4 also regulate its transfer frequency. Int J Med Microbiol 2018; 308:962-968. [DOI: 10.1016/j.ijmm.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023] Open
|
27
|
Baker KS, Dallman TJ, Thomson NR, Jenkins C. An outbreak of a rare Shiga-toxin-producing Escherichia coli serotype (O117:H7) among men who have sex with men. Microb Genom 2018; 4. [PMID: 29781799 PMCID: PMC6113874 DOI: 10.1099/mgen.0.000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sexually transmissible enteric infections (STEIs) are commonly associated with transmission among men who have sex with men (MSM). In the past decade, the UK has experienced multiple parallel STEI emergences in MSM caused by a range of bacterial species of the genus Shigella, and an outbreak of an uncommon serotype (O117 : H7) of Shiga-toxin-producing Escherichia coli (STEC). Here, we used microbial genomics on 6 outbreak and 30 sporadic STEC O117 : H7 isolates to explore the origins and pathogenic drivers of the STEC O117 : H7 emergence in MSM. Using genomic epidemiology, we found that the STEC O117 : H7 outbreak lineage was potentially imported from Latin America and likely continues to circulate both in the UK MSM population and in Latin America. We found genomic relationships consistent with existing symptomatic evidence for chronic infection with this STEC serotype. Comparative genomic analysis indicated the existence of a novel Shiga toxin 1-encoding prophage in the outbreak isolates, and evidence of horizontal gene exchange among the STEC O117 : H7 outbreak lineage and other enteric pathogens. There was no evidence of increased virulence in the outbreak strains relative to contextual isolates, but the outbreak lineage was associated with azithromycin resistance. Comparing these findings with similar genomic investigations of emerging MSM-associated Shigella in the UK highlighted many parallels, the most striking of which was the importance of the azithromycin phenotype for STEI emergence in this patient group.
Collapse
Affiliation(s)
- Kate S Baker
- 1Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
28
|
DNA microarray-based assessment of virulence potential of Shiga toxin gene-carrying Escherichia coli O104:H7 isolated from feedlot cattle feces. PLoS One 2018; 13:e0196490. [PMID: 29708991 PMCID: PMC5927410 DOI: 10.1371/journal.pone.0196490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O104:H4, a hybrid pathotype reported in a large 2011 foodborne outbreak in Germany, has not been detected in cattle feces. However, cattle harbor and shed in the feces other O104 serotypes, particularly O104:H7, which has been associated with sporadic cases of diarrhea in humans. The objective of our study was to assess the virulence potential of Shiga toxin-producing E. coli (STEC) O104:H7 isolated from feces of feedlot cattle using DNA microarray. Six strains of STEC O104:H7 isolated from cattle feces were analyzed using FDA-E. coli Identification (ECID) DNA microarray to determine their virulence profiles and compare them to the human strains (clinical) of O104:H7, STEC O104:H4 (German outbreak strain), and O104:H21 (milk-associated Montana outbreak strain). Scatter plots were generated from the array data to visualize the gene-level differences between bovine and human O104 strains, and Pearson correlation coefficients (r) were determined. Splits tree was generated to analyze relatedness between the strains. All O104:H7 strains, both bovine and human, similar to O104:H4 and O104:H21 outbreak strains were negative for intimin (eae). The bovine strains were positive for Shiga toxin 1 subtype c (stx1c), enterohemolysin (ehxA), tellurite resistance gene (terD), IrgA homolog protein (iha), type 1 fimbriae (fimH), and negative for genes that code for effector proteins of type III secretory system. The six cattle O104 strains were closely related (r = 0.86-0.98) to each other, except for a few differences in phage related and non-annotated genes. One of the human clinical O104:H7 strains (2011C-3665) was more closely related to the bovine O104:H7 strains (r = 0.81-0.85) than the other four human clinical O104:H7 strains (r = 0.75-0.79). Montana outbreak strain (O104:H21) was more closely related to four of the human clinical O104:H7 strains than the bovine O104:H7 strains. None of the bovine E. coli O104 strains carried genes characteristic of E. coli O104:H4 German outbreak strain and unlike other human strains were also negative for Shiga toxin 2. Because cattle E. coli O104:H7 strains possess stx1c and genes that code for enterohemolysin and a variety of adhesins, the serotype has the potential to be a diarrheagenic foodborne pathogen in humans.
Collapse
|
29
|
Xie Y, Wahab L, Gill JJ. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses 2018; 10:E189. [PMID: 29649135 PMCID: PMC5923483 DOI: 10.3390/v10040189] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | - Laith Wahab
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
30
|
Djeghout B, Saha S, Sajib MSI, Tanmoy AM, Islam M, Kay GL, Langridge GC, Endtz HP, Wain J, Saha SK. Ceftriaxone-resistant Salmonella Typhi carries an IncI1-ST31 plasmid encoding CTX-M-15. J Med Microbiol 2018; 67:620-627. [PMID: 29616895 DOI: 10.1099/jmm.0.000727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Ceftriaxone is the drug of choice for typhoid fever and the emergence of resistant Salmonella Typhi raises major concerns for treatment. There are an increasing number of sporadic reports of ceftriaxone-resistant S. Typhi and limiting the risk of treatment failure in the patient and outbreaks in the community must be prioritized. This study describes the use of whole genome sequencing to guide outbreak identification and case management. METHODOLOGY An isolate of ceftriaxone-resistant S. Typhi from the blood of a child taken in 2000 at the Popular Diagnostic Center, Dhaka, Bangladesh was subjected to whole genome sequencing, using an Illumina NextSeq 500 and analysis using Geneious software.Results/Key findings. Comparison with other ceftriaxone-resistant S. Typhi revealed an isolate from the Democratic Republic of the Congo in 2015 as the closest relative but no evidence of an outbreak. A plasmid belonging to incompatibility group I1 (IncI1-ST31) which included blaCTX-M-15 (ceftriaxone resistance) associated with ISEcp-1 was identified. High similarity (90 %) was seen with pS115, an IncI1 plasmid from S. Enteritidis, and with pESBL-EA11, an incI1 plasmid from E. coli (99 %) showing that S. Typhi has access to ceftriaxone resistance through the acquisition of common plasmids. CONCLUSIONS The transmission of ceftriaxone resistance from E. coli to S. Typhi is of concern because of clinical resistance to ceftriaxone, the main stay of typhoid treatment. Whole genome sequencing, albeit several years after the isolation, demonstrated the success of containment but clinical trials with alternative agents are urgently required.
Collapse
Affiliation(s)
- Bilal Djeghout
- Laboratory of Microbiology and Virology, Department of Biomedical Sciences, University of Sassari, V. le San Pietro 43/B, 07100 Sassari, Italy
| | - Senjuti Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh.,Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Mohammad Saiful Islam Sajib
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh.,Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Arif Mohammad Tanmoy
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Maksuda Islam
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh.,Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Gemma L Kay
- Medical Microbiology Research Laboratory, Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, UK
| | - Gemma C Langridge
- Medical Microbiology Research Laboratory, Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, UK
| | - Hubert P Endtz
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands.,Laboratoire des Pathogènes Émergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Lyon, France
| | - John Wain
- Medical Microbiology Research Laboratory, Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, UK
| | - Samir K Saha
- Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, Bangladesh.,Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| |
Collapse
|
31
|
Identification of large cryptic plasmids in Clostridioides (Clostridium) difficile. Plasmid 2018; 96-97:25-38. [DOI: 10.1016/j.plasmid.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
|
32
|
Krüger A, Burgán J, Friedrich AW, Rossen JWA, Lucchesi PMA. ArgO145, a Stx2a prophage of a bovine O145:H- STEC strain, is closely related to phages of virulent human strains. INFECTION GENETICS AND EVOLUTION 2018; 60:126-132. [PMID: 29476813 DOI: 10.1016/j.meegid.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/18/2018] [Accepted: 02/17/2018] [Indexed: 01/08/2023]
Abstract
Shiga toxins (Stx) are the main virulence factor of a pathogroup of Escherichia coli strains that cause severe human diseases. These toxins are encoded in prophages (Stx prophages), and generally their expression depends on prophage induction. Several studies have reported high diversity among both Stx prophages and Stx. In particular, the toxin subtype Stx2a is associated with high virulence and HUS. Here, we report the genome of ArgO145, an inducible Stx2a prophage identified in a bovine O145:H- strain which produced high levels of Shiga toxin and Stx phage particles. The ArgO145 genome shared lambda phage organization, with recombination, regulation, replication, lysis, and head and tail structural gene regions, although some lambda genes encoding regulatory proteins could not be identified. Remarkably, some Stx2a phages of strains isolated from patients in other countries showed high similarity to ArgO145.
Collapse
Affiliation(s)
- A Krüger
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina.
| | - J Burgán
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| | - A W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - J W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - P M A Lucchesi
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CIC, Laboratorio de Inmunoquímica y Biotecnología, Argentina
| |
Collapse
|
33
|
Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-148. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.
Collapse
Affiliation(s)
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| |
Collapse
|
34
|
Caboche S, Even G, Loywick A, Audebert C, Hot D. MICRA: an automatic pipeline for fast characterization of microbial genomes from high-throughput sequencing data. Genome Biol 2017; 18:233. [PMID: 29258574 PMCID: PMC5738152 DOI: 10.1186/s13059-017-1367-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The increase in available sequence data has advanced the field of microbiology; however, making sense of these data without bioinformatics skills is still problematic. We describe MICRA, an automatic pipeline, available as a web interface, for microbial identification and characterization through reads analysis. MICRA uses iterative mapping against reference genomes to identify genes and variations. Additional modules allow prediction of antibiotic susceptibility and resistance and comparing the results of several samples. MICRA is fast, producing few false-positive annotations and variant calls compared to current methods, making it a tool of great interest for fully exploiting sequencing data.
Collapse
Affiliation(s)
- Ségolène Caboche
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France. .,PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France.
| | - Gaël Even
- Genes Diffusion, 3595, Route de Tournai, 59501, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - Alexandre Loywick
- Genes Diffusion, 3595, Route de Tournai, 59501, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - Christophe Audebert
- Genes Diffusion, 3595, Route de Tournai, 59501, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - David Hot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.,PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| |
Collapse
|
35
|
Köckerling E, Karrasch L, Schweitzer A, Razum O, Krause G. Public Health Research Resulting from One of the World's Largest Outbreaks Caused by Entero-Hemorrhagic Escherichia coli in Germany 2011: A Review. Front Public Health 2017; 5:332. [PMID: 29312915 PMCID: PMC5732330 DOI: 10.3389/fpubh.2017.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/23/2017] [Indexed: 02/04/2023] Open
Abstract
In 2011, Germany experienced one of the largest outbreaks of entero-hemorrhagic Escherichia coli (EHEC) ever reported. Four years thereafter, we systematically searched for scientific publications in PubMed and MEDPILOT relating to this outbreak in order to assess the pattern of respective research activities and to assess the main findings and recommendations in the field of public health. Following PRISMA guidelines, we selected 133 publications, half of which were published within 17 months after outbreak onset. Clinical medicine was covered by 71, microbiology by 60, epidemiology by 46, outbreak reporting by 11, and food safety by 9 papers. Those on the last three topics drew conclusions on methods in surveillance, diagnosis, and outbreak investigation, on resources in public health, as well as on inter-agency collaboration, and public communication. Although the outbreak primarily affected Germany, most publications were conducted by multinational cooperations. Our findings document how soon and in which fields research was conducted with respect to this outbreak.
Collapse
Affiliation(s)
- Elena Köckerling
- Department of Epidemiology and International Public Health, Bielefeld University, Bielefeld, Germany.,Department Münster, Institute for Rehabilitation Research IfR, Münster, Germany
| | - Laura Karrasch
- Department of Epidemiology and International Public Health, Bielefeld University, Bielefeld, Germany
| | - Aparna Schweitzer
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Razum
- Department of Epidemiology and International Public Health, Bielefeld University, Bielefeld, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol 2017; 18:181. [PMID: 28934976 PMCID: PMC5607848 DOI: 10.1186/s13059-017-1309-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022] Open
Abstract
We introduce DESMAN for De novo Extraction of Strains from Metagenomes. Large multi-sample metagenomes are being generated but strain variation results in fragmentary co-assemblies. Current algorithms can bin contigs into metagenome-assembled genomes but are unable to resolve strain-level variation. DESMAN identifies variants in core genes and uses co-occurrence across samples to link variants into haplotypes and abundance profiles. These are then searched for against non-core genes to determine the accessory genome of each strain. We validated DESMAN on a complex 50-species 210-genome 96-sample synthetic mock data set and then applied it to the Tara Oceans microbiome.
Collapse
|
37
|
Draft Genome Sequences of Escherichia coli O104 Strains of Bovine and Human Origin. GENOME ANNOUNCEMENTS 2017; 5:5/33/e00630-17. [PMID: 28818887 PMCID: PMC5604760 DOI: 10.1128/genomea.00630-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cattle harbor and shed in their feces several Escherichia coli O104 serotypes. All O104 strains examined were intimin negative and belonged to the B1 phylogroup, and some were Shiga toxigenic. We report here the genome sequences of bovine O104:H7 (n = 5), O104:H23 (n = 2), O104:H8 (n = 1), and O104:H12 (n = 1) isolates and human clinical isolates of O104:H7 (n = 5).
Collapse
|
38
|
Complete Genome Sequence of Escherichia coli Strain M8, Isolated from ob/ob Mice. GENOME ANNOUNCEMENTS 2017; 5:5/22/e00449-17. [PMID: 28572322 PMCID: PMC5454205 DOI: 10.1128/genomea.00449-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli is one of the common inhabitants of the mammalian gastrointestinal track. We isolated a strain from an ob/ob mouse and performed whole-genome sequencing, which yielded a chromosome of ~5.1 Mb and three plasmids of ~160 kb, ~6 kb, and ~4 kb.
Collapse
|
39
|
Sváb D, Bálint B, Vásárhelyi B, Maróti G, Tóth I. Comparative Genomic and Phylogenetic Analysis of a Shiga Toxin Producing Shigella sonnei (STSS) Strain. Front Cell Infect Microbiol 2017; 7:229. [PMID: 28611956 PMCID: PMC5447701 DOI: 10.3389/fcimb.2017.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023] Open
Abstract
Shigella strains are important agents of bacillary dysentery, and in recent years Shigella sonnei has emerged as the leading cause of shigellosis in industrialized and rapidly developing countries. More recently, several S. sonnei and Shigella flexneri strains producing Shiga toxin (Stx) have been reported from sporadic cases and from an outbreak in America. In the present study we aimed to shed light on the evolution of a recently identified Shiga toxin producing S. sonnei (STSS) isolated in Europe. Here we report the first completely assembled whole genome sequence of a multidrug resistant (MDR) Stx-producing S. sonnei (STSS) clinical strain and reveal its phylogenetic relations. STSS 75/02 proved to be resistant to ampicillin, streptomycin, tetracycline, chloramphenicol, thrimetoprim, and sulfomethoxazol. The genome of STSS 75/02 contains a 4,891,717 nt chromosome and seven plasmids including the 214 kb invasion plasmid (pInv) harboring type III secretion system genes and associated effectors. The chromosome harbors 23 prophage regions including the Stx1 converting prophage. The genome carries all virulence determinants necessary for an enteroinvasive lifestyle, as well as the Stx1 encoding gene cluster within an earlier described inducible converting prophage. In silico SNP genotyping of the assembled genome as well as 438 complete or draft S. sonnei genomes downloaded from NCBI GenBank revealed that S. sonnei 75/02 belongs to the more recently diverged global MDR lineage (IIIc). Targeted screening of 1131 next-generation sequencing projects taken from NCBI Short Read Archive of confirms that only a few S. sonnei isolates are Stx positive. Our results suggest that the acquisition of Stx phages could have occurred in different environments as independent events and that multiple horizontal transfers are responsible for the appearance of Stx phages in S. sonnei strains.
Collapse
Affiliation(s)
- Domonkos Sváb
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| | | | | | - Gergely Maróti
- Biological Research Centre, Institute of Biochemistry, Hungarian Academy of SciencesSzeged, Hungary
| | - István Tóth
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
40
|
Tokajian S, Salloum T, Eisen JA, Jospin G, Farra A, Mokhbat JE, Coil DA. Genomic attributes of extended-spectrum β-lactamase-producing Escherichia coli isolated from patients in Lebanon. Future Microbiol 2017; 12:213-226. [DOI: 10.2217/fmb-2017-0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Extended-spectrum β-lactamase-producing (ESBL) Escherichia coli are a public threat worldwide. This study aimed at analyzing the genomic and functional attributes of nine ESBLs taken from rectal swabs. Materials & methods: Samples were isolated from patients admitted for gastrointestinal and urological procedures at the University Medical Center-Rizk Hospital (UMCRH) in Lebanon. Illumina paired-end libraries were prepared and sequenced. Results: The isolates were distributed into five lineages: ST131, ST648, ST405, ST73 and ST38, and harbored bla OXA-1, bla TEM-1B, bla TEM-1C and aac(6′)Ib-cr. ST131 isolates were carriers of stx2 converting I phage. Conclusion: This is the first comprehensive genomic analysis performed on ESBLs in Lebanon.
Collapse
Affiliation(s)
- Sima Tokajian
- School of Arts & Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- School of Arts & Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Guillaume Jospin
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Anna Farra
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - David A Coil
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| |
Collapse
|
41
|
Moremi N, Manda EV, Falgenhauer L, Ghosh H, Imirzalioglu C, Matee M, Chakraborty T, Mshana SE. Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Front Microbiol 2016; 7:1862. [PMID: 27990135 PMCID: PMC5130978 DOI: 10.3389/fmicb.2016.01862] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Extended-Spectrum Beta-Lactamase (ESBL)-producing bacteria are a common cause of healthcare and community-associated infections worldwide. The distribution of such isolates in the environment and their presence in fish as a result of sewage contamination is not well-studied. Here we examined fish and environmental samples from Mwanza city for the presence of ESBL-producing bacteria. From 196 fish sampled from local markets, 26 (13.3%) contained lactose-fermenting ESBL-producing bacteria, while 39/73 (53.4%) environmental samples from the same area were ESBL producers. Antibiotic resistance genes, multi locus sequence types (MLST) and plasmid replicon types in 24 selected isolates from both populations were identified with whole genome sequencing using Illumina MiSeq. Nine of eleven sequenced fish isolates had the blaCTX-M-15 gene whereas 12/13 from environment carried blaCTX-M-15. Antibiotic resistance genes encoding resistance to sulfonamides (sul1/sul2), tetracyclines [tet(A)/tet(B)] fluoroquinolones [e.g., aac(6′)-Ib-cr, qnrS1], aminoglycosides [e.g., aac(3)-lld, strB, strA,] and trimethoprim (e.g., dfrA14) were detected. E. coli sequence type ST-38 (2) and ST-5173 (2) were detected in isolates both from the environment and fish. IncY plasmids carrying blaCTX-M-15, qnrS1, strA, and strB were detected in five environmental E. coli isolates and in one E. coli isolate from fish. Our data indicate spillage of resistant environmental isolates into Lake Victoria through the sewage system. Persistence of blaCTX-M-15 in the Mwanza city environment is complex, and involves both clonal spread of resistant strains as well as dissemination by commonly occurring IncY plasmids circulating in isolates present in humans, the environment as well as in the food chain.
Collapse
Affiliation(s)
- Nyambura Moremi
- Department of Microbiology and Immunology, Weill Bugando School of Medicine Mwanza, Tanzania
| | - Elizabeth V Manda
- Department of Microbiology and Immunology, Weill Bugando School of Medicine Mwanza, Tanzania
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Hiren Ghosh
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Mecky Matee
- Department of Microbiology/Immunology, Muhimbili University of Health and Allied Sciences Dar es Salaam, Tanzania
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine Mwanza, Tanzania
| |
Collapse
|
42
|
Sváb D, Bálint B, Maróti G, Tóth I. Cytolethal distending toxin producing Escherichia coli O157:H43 strain T22 represents a novel evolutionary lineage within the O157 serogroup. INFECTION GENETICS AND EVOLUTION 2016; 46:110-117. [DOI: 10.1016/j.meegid.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
|
43
|
A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome. mSphere 2016; 1:mSphere00326-16. [PMID: 27904885 PMCID: PMC5120174 DOI: 10.1128/msphere.00326-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli. Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCEE. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli.
Collapse
|
44
|
Böhnlein C, Kabisch J, Meske D, Franz CMAP, Pichner R. Fitness of Enterohemorrhagic Escherichia coli (EHEC)/Enteroaggregative E. coli O104:H4 in Comparison to That of EHEC O157: Survival Studies in Food and In Vitro. Appl Environ Microbiol 2016; 82:6326-6334. [PMID: 27542931 PMCID: PMC5066349 DOI: 10.1128/aem.01796-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022] Open
Abstract
In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. IMPORTANCE In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages than E. coli O157:H7 strains. E. coli O104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potential E. coli O104:H4 infection.
Collapse
Affiliation(s)
- Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Diana Meske
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany Department of Nutritional, Food, and Consumer Sciences, University of Applied Sciences, Fulda, Germany
| |
Collapse
|
45
|
Kozyreva VK, Jospin G, Greninger AL, Watt JP, Eisen JA, Chaturvedi V. Recent Outbreaks of Shigellosis in California Caused by Two Distinct Populations of Shigella sonnei with either Increased Virulence or Fluoroquinolone Resistance. mSphere 2016; 1:e00344-16. [PMID: 28028547 PMCID: PMC5177732 DOI: 10.1128/msphere.00344-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Shigella sonnei has caused unusually large outbreaks of shigellosis in California in 2014 and 2015. Preliminary data indicated the involvement of two distinct bacterial populations, one from San Diego and San Joaquin (SDi/SJo) and one from the San Francisco (SFr) Bay area. Whole-genome analysis and antibiotic susceptibility testing of 68 outbreak and archival isolates of S. sonnei were performed to investigate the microbiological factors related to these outbreaks. Both SDi/SJo and SFr populations, as well as almost all of the archival S. sonnei isolates belonged to sequence type 152 (ST152). Genome-wide single nucleotide polymorphism (SNP) analysis clustered the majority of California (CA) isolates to an earlier described lineage III. Isolates in the SDi/SJo population had a novel lambdoid bacteriophage carrying genes encoding Shiga toxin (STX) that were most closely related to that found in Escherichia coli O104:H4. However, the STX genes (stx1A and stx1B) from this novel phage had sequences most similar to the phages from Shigella flexneri and S. dysenteriae. The isolates in the SFr population were resistant to ciprofloxacin due to point mutations in gyrA and parC genes and were related to the fluoroquinolone-resistant S. sonnei clade within lineage III that originated in South Asia. The emergence of a highly virulent S. sonnei strain and introduction of a fluoroquinolone-resistant strain reflect the changing traits of this pathogen in California. An enhanced monitoring is advocated for early detection of future outbreaks caused by such strains. IMPORTANCE Shigellosis is an acute diarrheal disease causing nearly half a million infections, 6,000 hospitalizations, and 70 deaths annually in the United States. S. sonnei caused two unusually large outbreaks in 2014 and 2015 in California. We used whole-genome sequencing to understand the pathogenic potential of bacteria involved in these outbreaks. Our results suggest the persistence of a local S. sonnei SDi/SJo clone in California since at least 2008. Recently, a derivative of the original clone acquired the ability to produce Shiga toxin (STX) via exchanges of bacteriophages with other bacteria. STX production is connected with more severe disease, including bloody diarrhea. A second population of S. sonnei that caused an outbreak in the San Francisco area was resistant to fluoroquinolones and showed evidence of connection to a fluoroquinolone-resistant lineage from South Asia. These emerging trends in S. sonnei populations in California must be monitored for future risks of the spread of increasingly virulent and resistant clones.
Collapse
Affiliation(s)
- Varvara K. Kozyreva
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Guillaume Jospin
- Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Alexander L. Greninger
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - James P. Watt
- Division of Communicable Disease Control, California Department of Public Health, Richmond, California, USA
| | - Jonathan A. Eisen
- Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Vishnu Chaturvedi
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
46
|
Berger P, Knödler M, Förstner KU, Berger M, Bertling C, Sharma CM, Vogel J, Karch H, Dobrindt U, Mellmann A. The primary transcriptome of the Escherichia coli O104:H4 pAA plasmid and novel insights into its virulence gene expression and regulation. Sci Rep 2016; 6:35307. [PMID: 27748404 PMCID: PMC5066232 DOI: 10.1038/srep35307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/27/2016] [Indexed: 11/30/2022] Open
Abstract
Escherichia coli O104:H4 (E. coli O104:H4), which caused a massive outbreak of acute gastroenteritis and hemolytic uremic syndrome in 2011, carries an aggregative adherence fimbriae I (AAF/I) encoding virulence plasmid, pAA. The importance of pAA in host-pathogen interaction and disease severity has been demonstrated, however, not much is known about its transcriptional organization and gene regulation. Here, we analyzed the pAA primary transcriptome using differential RNA sequencing, which allows for the high-throughput mapping of transcription start site (TSS) and non-coding RNA candidates. We identified 248 TSS candidates in the 74-kb pAA and only 21% of them could be assigned as TSS of annotated genes. We detected TSS for the majority of pAA-encoded virulence factors. Interestingly, we mapped TSS, which could allow for the transcriptional uncoupling of the AAF/I operon, and potentially regulatory antisense RNA candidates against the genes encoding dispersin and the serine protease SepA. Moreover, a computational search for transcription factor binding sites suggested for AggR-mediated activation of SepA expression, which was additionally experimentally validated. This work advances our understanding of the molecular basis of E. coli O104:H4 pathogenicity and provides a valuable resource for further characterization of pAA virulence gene regulation.
Collapse
Affiliation(s)
- Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Michael Knödler
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Cynthia M Sharma
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | | |
Collapse
|
47
|
Cimmino T, Le Page S, Raoult D, Rolain JM. Contemporary challenges and opportunities in the diagnosis and outbreak detection of multidrug-resistant infectious disease. Expert Rev Mol Diagn 2016; 16:1163-1175. [PMID: 27690721 DOI: 10.1080/14737159.2016.1244005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The dissemination of multi-drug resistant bacteria (MDRB) has become a major public health concern worldwide because of the increase in infections caused by MDRB, the difficulty in treating them, and expenditures in patient care. Areas covered: We have reviewed challenges and contemporary opportunities for rapidly confronting infections caused by MDRB in the 21st century, including surveillance, detection, identification of resistance mechanisms, and action steps. Expert commentary: In this context, the first critical point for clinical microbiologists is to be able to rapidly detect an abnormal event, an outbreak and/or the spread of a MDRB with surveillance tools so that healthcare policies and therapies adapted to a new stochastic event that will certainly occur again in the future can be implemented.
Collapse
Affiliation(s)
- Teresa Cimmino
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Stéphanie Le Page
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Didier Raoult
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Jean-Marc Rolain
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| |
Collapse
|
48
|
Zolfo M, Tett A, Jousson O, Donati C, Segata N. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res 2016; 45:e7. [PMID: 27651451 PMCID: PMC5314789 DOI: 10.1093/nar/gkw837] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 12/14/2022] Open
Abstract
Metagenomic characterization of microbial communities has the potential to become a tool to identify pathogens in human samples. However, software tools able to extract strain-level typing information from metagenomic data are needed. Low-throughput molecular typing schema such as Multilocus Sequence Typing (MLST) are still widely used and provide a wealth of strain-level information that is currently not exploited by metagenomic methods. We introduce MetaMLST, a software tool that reconstructs the MLST loci of microorganisms present in microbial communities from metagenomic data. Tested on synthetic and spiked-in real metagenomes, the pipeline was able to reconstruct the MLST sequences with >98.5% accuracy at coverages as low as 1×. On real samples, the pipeline showed higher sensitivity than assembly-based approaches and it proved successful in identifying strains in epidemic outbreaks as well as in intestinal, skin and gastrointestinal microbiome samples.
Collapse
Affiliation(s)
- Moreno Zolfo
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| | - Adrian Tett
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| | - Claudio Donati
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, San Michele all'Adige 38010, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy
| |
Collapse
|
49
|
Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4. Int J Food Microbiol 2016; 229:44-51. [DOI: 10.1016/j.ijfoodmicro.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/22/2016] [Accepted: 04/03/2016] [Indexed: 12/14/2022]
|
50
|
Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis. Appl Environ Microbiol 2016; 82:4371-4378. [PMID: 27208096 DOI: 10.1128/aem.00977-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. IMPORTANCE In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with various contaminated foods worldwide. E. coli O104:H4 is a newly emerged Shiga toxigenic foodborne pathogen of the enteroaggregative pathotype that gained notoriety for causing one of the most deadly foodborne outbreaks in Europe in 2011. Comparison of proteins in the growth medium revealed significant differences in the compositions of the extracellular proteins for these two pathogens. These differences may provide valuable information regarding the cellular responses of these pathogens to their environment, including cell survival and pathogenesis.
Collapse
|