1
|
Liu S, Liu J. An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. TOXICS 2024; 12:247. [PMID: 38668470 PMCID: PMC11054029 DOI: 10.3390/toxics12040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
The safety of drinking water is a significant environmental issue of great concern for human health since numerous contaminants are often detected in drinking water and its sources. Boiling is a common household method used to produce relatively high-quality drinking water in some countries and regions. In this study, with the aid of an integrated approach of in vitro bioassays and non-target analysis based on high-resolution mass spectrometry coupled with liquid chromatography, alterations in endocrine-disrupting activities in tap water samples without and with boiling were revealed, as well as the potential endocrine-disrupting chemicals (EDCs) contributing to these alterations were identified. The organic extracts of tap water had no significant (ant)agonistic activities against an estrogen receptor (ER), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) at enrichment concentrations of ≤10 times, posing no immediate or acute health risk to humans. However, the presence of agonistic activities against PR and MR and antagonistic activities against ER, PR, GR, and MR in OEs of tap water at relatively higher enrichment concentrations still raise potential health concerns. Boiling effectively reduced antagonistic activities against these steroid hormone receptors (SHRs) but increased estrogenic and glucocorticoid activities in drinking water. Four novel potential EDCs, including one UV filter (phenylbenzimidazole sulfonic acid, PBSA) and three natural metabolites of organisms (beta-hydroxymyristic acid, 12-hydroxyoctadecanoic acid, and isorosmanol) were identified in drinking water samples, each of which showed (ant)agonistic activities against different SHRs. Given the widespread use of UV filters in sunscreens to prevent skin cancer, the health risks posed by PBSA as an identified novel EDC are of concern. Although boiling has been thought to reduce the health risk of drinking water contamination, our findings suggest that boiling may have a more complex effect on the endocrine-disrupting activities of drinking water and, therefore, a more comprehensive assessment is needed.
Collapse
Affiliation(s)
- Siyuan Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Yang Y, Wang C, Shen H, Fan H, Liu J, Wu N. Cis-bifenthrin inhibits cortisol and aldosterone biosynthesis in human adrenocortical H295R cells via cAMP signaling cascade. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103784. [PMID: 34896276 DOI: 10.1016/j.etap.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Cis-bifenthrin (cis-BF) is a common-used pyrethroid insecticide frequently detected in environmental and biological matrices. Mounting evidence highlights the endocrine disrupting effects of cis-BF due to anti-estrogenic or anti-androgenic activity. However, little is known about the exposure effects of cis-BF on adrenal cortex function. In this study, effects of cis-BF on biosynthesis of adrenal steroids, as well as the potential mechanisms were investigated in human adrenocortical carcinoma (H295R) cells. Cis-BF decreased basal production levels of cortisol and aldosterone, as well as cAMP-induced production of cortisol. Both he basal and cAMP-stimulated transcriptional levels of several steroidogenic genes were significantly down-regulated by cis-BF. As an important rate-limiting enzyme in steroidogenesis, the protein level of StAR was prohibited by cis-BF on both basal and cAMP-induced conditions. Intracellular level of cAMP was significantly reduced by cis-BF. Overall, these data suggest that cis-BF may inhibit the biosynthesis of cortisol and aldosterone via disrupting cAMP signaling cascade.
Collapse
Affiliation(s)
- Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China.
