1
|
Fan FC, Liu LM, Guo M, Du Y, Chen YW, Loh YP, Cheng Y. Neurotrophic factor-α1/carboxypeptidase E controls progression and reversal of Alzheimer's disease pathogenesis in mice. Theranostics 2025; 15:2279-2292. [PMID: 39990227 PMCID: PMC11840748 DOI: 10.7150/thno.99908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/15/2024] [Indexed: 02/25/2025] Open
Abstract
Background: Neurotrophic Factor-α1/Carboxypeptidase E (NF-α1/CPE) is a pivotal neuroprotective protein implicated in rescuing cognitive decline associated with Alzheimer's disease (AD). However, its direct role in AD pathogenesis remains unexplored. Methods: We utilized the Cre/LoxP system to diminish NF-α1/CPE expression, and employed AAV-mediated overexpression of NF-α1/CPE. Results: NF-α1/CPE expression was significantly down-regulated in advanced stages of AD and with age in 5xFAD mice. Reduced NF-α1/CPE levels in the hippocampus of 5xFAD mice increased plaque burden, microglial cell count, disrupted synaptogenesis, and intensified cognitive impairments at 5 and 7 months. However, by 9 months, no further progression of detrimental effects was observed. Overexpression of NF-α1/CPE markedly decreased amyloid plaque accumulation, mitigated spatial memory deficits, and normalized hippocampal synaptogenesis and microglial anomalies across early and late stages of the disease. Conclusion: NF-α1/CPE is a critical regulator of AD pathogenesis, offering promising therapeutic potential for reducing amyloid beta deposition and toxicity in AD.
Collapse
Affiliation(s)
- Fang-Cheng Fan
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China, 528000
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Li-Ming Liu
- Institute of National Security, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| | - Yue-Wen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, 1068 Xueyuan Avenue, Xili Shenzhen University City, Nanshan District, Shenzhen, Guangdong, China, 518055
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, 9 Yuexing 1st Road, Nanshan District, Shenzhen, Guangdong, China, 518057
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, United States of America, 20892
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
- Institute of National Security, Minzu University of China, 27 Zhongguancun South St, Haidian District, Beijing, China, 100081
| |
Collapse
|
2
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Yuan L, Xiao D, Yang R, