1
|
Wang T, Mao P, Zhang Y, Cui B, Wang MD, Li Y, Gao K. LncRNA MYMLR promotes pituitary adenoma development by upregulating carbonyl reductase 1 via sponging miR-197-3p. Anticancer Drugs 2022; 33:1058-1068. [DOI: 10.1097/cad.0000000000001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Li MY, Peng LM, Chen XP. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Front Cardiovasc Med 2022; 9:966261. [PMID: 36312261 PMCID: PMC9606405 DOI: 10.3389/fcvm.2022.966261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Drug-induced cardiotoxicity (DICT) is an important concern of drug safety in both drug development and clinical application. The clinical manifestations of DICT include cardiomyopathy, arrhythmia, myocardial ischemia, heart failure, and a series of cardiac structural and functional changes. The occurrence of DICT has negative impacts on the life quality of the patients, brings additional social and economic burden. It is important to identify the potential factors and explore the mechanisms of DICT. Traditional cardiovascular risk factors can only partially explain the risk of DICT. Pharmacogenomic studies show accumulated evidence of genetics in DICT and suggest the potential to guide precision therapy to reduce risk of cardiotoxicity. The comprehensive application of technologies such as third-generation sequencing, human induced pluripotent stem (iPS) cells and genome editing has promoted the in-depth understanding of the functional role of susceptible genes in DICT. This paper reviewed drugs that cause DICT, the clinical manifestations and laboratory tests, as well as the related content of genetic variations associated with the risk of DICT, and further discussed the implication of new technologies in pharmacogenomics of DICT.
Collapse
Affiliation(s)
- Mo-Yun Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Li-Ming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Li-Ming Peng
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Xiao-Ping Chen
| |
Collapse
|
3
|
Bell RMB, Villalobos E, Nixon M, Miguelez-Crespo A, Murphy L, Fawkes A, Coutts A, Sharp MGF, Koerner MV, Allan E, Meijer OC, Houtman R, Odermatt A, Beck KR, Denham SG, Lee P, Homer NZM, Walker BR, Morgan RA. Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice. Mol Metab 2021; 48:101225. [PMID: 33785425 PMCID: PMC8095185 DOI: 10.1016/j.molmet.2021.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Carbonyl reductase 1 (Cbr1), a recently discovered contributor to tissue glucocorticoid metabolism converting corticosterone to 20β-dihydrocorticosterone (20β-DHB), is upregulated in adipose tissue of obese humans and mice and may contribute to cardiometabolic complications of obesity. This study tested the hypothesis that Cbr1-mediated glucocorticoid metabolism influences glucocorticoid and mineralocorticoid receptor activation in adipose tissue and impacts glucose homeostasis in lean and obese states. METHODS The actions of 20β-DHB on corticosteroid receptors in adipose tissue were investigated first using a combination of in silico, in vitro, and transcriptomic techniques and then in vivo administration in combination with receptor antagonists. Mice lacking one Cbr1 allele and mice overexpressing Cbr1 in their adipose tissue underwent metabolic phenotyping before and after induction of obesity with high-fat feeding. RESULTS 20β-DHB activated both the glucocorticoid and mineralocorticoid receptor in adipose tissue and systemic administration to wild-type mice induced glucose intolerance, an effect that was ameliorated by both glucocorticoid and mineralocorticoid receptor antagonism. Cbr1 haploinsufficient lean male mice had lower fasting glucose and improved glucose tolerance compared with littermate controls, a difference that was abolished by administration of 20β-DHB and absent in female mice with higher baseline adipose 20β-DHB concentrations than male mice. Conversely, overexpression of Cbr1 in adipose tissue resulted in worsened glucose tolerance and higher fasting glucose in lean male and female mice. However, neither Cbr1 haploinsfficiency nor adipose overexpression affected glucose dyshomeostasis induced by high-fat feeding. CONCLUSIONS Carbonyl reductase 1 is a novel regulator of glucocorticoid and mineralocorticoid receptor activation in adipose tissue that influences glucose homeostasis in lean mice.
Collapse
Affiliation(s)
- Rachel M B Bell
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Elisa Villalobos
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Mark Nixon
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Allende Miguelez-Crespo
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Lee Murphy
- Genetics Core, Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | - Angie Fawkes
- Genetics Core, Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | - Audrey Coutts
- Genetics Core, Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | - Matthew G F Sharp
- Transgenics Core, Bioresearch & Veterinary Services, University of Edinburgh, Edinburgh, United Kingdom.
| | - Martha V Koerner
- Transgenics Core, Bioresearch & Veterinary Services, University of Edinburgh, Edinburgh, United Kingdom.
| | - Emma Allan
- Transgenics Core, Bioresearch & Veterinary Services, University of Edinburgh, Edinburgh, United Kingdom.
| | - Onno C Meijer
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Renè Houtman
- Pamgene International, Den Bosch, the Netherlands.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Katharina R Beck
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Scott G Denham
- Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Patricia Lee
- Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Natalie Z M Homer
- Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Brian R Walker
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Ruth A Morgan
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
4
|
Circulating Levels of miR-574-5p Are Associated with Neurological Outcome after Cardiac Arrest in Women: A Target Temperature Management (TTM) Trial Substudy. DISEASE MARKERS 2019; 2019:1802879. [PMID: 31275442 PMCID: PMC6589199 DOI: 10.1155/2019/1802879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
Abstract
Purpose Postresuscitation neuroprognostication is guided by neurophysiological tests, biomarker measurement, and clinical examination. Recent investigations suggest that circulating microRNAs (miRNA) may help in outcome prediction after cardiac arrest. We assessed the ability of miR-574-5p to predict neurological outcome after cardiac arrest, in a sex-specific manner. Methods In this substudy of the Target Temperature Management (TTM) Trial, we enrolled 590 cardiac arrest patients for which blood samples were available. Expression levels of miR-574-5p were measured by quantitative PCR in plasma samples collected 48 h after cardiac arrest. The endpoint of the study was poor neurological outcome at 6 months (cerebral performance category scores 3 to 5). Results Eighty-one percent of patients were men, and 49% had a poor neurological outcome. Circulating levels of miR-574-5p at 48 h were higher in patients with a poor neurological outcome at 6 months (p < 0.001), both in women and in men. Circulating levels of miR-574-5p were univariate predictors of neurological outcome (odds ratio (OR) [95% confidence interval (CI)]: 1.5 [1.26-1.78]). After adjustment with clinical variables and NSE, circulating levels of miR-574-5p predicted neurological outcome in women (OR [95% CI]: 1.9 [1.09-3.45]), but not in men (OR [95% CI]: 1.0 [0.74-1.28]). Conclusion miR-574-5p is associated with neurological outcome after cardiac arrest in women.
Collapse
|
5
|
Quiñones-Lombraña A, Li N, Del Solar V, Atilla-Gokcumen GE, Blanco JG. CBR1 rs9024 genotype status impacts the bioactivation of loxoprofen in human liver. Biopharm Drug Dispos 2018; 39:315-318. [PMID: 29851133 DOI: 10.1002/bdd.2135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 01/16/2023]
Abstract
Loxoprofen is an anti-inflammatory drug that requires bioactivation into the trans-OH metabolite to exert pharmacological activity. Evidence suggests that carbonyl reductase 1 (CBR1) is important during the bioactivation of loxoprofen. This study examined the impact of the functional single nucleotide polymorphism CBR1 rs9024 on the bioactivation of loxoprofen in a collection of human liver samples. The synthesis ratios of trans-OH loxoprofen/cis-OH loxoprofen were 33% higher in liver cytosols from donors homozygous for the CBR1 rs9024 G allele in comparison with the ratios in samples from donors with heterozygous GA genotypes. Complementary studies examined the impact of CBR1 rs9024 on the bioactivation of loxoprofen in lymphoblastoid cell lines. CBR1 rs9024 genotype status impacts the synthesis of the bioactive trans-OH metabolite of loxoprofen in human liver.
Collapse
Affiliation(s)
- Adolfo Quiñones-Lombraña
- University at Buffalo, The State University of New York (SUNY), Department of Pharmaceutical Sciences, Buffalo, New York, USA
| | - Nasi Li
- University at Buffalo, The State University of New York (SUNY), Department of Chemistry, Buffalo, New York, USA
| | - Virginia Del Solar
- University at Buffalo, The State University of New York (SUNY), Department of Chemistry, Buffalo, New York, USA
| | - G Ekin Atilla-Gokcumen
- University at Buffalo, The State University of New York (SUNY), Department of Chemistry, Buffalo, New York, USA
| | - Javier G Blanco
- University at Buffalo, The State University of New York (SUNY), Department of Pharmaceutical Sciences, Buffalo, New York, USA
| |
Collapse
|
6
|
Cao HX, Miao CF, Yan L, Tang P, Zhang LR, Sun L. Polymorphisms at microRNA binding sites of Ara-C and anthracyclines-metabolic pathway genes are associated with outcome of acute myeloid leukemia patients. J Transl Med 2017; 15:235. [PMID: 29141648 PMCID: PMC5688732 DOI: 10.1186/s12967-017-1339-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022] Open
Abstract
Background Gene polymorphisms at microRNA-binding sites (poly-miRTS) may affect gene transcription and expression through miRNA regulation, which is associated with cancer susceptibility, sensitivity to chemotherapy and prognosis. This study investigated the association between poly-miRTS of Ara-C/anthracycline metabolic pathways genes and the outcome of acute myeloid leukemia (AML) in Chinese patients after Ara-C-based chemotherapy. Methods A total of 17 poly-miRTS were selected from the SNPinfo Web Server and genotyped in 206 Chinese Han non-FAB-M3 AML patients using the SEQUENOM Mass-ARRAY system. Results Among these 17 poly-miRTS, five Ara-C metabolic gene single nucleotide polymorphisms (SNPs, NT5C2 rs10786736 and rs8139, SLC29A1 rs3734703, DCTD rs7278, and RRM1 rs1042919) were identified to significantly associate with complete AML remission and/or overall and relapse-free survival (OS and RFS, respectively), and four anthracycline-metabolic gene SNPs (ABCC1 rs3743527, rs212091, and rs212090 and CBR1 rs9024) were significantly associated with chemotherapy-related toxicities. Moreover, SLC29A1 rs3734703 was shown to associate with both chemotherapy response and survival (adjusted OR 2.561 in the overdominant model; adjusted HR 2.876 for OS and 2.357 for RFS in the dominant model). Conclusions The data from the current study demonstrated that the poly-miRTS of Ara-C/anthracyclines metabolic genes predicted the sensitivity and side effects of AML to Ara-C-based chemotherapy and patient survival. Further study will confirm them as biomarkers for AML patients after Ara-C-based chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-017-1339-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai-Xia Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, 450052, Henan, China
| | - Chao-Feng Miao
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ping Tang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
7
|
Schultz DJ, Muluhngwi P, Alizadeh-Rad N, Green MA, Rouchka EC, Waigel SJ, Klinge CM. Genome-wide miRNA response to anacardic acid in breast cancer cells. PLoS One 2017; 12:e0184471. [PMID: 28886127 PMCID: PMC5590942 DOI: 10.1371/journal.pone.0184471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity.
Collapse
Affiliation(s)
- David J. Schultz
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Negin Alizadeh-Rad
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Madelyn A. Green
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Eric C. Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, Louisville, Kentucky, United States of America
| | - Sabine J. Waigel
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
8
|
Shi SM, Di L. The role of carbonyl reductase 1 in drug discovery and development. Expert Opin Drug Metab Toxicol 2017; 13:859-870. [DOI: 10.1080/17425255.2017.1356820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Li Di
- Pfizer Inc., Groton, CT, USA
| |
Collapse
|
9
|
Zhang AL, Sun XY, Yin Q, Zeng JH, Zhang Z, Li JQ, Zhang H. Functional characterization of the promoter of carbonyl reductase 1 gene in porcine endometrial cells. J Zhejiang Univ Sci B 2017; 18:626-634. [PMID: 28681587 DOI: 10.1631/jzus.b1600225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostaglandins (PGs) play a critical role in porcine reproduction, of which prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) exert antiluteolytic and luteolysis actions, respectively. As a rate-limiting enzyme, carbonyl reductase 1 (CBR1) catalyzes the conversion of PGE2 to PGF2α. A high ratio of PGE2:PGF2α is beneficial to the establishment and maintenance of porcine pregnancy. PG is essential for the establishment of pregnancy which resembles the proinflammatory response and nuclear factor κB (NF-κB) is involved in the process. Bioinformatic analysis has shown that NF-κB is a possible factor bound to two cis-regulatory elements in CBR1 promoter. In this study, we cloned the 2997 bp (-2875/+122) of the promoter, and constructed six 5'-deleted dual-luciferase reporter recombinant vectors. In endometrial cells, the region of P2 (-1640/+7) exhibited the greatest transcriptional activity at driving luciferase expression, but not significantly different from that of P1 (-2089/+7). The activity of P1, P2, and P3 (-1019/+7) was highly significantly higher than that of others (P<0.01), suggesting that two positive regulatory elements were likely present in the regions of -1640/-1019 and -1019/-647. The results also showed that the -1640/-647 region was indispensable for the promoter. The results of chromatin immunoprecipitation (ChIP) demonstrated that the NF-κB subunit p65 binds to one site around -1545/-1531. Using four reference genes, we found that the over-expression of p65 enhanced the expression of CBR1 (P<0.05) in porcine endometrial epithelial cells, while knockdown of the p65 did not down-regulate the CBR1 expression. These results indicated that NF-κB (p65) could bind to the special element of CBR1 gene promoter in porcine endometrial epithelial cells in vitro. The binding site of NF-κB was a positive regulator for the CBR1 gene promoter, but was not necessary for the basic expression.
Collapse
Affiliation(s)
- Ai-Ling Zhang
- Guangdong Development Center of Applied Ecology and Ecological Engineering in Universities, Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou 510310, China
| | - Xian-Yue Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qi Yin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Hua Zeng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Qi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Varatharajan S, Panetta JC, Abraham A, Karathedath S, Mohanan E, Lakshmi KM, Arthur N, Srivastava VM, Nemani S, George B, Srivastava A, Mathews V, Balasubramanian P. Population pharmacokinetics of Daunorubicin in adult patients with acute myeloid leukemia. Cancer Chemother Pharmacol 2016; 78:1051-1058. [PMID: 27738808 DOI: 10.1007/s00280-016-3166-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Chemotherapy drug resistance and relapse of the disease have been the major factors limiting the success of acute myeloid leukemia (AML) therapy. Several factors, including the pharmacokinetics (PK) of Cytarabine (Ara-C) and Daunorubicin (Dnr), could contribute to difference in treatment outcome in AML. METHODS In the present study, we evaluated the plasma PK of Dnr, the influence of genetic polymorphisms of genes involved in transport and metabolism of Dnr on the PK, and also the influence of these factors on clinical outcome. Plasma levels of Dnr and its major metabolite, Daunorubicinol (DOL), were available in 70 adult de novo AML patients. PK parameters (Area under curve (AUC) and clearance (CL)) of Dnr and DOL were calculated using nonlinear mixed-effects modeling analysis performed with Monolix. Genetic variants in ABCB1, ABCG2, CBR1, and CBR3 genes as well as RNA expression of CBR1, ABCB1, and ABCG2 were compared with Dnr PK parameters. RESULTS The AUC and CL of Dnr and DOL showed wide inter-individual variation. Patients with an exon1 variant of rs25678 in CBR1 had significantly higher plasma Dnr AUC [p = 0.05] compared to patients with wild type. Patients who achieved complete remission (CR) had significantly lower plasma Dnr AUC, Cmax, and higher CL compared to patients who did not achieve CR. CONCLUSION Further validation of these findings in a larger cohort of AML patients is warranted before establishing a therapeutic window for plasma Dnr levels and targeted dose adjustment.
