1
|
Zheng M, Wang Y, Wang P, Tan X, Chen H, Zhang X, Zu G. Asiaticoside protects against lung injury induced by intestinal ischemia/reperfusion via the upregulation of FoxM1. Int Immunopharmacol 2024; 143:113405. [PMID: 39427498 DOI: 10.1016/j.intimp.2024.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Systemic inflammatory response syndrome and respiratory distress syndrome can be induced by lung injury caused by intestinal ischemia/reperfusion (II/R). There is no effective medical treatment for II/R-induced lung injury. Studies have shown that asiaticoside (AS) protects against lung injury and ischemia/reperfusion injury in several organs. We established a rat II/R damage model and collected lung tissue. Six groups (n = 10) were created: (1) the sham group; (2) the II/R group; (3) the II/R + AS (40) group; (4) the II/R + AS (80) group; (5) the II/R + TST group; and (6) the II/R + AS + TST group. To assess the degree of lung damage induced by II/R, we also evaluated HE staining, the wet/dry ratio, oxidative stress, inflammation and apoptosis in the lung tissues. Our results indicated that the severity of lung injury score, wet/dry ratio, oxidative stress, inflammatory factor expression and amount of apoptosis were greater in the II/R-induced lung injury group than in the sham group. Furthermore, when AS was administered, lung injury, oxidative stress, inflammation and amount of apoptosis in the lung tissues were obviously lower than those in the II/R group. Additionally, compared with that in the sham group, the expression of FoxM1 in the lung tissue in the II/R group was significantly greater, and FoxM1 expression in the lung tissue was significantly greater following AS administration. Compared with the AS alone, the administration of thiostrepton (a FoxM1 inhibitor) and AS exacerbated the lung damage induced by II/R. According to our research, AS prevents the lung damage induced by II/R by reducing oxidative stress, inflammation and apoptosis by activating FoxM1 expression.
Collapse
Affiliation(s)
- Mingcan Zheng
- Department of Gastroenterology Surgery, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian 116033, China; Department of Graduate School, Dalian Medical University, Dalian 116044, China
| | - Yuhang Wang
- Department of Gastroenterology Surgery, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian 116033, China; Department of Graduate School, Dalian Medical University, Dalian 116044, China
| | - Puxu Wang
- Department of Gastroenterology Surgery, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian 116033, China; Department of Graduate School, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Tan
- Department of Pancreas and Thyroid Ward, China Medical University, Shenyang 110136, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Xiangwen Zhang
- Department of Gastroenterology Surgery, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian 116033, China
| | - Guo Zu
- Department of Gastroenterology Surgery, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian 116033, China.
| |
Collapse
|
2
|
Chen T, Ni M, Wang H, Xue F, Jiang T, Wu X, Li C, Liang S, Hong L, Wu Q. The Reparative Effect of FOXM1 in Pulmonary Disease. Lung 2024; 203:1. [PMID: 39601876 DOI: 10.1007/s00408-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
FOXM1, a key member of the FOX transcription factor family, maintains cell homeostasis by accurately controlling diverse biological processes, such as proliferation, cell cycle progression, differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, redox signaling, and drug resistance. In recent years, an increasing number of studies have focused on the role of FOXM1 in the occurrence of multiple diseases and various pathophysiological processes. In the field of pulmonary diseases, FOXM1 has a certain reparative effect by promoting cell proliferation, regulating cell cycle, antifibrosis, participating in inflammation regulation, and synergizing with other signaling pathways. On the basis of the repair properties of FOXM1, this review explores its therapeutic potential in acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, lung cancer, and other lung diseases, with the goal of providing a new perspective for the analysis of FOXM1-related mechanism of action and the expansion of clinical treatment strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Ming Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Hao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Fei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Xuanpeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Chenxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Shuhao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Leyu Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
3
|
Zhu X, Meng L, Xu L, Hua Y, Feng J. Novel Therapeutic Target for ALI/ARDS: Forkhead Box Transcription Factors. Lung 2024; 202:513-522. [PMID: 39259274 DOI: 10.1007/s00408-024-00740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
ALI/ARDS can be a pulmonary manifestation of a systemic inflammatory response or a result of overexpression of the body's normal inflammatory response involving various effector cells, cytokines, and inflammatory mediators, which regulate the body's immune response through different signalling pathways. Forkhead box transcription factors are evolutionarily conserved transcription factors that play a crucial role in various cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism, and DNA damage response. Transcription factors control protein synthesis by regulating gene transcription levels, resulting in diverse biological outcomes. The Fox family plays a role in activating or inhibiting the expression of various molecules related to ALI/ARDS through phosphorylation, acetylation/deacetylation, and control of multiple signalling pathways. An in-depth analysis of the integrated Fox family's role in ALI/ARDS can aid in the development of potential diagnostic and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Leyuan Meng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Yun Hua
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
4
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
5
|
Jin H, Zhao Y, Yao Y, Zhao J, Luo R, Fan S, Wei Y, Ouyang S, Peng W, Zhang Y, Pi J, Huang G. Therapeutic effects of tea polyphenol-loaded nanoparticles coated with platelet membranes on LPS-induced lung injury. Biomater Sci 2023; 11:6223-6235. [PMID: 37529873 DOI: 10.1039/d3bm00802a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Patients with ALI (acute lung injury)/ARDS (acute respiratory distress syndrome) are often septic and with poor prognosis, which leads to a high mortality rate of 25-40%. Despite the advances in medicine, there are no effective pharmacological therapies for ALI/ARDS due to the short systemic circulation and poor specificity in the lungs. To address this problem, we prepared TP-loaded nanoparticles (TP-NPs) through the emulsification-and-evaporation method, and then the platelet membrane vesicles were extracted and coated onto the surface of the NPs to constitute the biomimetic PM@TP-NPs. In a LPS-induced ALI mouse model, PM@TP-NPs showed good biocompatibility and biosafety, which was evidenced by no significant toxic effect on cell viability and no hemolysis of red blood cells. In ALI mice, the PM@TP-NPs showed favorable anti-inflammation and enhanced therapeutic activity of TPs compared to the free drug. Administration of PM@TP-NPs effectively inhibited lung vascular injury, evidenced by the decreased lung vascular permeability, reduced pro-inflammatory cytokine burden, evidenced by decreased inflammatory cell (macrophages, neutrophils, etc.) infiltration in the bronchoalveolar lavage fluid (BALF) and lung tissues, and inhibited the secretion of pro-inflammatory cytokines and NLRP3 inflammasome activation. ALI/ARDS is defined by damage to the alveolar epithelium and endothelium; thus, effective intervention targeting pulmonary vascular endothelial cells (VECs) is crucial for the treatment of respiratory diseases. For further determination of the targeting of PM cloaked NPs, healthy mice were also administered with the same NPs. Interestingly, the PM cloaked NPs only showed highly efficient targeting to the inflamed lungs and VECs, but no accumulation in healthy lungs and VECs. The data demonstrated that this biomimetic nanoplatform could be used as a potential strategy for personalized therapies in the treatment of inflammatory diseases, such as ALI/ARDS, and even COVID-19-associated pneumonia.
Collapse
Affiliation(s)
- Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yue Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yinlian Yao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jin Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Renxing Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shilong Fan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yanlan Wei
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Wanqing Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yumin Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jiang Pi
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
6
|
Huang X, Zhang X, Machireddy N, Evans CE, Trewartha SD, Hu G, Fang Y, Mutlu GM, Wu D, Zhao YY. Endothelial FoxM1 reactivates aging-impaired endothelial regeneration for vascular repair and resolution of inflammatory lung injury. Sci Transl Med 2023; 15:eabm5755. [PMID: 37585502 PMCID: PMC10894510 DOI: 10.1126/scitranslmed.abm5755] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Aging is a major risk factor of high incidence and increased mortality of acute respiratory distress syndrome (ARDS). Here, we demonstrated that persistent lung injury and high mortality in aged mice after sepsis challenge were attributable to impaired endothelial regeneration and vascular repair. Genetic lineage tracing study showed that endothelial regeneration after sepsis-induced vascular injury was mediated by lung resident endothelial proliferation in young adult mice, whereas this intrinsic regenerative program was impaired in aged mice. Expression of forkhead box M1 (FoxM1), an important mediator of endothelial regeneration in young mice, was not induced in lungs of aged mice. Transgenic FOXM1 expression or in vivo endothelium-targeted nanoparticle delivery of the FOXM1 gene driven by an endothelial cell (EC)-specific promoter reactivated endothelial regeneration, normalized vascular repair and resolution of inflammation, and promoted survival in aged mice after sepsis challenge. In addition, treatment with the FDA-approved DNA demethylating agent decitabine was sufficient to reactivate FoxM1-dependent endothelial regeneration in aged mice, reverse aging-impaired resolution of inflammatory injury, and promote survival. Mechanistically, aging-induced Foxm1 promoter hypermethylation in mice, which could be inhibited by decitabine treatment, inhibited Foxm1 induction after sepsis challenge. In COVID-19 lung autopsy samples, FOXM1 was not induced in vascular ECs of elderly patients in their 80s, in contrast with middle-aged patients (aged 50 to 60 years). Thus, reactivation of FoxM1-mediated endothelial regeneration and vascular repair may represent a potential therapy for elderly patients with ARDS.
Collapse
Affiliation(s)
- Xiaojia Huang
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Xianming Zhang
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Narsa Machireddy
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Colin E. Evans
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Shawn D. Trewartha
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Guochang Hu
- Departments of Anesthesiology and Pharmacology, University of Illinois College of Medicine, Chicago, IL60607, USA
| | - Yun Fang
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL60637, USA
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL60637, USA
| | - David Wu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL60637, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
- Department of Pharmacology
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| |
Collapse
|
7
|
Godoy RS, Cober ND, Cook DP, McCourt E, Deng Y, Wang L, Schlosser K, Rowe K, Stewart DJ. Single-cell transcriptomic atlas of lung microvascular regeneration after targeted endothelial cell ablation. eLife 2023; 12:e80900. [PMID: 37078698 PMCID: PMC10181823 DOI: 10.7554/elife.80900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/19/2023] [Indexed: 04/21/2023] Open
Abstract
We sought to define the mechanism underlying lung microvascular regeneration in a model of severe acute lung injury (ALI) induced by selective lung endothelial cell ablation. Intratracheal instillation of DT in transgenic mice expressing human diphtheria toxin (DT) receptor targeted to ECs resulted in ablation of >70% of lung ECs, producing severe ALI with near complete resolution by 7 days. Using single-cell RNA sequencing, eight distinct endothelial clusters were resolved, including alveolar aerocytes (aCap) ECs expressing apelin at baseline and general capillary (gCap) ECs expressing the apelin receptor. At 3 days post-injury, a novel gCap EC population emerged characterized by de novo expression of apelin, together with the stem cell marker, protein C receptor. These stem-like cells transitioned at 5 days to proliferative endothelial progenitor-like cells, expressing apelin receptor together with the pro-proliferative transcription factor, Foxm1, and were responsible for the rapid replenishment of all depleted EC populations by 7 days post-injury. Treatment with an apelin receptor antagonist prevented ALI resolution and resulted in excessive mortality, consistent with a central role for apelin signaling in EC regeneration and microvascular repair. The lung has a remarkable capacity for microvasculature EC regeneration which is orchestrated by newly emergent apelin-expressing gCap endothelial stem-like cells that give rise to highly proliferative, apelin receptor-positive endothelial progenitors responsible for the regeneration of the lung microvasculature.
Collapse
Affiliation(s)
- Rafael Soares Godoy
- Ottawa Hospital Research InstituteOttawaCanada
- Sinclair Centre for Regenerative MedicineOttawaCanada
| | - Nicholas D Cober
- Ottawa Hospital Research InstituteOttawaCanada
- Sinclair Centre for Regenerative MedicineOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - David P Cook
- Ottawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | | | - Yupu Deng
- Ottawa Hospital Research InstituteOttawaCanada
- Sinclair Centre for Regenerative MedicineOttawaCanada
| | - Liyuan Wang
- Ottawa Hospital Research InstituteOttawaCanada
- Sinclair Centre for Regenerative MedicineOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Kenny Schlosser
- Ottawa Hospital Research InstituteOttawaCanada
- Sinclair Centre for Regenerative MedicineOttawaCanada
| | - Katelynn Rowe
- Ottawa Hospital Research InstituteOttawaCanada
- Sinclair Centre for Regenerative MedicineOttawaCanada
| | - Duncan J Stewart
- Ottawa Hospital Research InstituteOttawaCanada
- Sinclair Centre for Regenerative MedicineOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
8
|
Chen Z, Zheng B, Zhang Z, Huang Z. Protective role of FBXL19 in Streptococcus pneumoniae-induced lung injury in pneumonia immature mice. J Cardiothorac Surg 2023; 18:92. [PMID: 36964598 PMCID: PMC10037874 DOI: 10.1186/s13019-023-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/12/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE Streptococcus pneumoniae (Spn) is a common pathogen for pediatric pneumonia and leads to severe lung injury. This study is conducted to analyze the role of F-box and leucine rich repeat protein 19 (FBXL19) in Spn-induced lung injury in immature mice. METHODS Immature mice were infected with Spn to record the survival rates and bacterial loads in bronchoalveolar lavage fluid. Levels of FBXL19 and FOXM1 in lung tissues were determined via real-time quantitative polymerase chain reaction or Western blotting. After the interference of FBXL19, its impacts on lung inflammatory injury were appraised by the lung wet/dry weight ratio, myeloperoxidase activity, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay. The binding of FBXL19 to forkhead box M1 (FOXM1) in mouse lung epithelial cells was determined. After MG132 treatment, the protein and ubiquitination levels of FOXM1 were measured. The functional rescue experiments were performed to analyze the role of FOXM1 in FBXL19-regulated lung injury. RESULTS FBXL19 was downregulated while FOXM1 was upregulated in lung tissues of Spn-infected immature mice. Overexpression of FBXL19 reduced the degree of lung injury and inflammation. FBXL19 can bind to FOXM1 to reduce its protein level via ubiquitination degradation. MG132 reduced the ubiquitination and increased the protein level of FOXM1. Overexpression of FOXM1 reversed the protective role of FBXL19 overexpression in lung injury of Spn immature mice. CONCLUSION FBXL19 was downregulated by Spn and FBXL19 overexpression alleviated lung injury by inducing ubiquitination and degradation of FOXM1 in Spn immature mice.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China.