| | - Chunlei Wang
- Department of Public Health, Yu Hang No.2 People's Hospital, Hangzhou 311100, China
| | - Hong Shen
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Hongliang Fan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Liu
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanxiang Wu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| |
Collapse
|
4
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
5
|
Wu HC, Cohn BA, Cirillo PM, Santella RM, Terry MB. DDT exposure during pregnancy and DNA methylation alterations in female offspring in the Child Health and Development Study. Reprod Toxicol 2020; 92:138-147. [PMID: 30822522 PMCID: PMC6710160 DOI: 10.1016/j.reprotox.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Studies measuring dichlorodiphenyltrichloroethane (DDT) exposure during key windows of susceptibility including the intrauterine period suggest that DDT exposure is associated with breast cancer risk. We hypothesized that prenatal DDT exposure is associated with DNA methylation. Using prospective data from 316 daughters in the Child Health and Development Study, we examined the association between prenatal exposure to DDTs and DNA methylation in blood collected in midlife (mean age: 49 years). To identify differentially methylated regions (DMRs) associated with markers of DDTs (p,p'-DDT and the primary metabolite of p,p'-DDT, p,p'-DDE, and o,p'-DDT, the primary constituents of technical DDT), we measured methylation in 30 genes important to breast cancer. We observed DDT DMRs in three genes, CCDC85A, CYP1A1 and ZFPM2, each of which has been previously implicated in pubertal development and breast cancer susceptibility. These findings suggest prenatal DDT exposure may have life-long consequence through alteration in genes relevant to breast cancer.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Piera M. Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Regina M. Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
- Imprints Center, Columbia University Medical Center, New York, NY
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY
| |
Collapse
|
6
|
Sharma RK, Singh P, Setia A, Sharma AK. Insecticides and ovarian functions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:369-392. [PMID: 31916619 DOI: 10.1002/em.22355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Insecticides, a heterogeneous group of chemicals, are widely used in agriculture and household practices to avoid insect-inflicted damage. Extensive use of insecticides has contributed substantially to agricultural production and the prevention of deadly diseases by destroying their vectors. On the contrary, many of the insecticides are associated with several adverse health effects like neurological and psychological diseases, metabolic disorders, hormonal imbalance, and even cancer in non-target species, including humans. Reproduction, a very selective process that ensures the continuity of species, is affected to a greater extent by the rampant use of insecticides. In females, exposure to insecticides leads to reproductive incapacitation primarily through disturbances in ovarian physiology. Disturbed ovarian activities encompass the alterations in hormone synthesis, follicular maturation, ovulation process, and ovarian cycle, which eventually lead to decline in fertility, prolonged time-to-conceive, spontaneous abortion, stillbirths, and developmental defects. Insecticide-induced ovarian toxicity is effectuated by endocrine disruption and oxidative stress. Oxidative stress, which occurs due to suppression of antioxidant defense system, and upsurge of reactive oxygen and nitrogen species, potentiates DNA damage and expression of apoptotic and inflammatory markers. Insecticide exposure, in part, is responsible for ovarian malfunctioning through disruption of hypothalamic-pituitary-gonadal axis. The current article is focused on the adverse effects of insecticides on ovarian functioning, and consequently, on the reproductive efficacy of females. The possible strategies to combat insecticide-induced toxicity are also discussed in the latter part of this review. Environ. Mol. Mutagen. 61:369-392, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajnesh Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Priyanka Singh
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aarzoo Setia
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aman Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
7
|
Mittal K, Crump D, Basu N. A comparative study of 3 alternative avian toxicity testing methods: Effects on hepatic gene expression in the chicken embryo. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2546-2555. [PMID: 31386763 DOI: 10.1002/etc.4555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
There is growing interest in developing alternative methods to screen and prioritize chemical hazards, although few studies have compared responses across different methods. The objective of the present study was to compare 3 alternative liver methods derived from white Leghorn chicken (Gallus gallus domesticus): primary hepatocyte culture, liver slices, and liver from in ovo injected embryos. We examined hepatic gene expression changes after exposure to 3 chemicals (17β-trenbolone [17βT], 17β-estradiol [E2], and 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) using a custom quantitative polymerase chain reaction (qPCR) array with 7 genes (vitellogenin [VTG], apolipoprotein [Apo], cytochrome P450 1A4 [CYP1A4], liver basic fatty acid binding protein [LBFABP], 3β hydroxysteroid dehydrogenase [HSD3β1], stearoyl coenzyme A desaturase [SCD], and estrogen sulfotransferase [SULT1E1]). Gene expression across the 3 methods was examined using hierarchical clustering. Up-regulation of CYP1A4 in response to TCDD was consistent across all methods, and the magnitude was higher in hepatocytes (>150-fold) compared with slices (>31-fold) and in ovo liver (>27-fold). In hepatocytes, SCD and VTG up-regulation in response to 17βT and E2 was >4-fold and 16-fold, respectively. The rank order of cases with significant changes in gene expression among the 3 methods was: hepatocytes (22) > in ovo liver (11) > liver slices (6). Hierarchical clustering grouped liver slices and in ovo liver as more similar, whereas hepatocytes were grouped separately from in ovo liver. More introspective comparisons are needed to understand how and why alternative methods differ and to aid in their integration into toxicity testing. Environ Toxicol Chem 2019;38:2546-2555. © 2019 SETAC.