Collapse
Affiliation(s)
- Savitha Varatharajan
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - John C Panetta
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ajay Abraham
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Sreeja Karathedath
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Ezhilpavai Mohanan
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Nancy Arthur
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Vivi M Srivastava
- Cytogenetics Unit, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Sandeep Nemani
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | | |
Collapse
|
11
|
Boušová I, Skálová L, Souček P, Matoušková P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab Rev 2015; 47:520-33. [DOI: 10.3109/03602532.2015.1089885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Jordheim LP, Ribrag V, Ghesquieres H, Pallardy S, Delarue R, Tilly H, Haioun C, Jardin F, Demangel D, Salles GA, Dumontet C. Single nucleotide polymorphisms in ABCB1 and CBR1 can predict toxicity to R-CHOP type regimens in patients with diffuse non-Hodgkin lymphoma. Haematologica 2015; 100:e204-6. [PMID: 25637052 DOI: 10.3324/haematol.2014.120113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lars P Jordheim
- Anticancer Antibody Team, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France Hospices Civils de Lyon, France ProfileXpert, Lyon, France
| | | | | | | | | | | | | | - Fabrice Jardin
- Hematology, INSERM U918, Centre Henri Becquerel, Rouen, France
| | | | - Gilles A Salles
- Hospices Civils de Lyon, Centre Hospitalier Universitaire Lyon-Sud, Hématologie, Université Lyon 1, UMR 5239 CNRS, France
| | - Charles Dumontet
- Anticancer Antibody Team, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France Hospices Civils de Lyon, France ProfileXpert, Lyon, France Laboratory of Hematology, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
13
|
Cui Z, Tang J, Chen J, Wang Z. Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer Cell Int 2014; 14:47. [PMID: 24936152 PMCID: PMC4059478 DOI: 10.1186/1475-2867-14-47] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/22/2014] [Indexed: 01/20/2023] Open
Abstract
Objective The aim of this study was to investigate the relationship of MACC-1 (metastasis-associated in colon cancer 1) and microRNA (miRNA) hsa-miR-574-5p and the function of hsa-miR-574-5p in colorectal cancer liver metastasis. Methods Liver-metastatic nude mice model was constructed by injecting two human colorectal cancer cell lines (SW1116 and HCT116) labeled with green fluorescent protein (GFP) through spleen, and liver metastasis incidences were evaluated. We identified miRNAs that might regulate MACC-1 expression by bioinformatics analysis and further investigated the relationship of MACC-1 and hsa-miR-574-5p by luciferase reporter assay, quantitative RT-PCR and western blot. The effect of hsa-miR-574-5p on colony formation, cell invasion and cell spheroid formation was investigated by antisense transfected HCT116 cells and miRNA mimic transfected SW1116 cells. Results The volume of liver metastasis induced by SW1116 cells (25.0 ± 4.4%) was significantly higher than that induced by HCT116 cells. Bioinformatics analysis showed hsa-miR-574-5p negatively regulated MACC-1 and then their interaction was demonstrated at mRNA and protein level. The direct relation between them was confirmed by luciferase reporter assay. And the knockdown of has-miR-574-5p demonstrated increased colony formation, cell invasion and cell spheroid formation in HCT116 cells, compared to control group (P < 0.05). Reverse results were obtained in mimic transfected SW1116 cells. Conclusion Our work firstly demonstrated that hsa-miR-574-5p negatively regulated MACC-1 expression in colorectal cancer cells. It was partly elucidated that hsa-miR-574-5p played a suppressive role in colorectal cancer liver metastasis by negatively directing MACC-1 expression, offering a novel therapeutic approach for colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Zhe Cui
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Tang
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxian Chen
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Interindividual variability in the cardiac expression of anthracycline reductases in donors with and without Down syndrome. Pharm Res 2014; 31:1644-55. [PMID: 24562808 DOI: 10.1007/s11095-013-1267-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The intracardiac synthesis of anthracycline alcohol metabolites (e.g., daunorubicinol) contributes to the pathogenesis of anthracycline-related cardiotoxicity. Cancer patients with Down syndrome (DS) are at increased risk for anthracycline-related cardiotoxicity. We profiled the expression of anthracycline metabolizing enzymes in hearts from donors with- and without- DS. METHODS Cardiac expression of CBR1, CBR3, AKR1A1, AKR1C3 and AKR7A2 was examined by quantitative real time PCR, quantitative immunoblotting, and enzyme activity assays using daunorubicin. The CBR1 polymorphism rs9024 was investigated by allelic discrimination with fluorescent probes. The contribution of CBRs/AKRs proteins to daunorubicin reductase activity was examined by multiple linear regression. RESULTS CBR1 was the most abundant transcript (average relative expression; DS: 81%, non-DS: 58%), and AKR7A2 was the most abundant protein (average relative expression; DS: 38%, non-DS: 35%). Positive associations between cardiac CBR1 protein levels and daunorubicin reductase activity were found for samples from donors with- and without- DS. Regression analysis suggests that sex, CBR1, AKR1A1, and AKR7A2 protein levels were significant contributors to cardiac daunorubicin reductase activity. CBR1 rs9024 genotype status impacts on cardiac CBR1 expression in non-DS hearts. CONCLUSIONS CBR1, AKR1A1, and AKR7A2 protein levels point to be important determinants for predicting the synthesis of cardiotoxic daunorubicinol in heart.
Collapse
|
15
|
Day L, Abdelhadi Ep Souki O, Albrecht AA, Steinhöfel K. Accessibility of microRNA binding sites in metastable RNA secondary structures in the presence of SNPs. ACTA ACUST UNITED AC 2013; 30:343-52. [PMID: 24292936 DOI: 10.1093/bioinformatics/btt695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MOTIVATION We study microRNA (miRNA) bindings to metastable RNA secondary structures close to minimum free energy conformations in the context of single nucleotide polymorphisms (SNPs) and messenger RNA (mRNA) concentration levels, i.e. whether features of miRNA bindings to metastable conformations could provide additional information supporting the differences in expression levels of the two sequences defined by a SNP. In our study, the instances [mRNA/3'UTR; SNP; miRNA] were selected based on strong expression level analyses, SNP locations within binding regions and the computationally feasible identification of metastable conformations. RESULTS We identified 14 basic cases [mRNA; SNP; miRNA] of 3' UTR-lengths ranging from 124 up to 1078 nt reported in recent literature, and we analyzed the number, structure and miRNA binding to metastable conformations within an energy offset above mfe conformations. For each of the 14 instances, the miRNA binding characteristics are determined by the corresponding STarMir output. Among the different parameters we introduced and analyzed, we found that three of them, related to the average depth and average opening energy of metastable conformations, may provide supporting information for a stronger separation between miRNA bindings to the two alleles defined by a given SNP. AVAILABILITY AND IMPLEMENTATION At http://kks.inf.kcl.ac.uk/MSbind.html the MSbind tool is available for calculating features of metastable conformations determined by putative miRNA binding sites.
Collapse
Affiliation(s)
- Luke Day
- Department of Informatics, King's College London, London WC2R 2LS and Middlesex University London, School of Science and Technology, London NW4 4BT, UK
| | | | | | | |
Collapse
|