| | - Bijuan Zheng
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhiwei Zhang
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhiyong Huang
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| |
Collapse
|
9
|
Luo Y, Ge S, Chen Q, Lin S, He W, Zeng M. Overexpression of FoxM1 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on acute respiratory distress syndrome. Stem Cell Res Ther 2023; 14:27. [PMID: 36788588 PMCID: PMC9926819 DOI: 10.1186/s13287-023-03240-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Injury of alveolar epithelial cells and capillary endothelial cells is crucial in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) are a promising cell source for ALI/ARDS treatment. Overexpression of Fork head box protein M1 (FoxM1) facilitates MSC differentiation into alveolar type II (AT II) cells in vitro. Moreover, FoxM1 has been shown to repair the endothelial barrier. Therefore, this study explored whether overexpression of FoxM1 promotes the therapeutic effect of bone marrow-derived MSCs (BMSCs) on ARDS by differentiation of BMSCs into AT II cells or a paracrine mechanism. METHODS A septic ALI model was established in mice by intraperitoneal administration of lipopolysaccharide. The protective effect of BMSCs-FoxM1 on ALI was explored by detecting pathological variations in the lung, total protein concentration in bronchoalveolar lavage fluid (BALF), wet/dry (W/D) lung weight ratio, oxidative stress levels, cytokine levels, and retention of BMSCs in the lung. In addition, we assessed whether FoxM1 overexpression promoted the therapeutic effect of BMSCs on ALI/ARDS by differentiating into AT II cells using SPC-/- mice. Furthermore, the protective effect of BMSCs-FoxM1 on lipopolysaccharide-induced endothelial cell (EC) injury was explored by detecting EC proliferation, apoptosis, scratch wounds, tube formation, permeability, and oxidative stress, and analyzing whether the Wnt/β-catenin pathway contributes to the regulatory mechanism in vitro using a pathway inhibitor. RESULTS Compared with BMSCs-Vector, treatment with BMSCs-FoxM1 significantly decreased the W/D lung weight ratio, total BALF protein level, lung injury score, oxidative stress, and cytokine levels. With the detected track of BMSCs-FoxM1, we observed a low residency rate and short duration of residency in the lung. Notably, SPC was not expressed in SPC-/- mice injected with BMSCs-FoxM1. Furthermore, BMSCs-FoxM1 enhanced EC proliferation, migration, and tube formation; inhibited EC apoptosis and inflammation; and maintained vascular integrity through activation of the Wnt/β-catenin pathway, which was partially reversed by XAV-939. CONCLUSION Overexpression of FoxM1 enhanced the therapeutic effect of BMSCs on ARDS, possibly through a paracrine mechanism rather than by promoting BMSC differentiation into AT II cells in vivo, and prevented LPS-induced EC barrier disruption partially through activating the Wnt/β-catenin signaling pathway in vitro.
Collapse
Affiliation(s)
- Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Shanhui Ge
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
10
|
Luo Y, Lin S, Mao X, Yang Y, He W, Guo M, Zeng M. Overexpression of FoxM1 Enhanced the Protective Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Lipopolysaccharide-Induced Acute Lung Injury through the Activation of Wnt/ β-Catenin Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8324504. [PMID: 36820407 PMCID: PMC9938779 DOI: 10.1155/2023/8324504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Mesenchymal stem cell- (MSC-) based cell and gene therapies have made remarkable progress in alleviating acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the benefits of Forkhead box protein M1 (FoxM1) gene-modified MSCs in the treatment of ALI have not been studied. METHODS We evaluated the therapeutic effects of FoxM1-modified MSCs in ALI mice induced by lipopolysaccharide (LPS) by quantifying the survival rate, lung weight ratio (wet/dry), and contents of bronchoalveolar lavage fluid. In addition, microcomputed tomography, histopathology, Evans Blue assay, and quantification of apoptosis were performed. We also explored the underlying mechanism by assessing Wnt/β-catenin signaling following the treatment of mice with FoxM1-modified MSCs utilizing the Wnt/β-catenin inhibitor XAV-939. RESULTS Compared with unmodified MSCs, transplantation of FoxM1-modified MSCs improved survival and vascular permeability; reduced total cell counts, leukocyte counts, total protein concentrations, and inflammatory cytokines in BALF; attenuated lung pathological impairments and fibrosis; and inhibited apoptosis in LPS-induced ALI/ARDS mice. Furthermore, FoxM1-modified MSCs maintained vascular integrity during ALI/ARDS by upregulating Wnt/β-catenin signaling, which was partly reversed via a pathway inhibitor. CONCLUSION Overexpression of FoxM1 optimizes the treatment action of MSCs on ALI/ARDS by inhibiting inflammation and apoptosis and restoring vascular integrity partially through Wnt/β-catenin signaling pathway stimulation.
Collapse
Affiliation(s)
- Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongqiang Yang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Manliang Guo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Jin H, Luo R, Li J, Zhao H, Ouyang S, Yao Y, Chen D, Ling Z, Zhu W, Chen M, Liao X, Pi J, Huang G. Inhaled platelet vesicle-decoyed biomimetic nanoparticles attenuate inflammatory lung injury. Front Pharmacol 2022; 13:1050224. [PMID: 36523494 PMCID: PMC9745055 DOI: 10.3389/fphar.2022.1050224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/16/2022] [Indexed: 01/04/2024] Open
Abstract
Acute lung injury (ALI) is an inflammatory response which causes serious damages to alveolar epithelia and vasculature, and it still remains high lethality and mortality with no effective treatment. Based on the inflammatory homing of platelets and cell membrane cloaking nanotechnology, in this study we developed a biomimetic anti-inflammation nanoparticle delivery system for ALI treatment. PM@Cur-RV NPs were designed by combining the poly (lactic-co-glycolic acid) nanoparticles (NPs) coated with platelet membrane vesicles (PM) for the purpose of highly targeting delivery of curcumin (Cur) and resveratrol (RV) to inflammatory lungs. PM@Cur-RV NPs showed good biocompatibility and biosafety both in vitro and in vivo. Accumulation of NPs into lung tract was observed after inhaled NPs. Remarkably, the inhalation of PM@Cur-RV NPs effectively inhibited lung vascular injury evidenced by the decreased lung vascular permeability, and the reduced proinflammatory cytokine burden in an ALI mouse model. The analysis of infiltrated macrophages in the lungs showed that the Cur-RV-modulated macrophage polarized towards M2 phenotype and the decreased histone lactylation might contribute to their anti-inflammation effects. Together, this work highlights the potential of inhalation of biomimetic nanoparticle delivery of curcumin and resveratrol for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Renxing Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jianing Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongxia Zhao
- School of Biomedical and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yinlian Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dongyan Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zijie Ling
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Weicong Zhu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Meijun Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xianping Liao
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
12
|
Evans CE, Peng Y, Zhu MM, Dai Z, Zhang X, Zhao YY. Rabeprazole Promotes Vascular Repair and Resolution of Sepsis-Induced Inflammatory Lung Injury through HIF-1α. Cells 2022; 11:cells11091425. [PMID: 35563731 PMCID: PMC9105578 DOI: 10.3390/cells11091425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
There are currently no effective treatments for sepsis and acute respiratory distress syndrome (ARDS). The repositioning of existing drugs is one possible effective strategy for the treatment of sepsis and ARDS. We previously showed that vascular repair and the resolution of sepsis-induced inflammatory lung injury is dependent upon endothelial HIF-1α/FoxM1 signaling. The aim of this study was to identify a candidate inducer of HIF-1α/FoxM1 signaling for the treatment of sepsis and ARDS. Employing high throughput screening of a library of 1200 FDA-approved drugs by using hypoxia response element (HRE)-driven luciferase reporter assays, we identified Rabeprazole (also known as Aciphex) as a top HIF-α activator. In cultured human lung microvascular endothelial cells, Rabeprazole induced HIF1A mRNA expression in a dose-dependent manner. A dose-response study of Rabeprazole in a mouse model of endotoxemia-induced inflammatory lung injury identified a dose that was well tolerated and enhanced vascular repair and the resolution of inflammatory lung injury. Rabeprazole treatment resulted in reductions in lung vascular leakage, edema, and neutrophil sequestration and proinflammatory cytokine expression during the repair phrase. We next used Hif1a/Tie2Cre knockout mice and Foxm1/Tie2Cre knockout mice to show that Rabeprazole promoted vascular repair through HIF-1α/FoxM1 signaling. In conclusion, Rabeprazole is a potent inducer of HIF-1α that promotes vascular repair and the resolution of sepsis-induced inflammatory lung injury via endothelial HIF-1α/FoxM1 signaling. This drug therefore represents a promising candidate for repurposing to effectively treat severe sepsis and ARDS.
Collapse
Affiliation(s)
- Colin E. Evans
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (Y.P.); (M.M.Z.); (Z.D.); (X.Z.)
- Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (C.E.E.); (Y.-Y.Z.); Tel.: +1-(312)-503-7593 (Y.-Y.Z.)
| | - Yi Peng
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (Y.P.); (M.M.Z.); (Z.D.); (X.Z.)
- Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maggie M. Zhu
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (Y.P.); (M.M.Z.); (Z.D.); (X.Z.)
- Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (Y.P.); (M.M.Z.); (Z.D.); (X.Z.)
- Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xianming Zhang
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (Y.P.); (M.M.Z.); (Z.D.); (X.Z.)
- Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (Y.P.); (M.M.Z.); (Z.D.); (X.Z.)
- Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (C.E.E.); (Y.-Y.Z.); Tel.: +1-(312)-503-7593 (Y.-Y.Z.)
| |
Collapse
|
13
|
Ji W, Hu Q, Zhang M, Zhang C, Chen C, Yan Y, Zhang X, Chen S, Tao L, Zhang W, Jin Y, Duan G. The Disruption of the Endothelial Barrier Contributes to Acute Lung Injury Induced by Coxsackievirus A2 Infection in Mice. Int J Mol Sci 2021; 22:9895. [PMID: 34576058 PMCID: PMC8467819 DOI: 10.3390/ijms22189895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1β, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Qiang Hu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Mengdi Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Chuwen Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Chen Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Yujie Yan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Xue Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China;
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (Q.H.); (M.Z.); (C.Z.); (C.C.); (Y.Y.); (X.Z.); (S.C.)
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Yao C, Cao X, Yu B. Revascularization After Traumatic Spinal Cord Injury. Front Physiol 2021; 12:631500. [PMID: 33995118 PMCID: PMC8119644 DOI: 10.3389/fphys.2021.631500] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a complex pathological process. The initial mechanical damage is followed by a progressive secondary injury cascade. The injury ruptures the local microvasculature and disturbs blood-spinal cord barriers, exacerbating inflammation and tissue damage. Although endogenous angiogenesis is triggered, the new vessels are insufficient and often fail to function normally. Numerous blood vessel interventions, such as proangiogenic factor administration, gene modulation, cell transplantation, biomaterial implantation, and physical stimulation, have been applied as SCI treatments. Here, we briefly describe alterations and effects of the vascular system on local microenvironments after SCI. Therapies targeted at revascularization for SCI are also summarized.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
15
|
Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application to Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:52-65. [PMID: 33069720 PMCID: PMC7560161 DOI: 10.1016/j.ajpath.2020.10.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between the circulation and surrounding tissues and for preventing the development of vascular disease. Despite comprehensive understanding of the molecular mechanisms and signaling pathways that mediate endothelial injury, the regulatory mechanisms responsible for endothelial regeneration and vascular repair are incompletely understood and constitute an emerging area of research. Endogenous and exogenous reparative mechanisms serve to reverse vascular damage and restore endothelial barrier function through regeneration of a functional endothelium and re-engagement of endothelial junctions. In this review, mechanisms that contribute to endothelial regeneration and vascular repair are described. Targeting these mechanisms has the potential to improve outcome in diseases that are characterized by vascular injury, such as atherosclerosis, restenosis, peripheral vascular disease, sepsis, and acute respiratory distress syndrome. Future studies to further improve current understanding of the mechanisms that control endothelial regeneration and vascular repair are also highlighted.
Collapse
|
16
|
Huang X, Zhang X, Zhao DX, Yin J, Hu G, Evans CE, Zhao YY. Endothelial Hypoxia-Inducible Factor-1α Is Required for Vascular Repair and Resolution of Inflammatory Lung Injury through Forkhead Box Protein M1. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1664-1679. [PMID: 31121134 PMCID: PMC6680254 DOI: 10.1016/j.ajpath.2019.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/30/2022]
Abstract
Endothelial barrier dysfunction is a central factor in the pathogenesis of persistent lung inflammation and protein-rich edema formation, the hallmarks of acute respiratory distress syndrome. However, little is known about the molecular mechanisms that are responsible for vascular repair and resolution of inflammatory injury after sepsis challenge. Herein, we show that hypoxia-inducible factor-1α (HIF-1α), expressed in endothelial cells (ECs), is the critical transcriptional factor mediating vascular repair and resolution of inflammatory lung injury. After sepsis challenge, HIF-1α but not HIF-2α expression was rapidly induced in lung vascular ECs, and mice with EC-restricted disruption of Hif1α (Hif1af/f/Tie2Cre+) exhibited defective vascular repair, persistent inflammation, and increased mortality in contrast with the wild-type littermates after polymicrobial sepsis or endotoxemia challenge. Hif1af/f/Tie2Cre+ lungs exhibited marked decrease of EC proliferation during recovery after sepsis challenge, which was associated with inhibited expression of forkhead box protein M1 (Foxm1), a reparative transcription factor. Therapeutic restoration of endothelial Foxm1 expression, via liposomal delivery of Foxm1 plasmid DNA to Hif1af/f/Tie2Cre+ mice, resulted in reactivation of the vascular repair program and improved survival. Together, our studies, for the first time, delineate the essential role of endothelial HIF-1α in driving the vascular repair program. Thus, therapeutic activation of HIF-1α-dependent vascular repair may represent a novel and effective therapy to treat inflammatory vascular diseases, such as sepsis and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Xiaojia Huang
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Xianming Zhang
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - David X Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; Department of Medicine, University of Chicago, Chicago, Illinois
| | - Jun Yin
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
| | - Colin E Evans
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
17
|
Li Y, Wu F, Tan Q, Guo M, Ma P, Wang X, Zhang S, Xu J, Luo P, Jin Y. The multifaceted roles of FOXM1 in pulmonary disease. Cell Commun Signal 2019; 17:35. [PMID: 30992007 PMCID: PMC6469073 DOI: 10.1186/s12964-019-0347-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box M1 (FOXM1), a transcriptional regulator of G1/S and G2/M transition and M phase progression in the cell cycle, plays a principal role in many physiological and pathological processes. A growing number of studies have focused on the relationship between abnormal FOXM1 expression and pulmonary diseases, such as lung cancer, chronic obstructive pulmonary disease (COPD), asthma, acute lung injury (ALI), pulmonary fibrosis, and pulmonary arterial hypertension (PAH). These studies indicate that the FOXM1 regulatory network is a major predictor of poor outcomes, especially in lung cancer, and provide novel insight into various pulmonary diseases. For the first time, this review summarizes the mechanistic relationship between FOXM1 dysregulation and pulmonary diseases, the benefits of targeting abnormal FOXM1 expression, and the questions that remain to be addressed in the future.
Collapse
Affiliation(s)
- Yumei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xuan Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
18
|
Tian S, Lei I, Gao W, Liu L, Guo Y, Creech J, Herron TJ, Xian S, Ma PX, Eugene Chen Y, Li Y, Alam HB, Wang Z. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine 2019; 39:83-94. [PMID: 30552062 PMCID: PMC6354709 DOI: 10.1016/j.ebiom.2018.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Epigenetic histone acetylation is a major event controlling cell functions, such as metabolism, differentiation and repair. Here, we aim to determine whether Valproic acid (VPA), a FDA approved inhibitor of histone deacetylation for bipolar disease, could protect heart against myocardial infarction (MI) injury and elucidate key molecular pathways. METHODS VPA was administrated to MI rats at different time points, onset and after MI injury. Echocardiography, histology, serum biology assays, and gene expression, inhibition, and over-expression were performed to characterize the systolic function, infarct size, gene and signaling pathways. FINDINGS VPA treatment reduced the infarct size by ~50% and preserved the systolic function of heart after acute MI in rats. Even 60 min after infarction, VPA treatment significantly decreased infarct size. Furthermore, long-term treatment of VPA markedly improved myocardial performance. VPA regulated gene expression essential for cell survival and anti-inflammatory response. Consequently, oxidative stress and cell death were notably reduced after VPA treatment. Moreover, Foxm1 was identified as a potential key target of VPA. Overexpression of Foxm1 provided similar heart protective effect to VPA treatment. Particularly, both VPA treatment and Foxm1 over-expression repressed inflammatory response after MI for heart protection. In contrast, inhibition of Foxm1 activity abolished the cardiac protective effect of VPA. VPA mediated CM protection through Foxm1 upregulation was also identified in a human ESC derived CM hypoxia/reperfusion system. INTERPRETATION VPA treatments significantly reduce cardiac damage after MI and the cardioprotective effect of VPA is likely mediated via Foxm1 pathway. FUND: This work was mainly supported by 1R01HL109054.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, PR China
| | - Wenbin Gao
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijing Guo
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jeffery Creech
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Todd J Herron
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Peter X Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Cao J, Jiang X, Peng X. Forkhead box M1 inhibits endothelial cell apoptosis and cell-cycle arrest through ROS generation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4899-4907. [PMID: 31949565 PMCID: PMC6962927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/17/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hyperglycemia, a characteristic feature of diabetes, induces vascular complications by accelerating endothelial cell (EC) apoptosis and limiting their proliferation. The potential role of Forkhead box M1 (FoxM1) in high glucose (HG)-induced EC injury remains largely unknown. We aimed to investigate the role and underlying mechanism of FoxM1 in regulating EC injury. MATERIAL AND METHODS Human umbilical vein endothelial cells (HUVECs) were treated with various concentrations of glucose (5.5, 15, 30 and 50 mM). The expression of FoxM1 was determined via qPCR and western blotting. Overexpression of FoxM1 was achieved by transfection with FoxM1 overexpression plasmid. Reactive oxygen species (ROS) production, cell apoptotic rates, and cell cycle analysis were detected by flow cytometry, and cell proliferation was measured by CCK8 assay. RESULTS The expression level of FoxM1 was downregulated in HUVECs under HG condition when compared to cells with normal glucose. HG treatment induced overproduction of ROS and subsequent apoptosis. However, FoxM1 overexpression of FoxM1 reduced the levels of ROS and inhibited apoptosis. In addition, HG induced impairment of cell proliferation and caused cell cycle arrest in the G0/G1 phrase. Contrarily, FoxM1 overexpression promoted cell proliferation and alleviated G0/G1 cell cycle arrest caused by HG stimulation. Moreover, treatment with HG reduced phosphorylation of the Akt and ERK signaling pathways, and this was remarkably reversed by FoxM1 overexpression. CONCLUSION FoxM1 protects ECs from HG-induced growth arrest and cell apoptosis by suppressing ROS caused by the regulation of Akt and ERK pathways, which can aid in developing new therapeutic strategies for the treatment of EC dysfunction.
Collapse
Affiliation(s)
- Jing Cao
- Department of Endocrinology, Tianjin First Center HospitalTianjin 300192, China
| | - Xia Jiang
- Department of Endocrinology, Tianjin First Center HospitalTianjin 300192, China
| | - Xi Peng
- Laboratory of Nankai University School of MedicalTianjin 300071, China
| |
Collapse
|
20
|
Xu C, Guo Z, Zhao C, Zhang X, Wang Z. Potential mechanism and drug candidates for sepsis-induced acute lung injury. Exp Ther Med 2018; 15:4689-4696. [PMID: 29805488 PMCID: PMC5952104 DOI: 10.3892/etm.2018.6001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/05/2018] [Indexed: 01/11/2023] Open
Abstract
The present study aimed to explore the mechanisms underlying sepsis-induced acute lung injury (ALI) and identify more effective therapeutic strategies to treat it. The gene expression data set GSE10474 was downloaded and assessed to identify differentially expressed genes (DEGs). Principal component analysis, functional enrichment analysis and differential co-expression analysis of DEGs were performed. Furthermore, potential target drugs for key DEGs were assessed. A total of 209 DEGs, including 107 upregulated and 102 downregulated genes were screened. A number of DEGs, including zinc finger and BTB domain containing 17 (ZBTB17), heat shock protein 90 kDa β, member 1 (HSP90B1) and major histocompatibility complex, class II, DR α were identified. Furthermore, gene ontology terms including antigen processing and presentation, glycerophospholipid metabolism, transcriptional misregulation in cancer, thyroid hormone synthesis and pathways associated with diseases, such as asthma were identified. In addition, a differential co-expression network containing ubiquitin-conjugating enzyme E2 D4, putative and tubulin, γ complex associated protein 3 was constructed. Furthermore, a number of gene-drug interactions, including between HSP90B1 and adenosine-5′-diphosphate and radicicol, were identified. Therefore, DEGs, including ZBTB17 and HSP90B1, may be important in the pathogenesis of sepsis-induced ALI. Furthermore, drugs including adenosine-5′-diphosphate may be novel drug candidates to treat patients with ALI.
Collapse
Affiliation(s)
- Chenyuan Xu
- Department of Thoracic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhengqiang Guo
- Department of Thoracic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Chuncheng Zhao
- Department of Thoracic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xufeng Zhang
- Department of Thoracic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zheng Wang
- Department of Thoracic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
21
|
Real JM, Ferreira LRP, Esteves GH, Koyama FC, Dias MVS, Bezerra-Neto JE, Cunha-Neto E, Machado FR, Salomão R, Azevedo LCP. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Crit Care 2018. [PMID: 29540208 PMCID: PMC5852953 DOI: 10.1186/s13054-018-2003-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Exosomes isolated from plasma of patients with sepsis may induce vascular apoptosis and myocardial dysfunction by mechanisms related to inflammation and oxidative stress. Despite previous studies demonstrating that these vesicles contain genetic material related to cellular communication, their molecular cargo during sepsis is relatively unknown. In this study, we evaluated the presence of microRNAs (miRNAs) and messenger RNAs (mRNAs) related to inflammatory response and redox metabolism in exosomes of patients with septic shock. Methods Blood samples were collected from 24 patients with septic shock at ICU admission and after 7 days of treatment. Twelve healthy volunteers were used as control subjects. Exosomes were isolated by ultracentrifugation, and their miRNA and mRNA content was evaluated by qRT-PCR array. Results As compared with healthy volunteers, exosomes from patients with sepsis had significant changes in 65 exosomal miRNAs. Twenty-eight miRNAs were differentially expressed, both at enrollment and after 7 days, with similar kinetics (18 miRNAs upregulated and 10 downregulated). At enrollment, 35 differentially expressed miRNAs clustered patients with sepsis according to survival. The pathways enriched by the miRNAs of patients with sepsis compared with control subjects were related mostly to inflammatory response. The comparison of miRNAs from patients with sepsis according to hospital survival demonstrated pathways related mostly to cell cycle regulation. At enrollment, sepsis was associated with significant increases in the expression of mRNAs related to redox metabolism (myeloperoxidase, 64-fold; PRDX3, 2.6-fold; SOD2, 2.2-fold) and redox-responsive genes (FOXM1, 21-fold; SELS, 16-fold; GLRX2, 3.4-fold). The expression of myeloperoxidase mRNA remained elevated after 7 days (65-fold). Conclusions Exosomes from patients with septic shock convey miRNAs and mRNAs related to pathogenic pathways, including inflammatory response, oxidative stress, and cell cycle regulation. Exosomes may represent a novel mechanism for intercellular communication during sepsis. Electronic supplementary material The online version of this article (10.1186/s13054-018-2003-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Monte Real
- Research and Education Institute, Hospital Sirio-Libanes, Rua Professor Daher Cutait 69, São Paulo, SP, 01539-001, Brazil.,Sao Paulo State Cancer Institute, University of São Paulo, São Paulo, Brazil.,Hospital do Servidor Publico Estadual de São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- Morphology Department, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunology, Heart Institute, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | - Fernanda Christtanini Koyama
- Research and Education Institute, Hospital Sirio-Libanes, Rua Professor Daher Cutait 69, São Paulo, SP, 01539-001, Brazil.,Ludwig Institute for Cancer Research, São Paulo, Brazil
| | | | | | - Edécio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo, School of Medicine, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | - Luciano Cesar Pontes Azevedo
- Research and Education Institute, Hospital Sirio-Libanes, Rua Professor Daher Cutait 69, São Paulo, SP, 01539-001, Brazil. .,Emergency Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Huang X, Dai Z, Cai L, Sun K, Cho J, Albertine KH, Malik AB, Schraufnagel DE, Zhao YY. Endothelial p110γPI3K Mediates Endothelial Regeneration and Vascular Repair After Inflammatory Vascular Injury. Circulation 2016; 133:1093-103. [PMID: 26839042 DOI: 10.1161/circulationaha.115.020918] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/29/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The integrity of endothelial monolayer is a sine qua non for vascular homeostasis and maintenance of tissue-fluid balance. However, little is known about the signaling pathways regulating regeneration of the endothelial barrier after inflammatory vascular injury. METHODS AND RESULTS Using genetic and pharmacological approaches, we demonstrated that endothelial regeneration selectively requires activation of p110γPI3K signaling, which thereby mediates the expression of the endothelial reparative transcription factor Forkhead box M1 (FoxM1). We observed that FoxM1 induction in the pulmonary vasculature was inhibited in mice treated with a p110γ-selective inhibitor and in Pik3cg(-/-) mice after lipopolysaccharide challenge. Pik3cg(-/-) mice exhibited persistent lung inflammation induced by sepsis and sustained increase in vascular permeability. Restoration of expression of either p110γ or FoxM1 in pulmonary endothelial cells of Pik3cg(-/-) mice restored endothelial regeneration and normalized the defective vascular repair program. We also observed diminished expression of p110γ in pulmonary vascular endothelial cells of patients with acute respiratory distress syndrome, suggesting that impaired p110γ-FoxM1 vascular repair signaling pathway is a critical factor in persistent leaky lung microvessels and edema formation in the disease. CONCLUSIONS We identify p110γ as the critical mediator of endothelial regeneration and vascular repair after sepsis-induced inflammatory injury. Thus, activation of p110γ-FoxM1 endothelial regeneration may represent a novel strategy for the treatment of inflammatory vascular diseases.
Collapse
Affiliation(s)
- Xiaojia Huang
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - Zhiyu Dai
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - Lei Cai
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - Kai Sun
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - Jaehyung Cho
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - Kurt H Albertine
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - Asrar B Malik
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - Dean E Schraufnagel
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.)
| | - You-Yang Zhao
- From Department of Pharmacology (X.H., Z.D., L.C., K.S., J.C., A.B.M., Y.-Y.Z.), Center for Lung and Vascular Biology (X.H., Z.D., L.C., K.S., A.B.M., Y.-Y.Z.), Department of Medicine (D.E.S.), University of Illinois College of Medicine, Chicago; and Departments of Pediatrics and Medicine, University of Utah School of Medicine, Salt Lake City (K.H.A.).
| |
Collapse
|
23
|
Baan M, Kibbe CR, Bushkofsky JR, Harris TW, Sherman DS, Davis DB. Transgenic expression of the human growth hormone minigene promotes pancreatic β-cell proliferation. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26202070 DOI: 10.1152/ajpregu.00244.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic β-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates β-cell proliferation. We aimed to investigate the effect of FoxM1 on β-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased β-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.
Collapse
Affiliation(s)
- Mieke Baan
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Carly R Kibbe
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Justin R Bushkofsky
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Ted W Harris
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn S Sherman
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
24
|
Parida S, Singh TU, Thangamalai R, Narasimha Reddy CE, Panigrahi M, Kandasamy K, Singh V, Mishra SK. Daidzein pretreatment improves survival in mouse model of sepsis. J Surg Res 2015; 197:363-73. [PMID: 25908100 DOI: 10.1016/j.jss.2015.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND The aim of the present study was to assess the effect of seven days daidzein pretreatment in cecal ligation and puncture (CLP) model of sepsis. METHODS We assessed the survival benefit of daidzein and its effect on lung injury in CLP-induced sepsis in mice and determined the bacterial load in peritoneal fluid, blood, and lung homogenates. Tumor necrosis factor α (TNF-α) and corticosterone levels were measured by enzyme-linked immunosorbent assay; relative mRNA expression was estimated by real-time polymerase chain reaction, and standard biochemical techniques were used to measure nitrite level, myeloperoxidase activity, and vascular permeability. RESULTS Daidzein pretreatment for seven days at a dose of 1 mg/kg body weight subcutaneously increased the survival time of septic mice. Daidzein decreased the bacterial load in peritoneal fluid, blood, and lungs, reduced the tumor necrosis factor α and nitrite level in plasma, and partially suppressed lung injury by reducing vascular permeability and myeloperoxidase activity in septic mice. Further, it restored the relative mRNA expressions of inducible nitric oxide synthase, glucocorticoid receptor α, and glucocorticoid receptor β genes in septic lungs were restored by daidzein pretreatment. CONCLUSIONS Daidzein pretreatment for 7 d in sepsis increased the survival time in mice, which may be relate to decrease in bacterial load, anti-inflammatory effect, and protection from lung injury.
Collapse
Affiliation(s)
- Subhashree Parida
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India.
| | - Thakur U Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Ramasamy Thangamalai
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Ch E Narasimha Reddy
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Kannan Kandasamy
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Santosh K Mishra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
25
|
Zhao YD, Huang X, Yi F, Dai Z, Qian Z, Tiruppathi C, Tran K, Zhao YY. Endothelial FoxM1 mediates bone marrow progenitor cell-induced vascular repair and resolution of inflammation following inflammatory lung injury. Stem Cells 2015; 32:1855-64. [PMID: 24578354 DOI: 10.1002/stem.1690] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
Abstract
Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Using the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in wild type (WT) but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury.
Collapse
Affiliation(s)
- Yidan D Zhao
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA; Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Agmatine protects against zymosan-induced acute lung injury in mice by inhibiting NF-κB-mediated inflammatory response. BIOMED RESEARCH INTERNATIONAL 2014; 2014:583736. [PMID: 25243152 PMCID: PMC4163488 DOI: 10.1155/2014/583736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/08/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022]
Abstract
Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.
Collapse
|
27
|
Golson ML, Maulis MF, Dunn JC, Poffenberger G, Schug J, Kaestner KH, Gannon MA. Activated FoxM1 attenuates streptozotocin-mediated β-cell death. Mol Endocrinol 2014; 28:1435-47. [PMID: 25073103 DOI: 10.1210/me.2014-1024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The forkhead box transcription factor FoxM1, a positive regulator of the cell cycle, is required for β-cell mass expansion postnatally, during pregnancy, and after partial pancreatectomy. Up-regulation of full-length FoxM1, however, is unable to stimulate increases in β-cell mass in unstressed mice or after partial pancreatectomy, probably due to the lack of posttranslational activation. We hypothesized that expression of an activated form of FoxM1 could aid in recovery after β-cell injury. We therefore derived transgenic mice that inducibly express an activated version of FoxM1 in β-cells (RIP-rtTA;TetO-hemagglutinin (HA)-Foxm1(Δ)(NRD) mice). This N-terminally truncated form of FoxM1 bypasses 2 posttranslational controls: exposure of the forkhead DNA binding domain and targeted proteasomal degradation. Transgenic mice were subjected to streptozotocin (STZ)-induced β-cell ablation to test whether activated FoxM1 can promote β-cell regeneration. Mice expressing HA-FoxM1(ΔNRD) displayed decreased ad libitum-fed blood glucose and increased β-cell mass. β-Cell proliferation was actually decreased in RIP-rtTA:TetO-HA-Foxm1(NRD) mice compared with that in RIP-rtTA mice 7 days after STZ treatment. Unexpectedly, β-cell death was decreased 2 days after STZ treatment. RNA sequencing analysis indicated that activated FoxM1 alters the expression of extracellular matrix and immune cell gene profiles, which may protect against STZ-mediated death. These studies highlight a previously underappreciated role for FoxM1 in promoting β-cell survival.
Collapse
Affiliation(s)
- Maria L Golson
- Tennessee Valley Healthcare System Department of Veteran Affairs (M.L.G., M.F.M., J.C.D., G.P., M.A.G.), Nashville, Tennessee 37212; Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism (M.L.G., M.F.M., J.C.D., G.P., M.A.G.), and Departments of Cell and Developmental Biology (M.A.G.) and Molecular Physiology and Biophysics (M.A.G.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; and Department of Genetics and Institute for Diabetes, Obesity and Metabolism (J.S., K.H.K.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu G, Ye X, Miller EJ, Liu SF. NF-κB-to-AP-1 switch: a mechanism regulating transition from endothelial barrier injury to repair in endotoxemic mice. Sci Rep 2014; 4:5543. [PMID: 24986487 PMCID: PMC4078303 DOI: 10.1038/srep05543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/16/2014] [Indexed: 11/24/2022] Open
Abstract
Endothelial barrier disruption is a hallmark of multiple organ injury (MOI). However, mechanisms governing the restoration of endothelial barrier function are poorly understood. Here, we uncovered an NF-κB-to-AP-1 switch that regulates the transition from barrier injury to repair following endotoxemic MOI. Endothelial NF-κB mediates barrier repair by inhibiting endothelial cell (EC) apoptosis. Blockade of endothelial NF-κB pathway activated the activator protein (AP)-1 pathway (NF-κB-to-AP-1 switch), which compensated for the anti-apoptotic and barrier-repair functions of NF-κB. The NF-κB-to-AP-1 switch occurred at 24 hours (injury to repair transition phase), but not at 48 hours (repair phase) post-LPS, and required an inflammatory signal within the endothelium. In the absence of an inflammatory signal, the NF-κB-to-AP-1 switch failed, resulting in enhanced EC apoptosis, augmented endothelial permeability, and impeded transition from barrier injury to recovery. The NF-κB-to-AP-1 switch is a protective mechanism to ensure timely transition from endothelial barrier injury to repair, accelerating barrier restoration following MOI.
Collapse
Affiliation(s)
- Gang Liu
- 1] Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA [2]
| | - Xiaobing Ye
- 1] Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA [2]
| | - Edmund J Miller
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Shu Fang Liu
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
29
|
LI CHONG, FU JIANHUA, LIU HONGYU, YANG HAIPING, YAO LI, YOU KAI, XUE XINDONG. Hyperoxia arrests pulmonary development in newborn rats via disruption of endothelial tight junctions and downregulation of Cx40. Mol Med Rep 2014; 10:61-7. [PMID: 24789212 PMCID: PMC4068730 DOI: 10.3892/mmr.2014.2192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/17/2014] [Indexed: 11/17/2022] Open
Abstract
This study investigated changes in vascular endothelial cell tight junction structure and the expression of the gene encoding connexin 40 (Cx40) at the early pneumonedema stage of hyperoxia‑induced bronchopulmonary dysplasia (BPD) in a newborn rat model. A total of 96 newborn rats were randomly assigned to one of the following two groups, the hyperoxia group (n=48) and the control group (n=48). A hyperoxia-induced BPD model was established for the first group, while rats in the control group were maintained under normoxic conditions. Extravasation of Evans Blue (EB) was measured; the severity of lung injury was assessed; a transmission electron microscope (TEM) was used to examine the vascular endothelial cell tight junction structures, and immunohistochemical assay, western blotting and reverse transcription-polymerase chain reaction (RT-PCR) were used to evaluate the expression of Cx40 at the mRNA and protein level. Our findings showed that injuries due to BPD are progressively intensified during the time-course of exposure to hyperoxic conditions. Pulmonary vascular permeability in the hyperoxia group reached the highest level at day 5, and was significantly higher compared to the control group. TEM observations demonstrated tight junctions between endothelial cells were extremely tight. In the hyperoxia group, no marked changes in the tight junction structure were found at days 1 and 3; paracellular gaps were visible between endothelial cells at days 5 and 7. Immunohistochemical staining revealed that the Cx40 protein is mainly expressed in the vascular endothelial cells of lung tissue. Western blotting and RT-PCR assays showed a gradual decrease in Cx40 expression, depending on the exposure time to hyperoxic conditions. However, the Cx40 mRNA level reached a trough at 5 days. Overall, our study demonstrated that exposure to hyperoxia damages the tight junction structures between vascular endothelial cells and downregulates Cx40. We therefore conclude that hyperoxia may participate in the regulation of pulmonary vascular endothelial permeability.
Collapse
Affiliation(s)
- CHONG LI
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - JIANHUA FU
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - HONGYU LIU
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - HAIPING YANG
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - LI YAO
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - KAI YOU
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - XINDONG XUE
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
30
|
Huang X, Sun K, Zhao YD, Vogel SM, Song Y, Mahmud N, Zhao YY. Human CD34+ progenitor cells freshly isolated from umbilical cord blood attenuate inflammatory lung injury following LPS challenge. PLoS One 2014; 9:e88814. [PMID: 24558433 PMCID: PMC3928308 DOI: 10.1371/journal.pone.0088814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Adult stem cell-based therapy is a promising novel approach for treatment of acute lung injury. Here we investigated the therapeutic potential of freshly isolated human umbilical cord blood CD34+ progenitor cells (fCB-CD34+ cells) in a mouse model of acute lung injury. At 3 h post-lipopolysaccharide (LPS) challenge, fCB-CD34+ cells were transplanted i.v. to mice while CD34− cells or PBS were administered as controls in separate cohorts of mice. We observed that fCB-CD34+ cell treatment inhibited lung vascular injury evident by decreased lung vascular permeability. In contrast, CD34− cells had no effects on lung vascular injury. Lung inflammation determined by myeloperoxidase activity, neutrophil sequestration and expression of pro-inflammatory mediators was attenuated in fCB-CD34+ cell-treated mice at 26 h post-LPS challenge compared to PBS or CD34− cell-treated controls. Importantly, lung inflammation in fCB-CD34+ cell-treated mice was returned to normal levels as seen in basal mice at 52 h post-LPS challenge whereas PBS or CD34− cell-treated control mice exhibited persistent lung inflammation. Accordingly, fCB-CD34+ cell-treated mice exhibited a marked increase of survival rate. Employing in vivo 5-bromo-2′-deoxyuridine incorporation assay, we found a drastic induction of lung endothelial proliferation in fCB-CD34+ cell-treated mice at 52 h post-LPS compared to PBS or CD34− cell-treated controls, which contributed to restoration of vascular integrity and thereby inhibition of lung inflammation. Taken together, these data have demonstrated the protective effects of fCB-CD34+ cell on acute lung injury induced by LPS challenge, suggesting fCB-CD34+ cells are an important source of stem cells for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Pharmacology, School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Sun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yidan D. Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Stephen M. Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yuanling Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nadim Mahmud
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Wang G, Huang X, Li Y, Guo K, Ning P, Zhang Y. PARP-1 inhibitor, DPQ, attenuates LPS-induced acute lung injury through inhibiting NF-κB-mediated inflammatory response. PLoS One 2013; 8:e79757. [PMID: 24278171 PMCID: PMC3836796 DOI: 10.1371/journal.pone.0079757] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Poly (ADP-ribose) polymerase-1 has been demonstrated to be involved in tissue inflammation and one of its inhibitors, 3, 4-Dihydro-5[4-(1-piperindinyl)butoxy]-1(2H)-isoquinoline (DPQ), exerts anti-inflammatory effect. However, it is still unclear whether the DPQ possesses the protective effect on ALI and what mechanisms are involved. In this study, we tested the effect of DPQ on the lung inflammation induced by lipopolysaccharide (LPS) challenge in mice. We found that 6 h-LPS challenge induced significant lung inflammation and vascular leakage in mice. Treatment with DPQ at the dose of 10 μg/kg markedly reduced the neutrophil infiltration, myeloperoxidase activity and up-regulation of pro-inflammatory mediators and cytokines. LPS-elevated vascular permeability was decreased by DPQ treatment, accompanied by the inhibition of apoptotic cell death in mice lungs. In addition, we isolated mice peritoneal macrophages and showed pretreatment with DPQ at 10 μM inhibited the production of cytokines in the macrophages following LPS stimulation. DPQ treatment also inhibited the phosphorylation and degradation of IκB-α, subsequently blocked the activation of nuclear factor (NF)-κB induced by LPS in vivo and in vitro. Taken together, our results show that DPQ treatment inhibits NF-κB signaling in macrophages and protects mice against ALI induced by LPS, suggesting inhibition of Poly (ADP-ribose) polymerase-1 may be a potential and effective approach to resolve inflammation for the treatment of ALI.
Collapse
Affiliation(s)
- Gang Wang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaojia Huang
- Department of Pharmacology, School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongjin Li
- Department of Pharmacology, School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Pengbo Ning
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
32
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
33
|
Cornélio Favarin D, Robison de Oliveira J, Jose Freire de Oliveira C, de Paula Rogerio A. Potential effects of medicinal plants and secondary metabolites on acute lung injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:576479. [PMID: 24224172 PMCID: PMC3810192 DOI: 10.1155/2013/576479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.
Collapse
Affiliation(s)
- Daniely Cornélio Favarin
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | - Jhony Robison de Oliveira
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | | | - Alexandre de Paula Rogerio
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| |
Collapse
|
34
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|