Collapse
Affiliation(s)
- Krittika Mittal
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Shen Y, Zhang J, Xie J, Liu J. In vitro assessment of corticosteroid effects of eight chiral herbicides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:91-102. [PMID: 31524045 DOI: 10.1080/03601234.2019.1665408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Information regarding the enantioselective endocrine disruption of chiral herbicides is scarce. This study assessed the disrupting effects of eight typical chiral herbicides on corticosteroids (including glucocorticoids and mineralocorticoids). Enantioselectivity of eight chiral herbicides were evaluated for their agonistic/antagonistic effects on glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) with CHOK1 cell line using reporter gene assay. Their influence on the production of corticosteroids were further investigated in H295R cell line using enzyme-linked immunosorbent assay (ELISA). None of the racemates or enantiomers of eight chiral herbicides exhibited GR or MR agonistic activity at non-cytotoxic concentrations. However, rac-propisochlor and S-imazamox antagonized cortisol-induced transactivation of GR by 21.79% and 38.73% at the concentration of 1.0 × 10-7 M and 1.0 × 10-6 M, respectively, and R-napropamide remarkably attenuated aldosterone-induced MR transactivation by 68.78% at 1.0 × 10-6 M. The secretion of cortisol was significantly restrained after treated with 1.0 × 10-6 M rac-propisochlor and rac-/R-napropamide at the concentration of 1.0 × 10-6 M by 26.49%, 30.10% and 35.27%, respectively, while this glucocorticoid was remarkably induced by 1.0 × 10-5 M rac-diclofop-methyl and its two enantiomers at the concentration of 1.0 × 10-5 M by 75.60%, 100.1% and 68.78%, respectively. Exposure to rac-propisochlor (1.0 × 10-6 M), S-diclofop-methyl (1.0 × 10-5 M) or rac-/S-/R- acetochlor (1.0 × 10-6 M) and rac-/S-/R-lactofen (1.0 × 10-6 M) inhibited the secretion of aldosterone by approximately 40%. Our findings suggested that chiral herbicides disrupted corticosteroid homeostasis in an enantioselective way. Therefore, more comprehensive screening is required to better understand the ecological and health risks of chiral pesticides.
Collapse
Affiliation(s)
- Yuqing Shen
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jianyun Zhang
- Department of Public Health, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Hurtado-Gonzalez P, Anderson RA, Macdonald J, van den Driesche S, Kilcoyne K, Jørgensen A, McKinnell C, Macpherson S, Sharpe RM, Mitchell RT. Effects of Exposure to Acetaminophen and Ibuprofen on Fetal Germ Cell Development in Both Sexes in Rodent and Human Using Multiple Experimental Systems. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047006. [PMID: 29665328 PMCID: PMC6071829 DOI: 10.1289/ehp2307] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Analgesic exposure during pregnancy may affect aspects of fetal gonadal development that are targeted by endocrine disruptors. OBJECTIVES We investigated whether therapeutically relevant doses of acetaminophen and ibuprofen affect germ cell (GC) development in human fetal testes/ovaries using in vitro and xenograft approaches. METHODS First-trimester human fetal testes/ovaries were cultured and exposed to acetaminophen or ibuprofen (7 d). Second-trimester human fetal testes were xenografted into mice and exposed to acetaminophen (1 or 7 d), or ibuprofen (7 d). To determine mechanism of action, a human GC tumor–derived cell line (NTera2) exhibiting fetal GC characteristics was used in addition to in vitro and in vivo rat models. RESULTS AND DISCUSSION Gonocyte (TFAP2C+) number was reduced relative to controls in first-trimester human fetal testes exposed in vitro to acetaminophen (-28%) or ibuprofen (-22%) and also in ovaries exposed to acetaminophen (-43%) or ibuprofen (-49%). Acetaminophen exposure reduced gonocyte number by 17% and 30% in xenografted second-trimester human fetal testes after treatment of host mice for 1 or 7 d, respectively. NTera2 cell number was reduced following exposure to either analgesic or prostaglandin E2 (PGE2) receptor antagonists, whereas PGE2 agonists prevented acetaminophen-induced reduction in NTera2 cell number. Expression of GC pluripotency genes, and genes that regulate DNA/histone methylation, also differed from controls following analgesic and PGE2 receptor antagonist exposures. Gene expression changes were observed in rat fetal testis/ovary cultures and after in vivo acetaminophen exposure of pregnant rats. For example, expression of the epigenetic regulator TET1, was increased following exposure to acetaminophen in human NTera2 cells, rat fetal testis/ovary cultures, and in fetal testes and ovaries after in vivo exposure of pregnant rats, indicating translatability across experimental models and species. CONCLUSIONS Our results demonstrate evidence of PGE2-mediated effects of acetaminophen and ibuprofen on GC/NTera2 cells, which raises concerns about analgesic use during human pregnancy that warrant further investigation. https://doi.org/10.1289/EHP2307.
Collapse
Affiliation(s)
- Pablo Hurtado-Gonzalez
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joni Macdonald
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sander van den Driesche
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen Kilcoyne
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Chris McKinnell
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sheila Macpherson
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard M Sharpe
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rod T Mitchell
- Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Li F, Miao X, Chen Y, Curry TE. CXADR-like membrane protein (CLMP) in the rat ovary: stimulation by human chorionic gonadotrophin during the periovulatory period. Reprod Fertil Dev 2017; 28:742-9. [PMID: 25400132 DOI: 10.1071/rd14201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/17/2014] [Indexed: 01/20/2023] Open
Abstract
CXADR-like membrane protein (CLMP) is a novel cell-cell adhesion molecule. The present study investigated the spatiotemporal expression pattern of CLMP and its regulation in the rat ovary during the periovulatory period. Real-time polymerase chain reaction analysis revealed that Clmp mRNA was rapidly stimulated in intact ovaries by 4h after human chorionic gonadotrophin (hCG) treatment. In situ hybridisation analysis demonstrated that Clmp mRNA expression was stimulated in theca cells at 4h after hCG and remained elevated until 12h. Clmp mRNA was also upregulated in granulosa cells and was present in forming corpora lutea. Our data indicate that the protein kinase A but not the protein kinase C pathway regulates the expression of Clmp mRNA in granulosa cells. Phosphatidylinositol 3 kinase and p38 kinase are also involved in regulating Clmp mRNA expression. The stimulation of Clmp mRNA by hCG requires new protein synthesis. Furthermore, inhibition of epidermal growth factor receptor activation significantly inhibited Clmp mRNA expression, whereas inhibition of prostaglandin synthesis or progesterone action had no effect. The stimulation of CLMP in the rat ovary may be important in cell adhesion events during ovulation and luteal formation such as maintaining the structure and communication of ovarian follicular and luteal cells.
Collapse
Affiliation(s)
- Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Xiaoping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Yonglong Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
11
|
Yang Y, Ye X, He B, Liu J. Cadmium potentiates toxicity of cypermethrin in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:435-445. [PMID: 26267556 DOI: 10.1002/etc.3200] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 08/09/2015] [Indexed: 06/04/2023]
Abstract
Co-occurrence of pesticides such as synthetic pyrethroids and metals in aquatic ecosystems raises concerns over their combined ecological effects. Cypermethrin, 1 of the top 5 synthetic pyrethroids in use, has been extensively detected in surface water. Cadmium (Cd) has been recognized as 1 of the most toxic metals and is a common contaminant in the aquatic system. However, little information is available regarding their joint toxicity. In the present study, combined toxicity of cypermethrin and Cd and the underlying mechanisms were investigated. Zebrafish embryos and adults were exposed to the individual contaminant or binary mixtures. Co-exposure to cypermethrin and Cd produced synergistic effects on the occurrence of crooked body, pericardial edema, and noninflation of swim bladder. The addition of Cd significantly potentiated cypermethrin-induced spasms and caused more oxidative stress in zebrafish larvae. Cypermethrin-mediated induction of transcription levels and catalytic activities of cytochrome P450 (CYP) enzyme were significantly down-regulated by Cd in both zebrafish larvae and adults. Chemical analytical data showed that in vitro elimination of cypermethrin by CYP1A1 was inhibited by Cd. The addition of Cd caused an elevation of in vivo cypermethrin residue levels in the mixture-exposed adult zebrafish. These results suggest that the enhanced toxicity of cypermethrin in the presence of Cd results from the inhibitory effects of Cd on CYP-mediated biotransformation of this pesticide. The authors' findings provide a deeper understanding of the mechanistic basis accounting for the joint toxicity of cypermethrin and Cd.
Collapse
Affiliation(s)
- Ye Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Buyuan He
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Anti-Müllerian hormone and lifestyle, reproductive, and environmental factors among women in rural South Africa. Epidemiology 2016; 26:429-35. [PMID: 25710247 DOI: 10.1097/ede.0000000000000265] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Few data exist regarding anti-Müllerian hormone, a marker of ovarian reserve, in relation to environmental factors with potential ovarian toxicity. METHODS This analysis included 420 women from Limpopo, South Africa studied in 2010-2011. Women were administered comprehensive questionnaires, and plasma concentrations of anti-Müllerian hormone and dichlorodiphenyltrichloroethane were determined. We used separate multivariable models to examine the associations between natural log-transformed anti-Müllerian hormone concentration (ng/ml) and each of the lifestyle, reproductive, and environmental factors of interest, adjusted for age, body mass index, education, and parity. RESULTS The median age of women was 24 years (interquartile range [IQR] = 22 to 26); the median anti-Müllerian hormone concentration was 3.1 ng/ml (IQR = 2.0 to 6.0). Women who reported indoor residual spraying in homes with painted walls (indicative of exposure to pyrethroids) had 25% lower (95% confidence interval [CI] = -39%, -8%) anti-Müllerian hormone concentrations compared with women who reported no spraying. Little evidence of decreased anti-Müllerian hormone concentrations was observed among women with the highest dichlorodiphenyltrichloroethane levels. Compared with women who used an electric stove, no association was observed among women who cooked indoors over open wood fires. The findings also suggested lower anti-Müllerian hormone concentrations among women who drank coffee (-19% [95% CI = -31%, -5%]) or alcohol (-21% [95% CI = -36%, -3%]). CONCLUSIONS These are among the first data regarding anti-Müllerian hormone concentrations relative to pesticides and indoor air pollution. Our results are suggestive of decreased ovarian reserve associated with exposure to pyrethroid pesticides, which is consistent with laboratory animal data.
Collapse
|
13
|
Zhang J, Zhang J, Liu R, Gan J, Liu J, Liu W. Endocrine-Disrupting Effects of Pesticides through Interference with Human Glucocorticoid Receptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:435-443. [PMID: 26647222 DOI: 10.1021/acs.est.5b03731] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many pesticides have been identified as endocrine-disrupting chemicals (EDCs) due to their ability to bind sex-steroid hormone receptors. However, little attention has been paid to the ability of pesticides to interfere with other steroid hormone receptors such as glucocorticoid receptor (GR) that plays a critical role in metabolic, endocrine, immune, and nervous systems. In this study, the glucocorticoidic and antiglucocorticoidic effects of 34 pesticides on human GR were investigated using luciferase reporter gene assay. Surprisingly, none of the test chemicals showed GR agonistic activity, but 12 chemicals exhibited apparent antagonistic effects. Bifenthrin, λ-cyhalothrin, cypermethrin, resmethrin, o,p'-DDT, p,p'-DDT, methoxychlor, ethiofencarb, and tolylfluanid showed remarkable GR antagonistic properties with RIC20 values lower than 10(-6) M. The disruption of glucocorticoid-responsive genes in H4IIE and J774A.1 cells was further evaluated on these 12 GR antagonists. In H4IIEcells, four organochlorine insecticides, bifenthrin, and 3-PBA decreased cortisol-induced PEPCK gene expression, while o,p'-DDT and methoxychlor inhibited cortisol-stimulated Arg and TAT gene expression. Cypermethrin and tolyfluanid attenuated cortisol-induced TAT expression. In J774A.1 cells, λ-cyhalothrin, resmethrin, 3-PBA, o,p'-DDT, p,p'-DDT, p,p'-DDE, methoxychlor- and tolylfluanid-reduced cortisol-stimulated GILZ expression. Furthermore, molecular docking simulation indicated that different interactions may stabilize the binding between molecules and GR. Our findings suggest that comprehensive screening and evaluation of GR antagonists and agonists should be considered to better understand the health and ecological risks of man-made chemicals such as pesticides.
Collapse
Affiliation(s)
| | | | | | - Jay Gan
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | | | | |
Collapse
|
14
|
Yao Y, Wu Y, Wang Y, Verginelli I, Zeng T, Suuberg EM, Jiang L, Wen Y, Ma J. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11577-85. [PMID: 26322369 PMCID: PMC5283090 DOI: 10.1021/acs.est.5b01314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
At petroleum vapor intrusion (PVI) sites at which there is significant methane generation, upward advective soil gas transport may be observed. To evaluate the health and explosion risks that may exist under such scenarios, a one-dimensional analytical model describing these processes is introduced in this study. This new model accounts for both advective and diffusive transport in soil gas and couples this with a piecewise first-order aerobic biodegradation model, limited by oxygen availability. The predicted results from the new model are shown to be in good agreement with the simulation results obtained from a three-dimensional numerical model. These results suggest that this analytical model is suitable for describing cases involving open ground surface beyond the foundation edge, serving as the primary oxygen source. This new analytical model indicates that the major contribution of upward advection to indoor air concentration could be limited to the increase of soil gas entry rate, since the oxygen in soil might already be depleted owing to the associated high methane source vapor concentration.
Collapse
Affiliation(s)
- Yijun Yao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yun Wu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yue Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Via del Politecnico, 1 00133 Rome, Italy
| | - Tian Zeng
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | | | - Lin Jiang
- Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Yuezhong Wen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Corresponding author: Phone: +86-571-88982470; fax: +86-571-88982470; (Wen, Y); Phone: +86-10-89744284; fax: +86-10-89734285; (Ma, J)
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
- Corresponding author: Phone: +86-571-88982470; fax: +86-571-88982470; (Wen, Y); Phone: +86-10-89744284; fax: +86-10-89734285; (Ma, J)
| |
Collapse
|
15
|
Liu J, Xiong K, Ye X, Zhang J, Yang Y, Ji L. Toxicity and bioaccumulation of bromadiolone to earthworm Eisenia fetida. CHEMOSPHERE 2015; 135:250-256. [PMID: 25965004 DOI: 10.1016/j.chemosphere.2015.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Bromadiolone, a potent second-generation anticoagulant rodenticide, has been extensively used worldwide for the field control of rodents. Invertebrates may be at risk from primary poisoning as a result of bromadiolone bait applications. However, there are few data regarding the toxicity and bioaccumulation of bromadiolone to earthworms. In this study, we reported that bromadiolone was toxic to earthworms at 1mg/kg soil, which is a likely concentration in the field following application of bromadiolone baits. Exposure to bromadiolone resulted in a significant inhibition of earthworm growth. The antioxidant activities of superoxide dismutase and catalase were slightly increased in earthworms, while malondialdehyde content (as a molecular marker indicative of the damage to lipid peroxidation) was dominantly elevated over the duration of exposure. Bromadiolone in soil is bioaccumulative to earthworms. The biota to soil accumulation factors (BSAFs) of bromadiolone were concentration dependent and BSAFs decreased as the level of bromadiolone in soil increased. These results suggest earthworms are not only the potential subject to primary poisoning but also the source of secondary exposure for insectivores and scavengers following application of bromadiolone.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kang Xiong
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianyun Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ye Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Ji
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Deleterious effects of benomyl and carbendazim on human placental trophoblast cells. Reprod Toxicol 2014; 51:64-71. [PMID: 25530041 DOI: 10.1016/j.reprotox.2014.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
Abstract
Benomyl and carbendazim are benzimidazole fungicides that are used throughout the world against a wide range of fungal diseases of agricultural products. There is as yet little information regarding the toxicity of benzimidazole fungicides to human placenta. In this study, we utilized human placental trophoblast cell line HTR-8/SVneo (HTR-8) to access the toxic effects of benomyl and carbendazim. Our data showed that these two fungicides decreased cell viability and the percentages of cells in G0/G1 phase, as well as induced apoptosis of HTR-8 cells. The invasion and migration of HTR-8 cells were significantly inhibited by benomyl and carbendazim. We further found that benomyl and carbendazim altered the expression of protease systems (MMPs/TIPMs and uPA/PAI-1) and adhesion molecules (integrin α5 and β1) in HTR-8 cells. Our present study firstly shows the deleterious effects of benomyl and carbendazim on placental cells and suggests a potential risk of benzimidazole fungicides to human reproduction.
Collapse
|
17
|
Zhou J, Yang Y, Xiong K, Liu J. Endocrine disrupting effects of dichlorodiphenyltrichloroethane analogues on gonadotropin hormones in pituitary gonadotrope cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1194-1201. [PMID: 24814263 DOI: 10.1016/j.etap.2014.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
It has been shown that exposure to dichlorodiphenyltrichloroethane (DDT) analogues leads to disharmony of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). However, the effects and mechanisms of DDT analogues on the expression of gonadotropin genes (FSHβ, LHβ and Cgα), which is the rate-limiting step of FSH and LH biosynthesis, remain unknown. In this study, we assessed the effects of p,p'-DDT, o,p'-DDT, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and methoxychlor (MXC) on gonadotropin genes expression and hormones synthesis in gonadotrope cells. p,p'-DDT and MXC at test concentrations ranging from 10(-9) to 10(-7)mol/L, stimulated gonadotropin genes expression and hormones synthesis in a dose-dependent manner. The activation of extracellular signal-regulated kinase (ERK) was required for the induction of gonadotropin genes expression and hormones synthesis by p,p'-DDT or MXC exposure. This study showed for the first time that p,p'-DDT and MXC regulated gonadotropin genes expression and hormones synthesis through ERK pathway in gonadotrope cells.
Collapse
Affiliation(s)
- Jinghua Zhou
- MOE Key Lab of Environmental Remediation and Ecosystem Health, Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ye Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kang Xiong
- MOE Key Lab of Environmental Remediation and Ecosystem Health, Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Yang Y, Ma H, Zhou J, Liu J, Liu W. Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. CHEMOSPHERE 2014; 96:146-154. [PMID: 24184047 DOI: 10.1016/j.chemosphere.2013.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 06/02/2023]
Abstract
Pyrethroids, the widely used pesticides, are highly toxic to aquatic organisms. However, little information is so far available regarding the joint toxicity of type I and type II pyrethroids to fish. Zebrafish is a well-accepted aquatic vertebrate model for toxicity assessment due to small size, easy husbandry, high fecundity and transparent embryos. In this study, we utilized embryo-larval zebrafish to elucidate the combined effects of sublethal concentrations of permethrin (PM) and cypermethrin (CP), which are the most frequently used type I and type II pyrethroids, respectively. Fish were exposed from 3h postfertilization (hpf) to 144 hpf to binary mixtures of nominal concentrations of 100, 200, 300μgL(-1) PM (PM100, PM200, PM300) and 10, 20, 30μgL(-1) CP (CP10, CP20, CP30). Analytical data of the real concentrations of the chemicals showed a significant degradation of the pyrethroids but an obvious recovery after the renewal of the exposure solution. Defect rates of embryos exposed to these low concentrations of single PM or CP exhibited no statistically significant difference from the control,while the application of combination of PM and CP resulted in deleterious effects on zebrafish embryonic development. In all PM200 and PM300 exposure groups, increasing CP concentrations acted additively to the action of PM in terms of all sublethal endpoints. Co-treatment of embryos with the specific sodium channel blocker MS-222 and pyrethroids (individuals or the mixture) caused a decline in the incidences of body axis curvature and spasms compared to treatment of animals with pyrethroids alone, suggesting that the developmental toxicity of PM and CP to zebrafish was related to disruption of ion channels. We further revealed that mixture of the two pyrethroids caused greater down-regulation in the mRNA levels of proneural genes. The individual pesticides had no effect on the activity of superoxide dismutase (SOD), while the mixture exposure caused significant induction. Treatment with CP or the mixture increased the activity of catalase (CAT). Taken together, our data indicated that the mixture of PM and CP caused higher incidence of morphological defects, greater inhibition in proneural gene expression and more oxidative stress, compared to the single chemical at the corresponding doses. Our findings suggest that the combination of type I and type II pyrethroids poses a greater risk to fish in the water column.
Collapse
Affiliation(s)
- Ye Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|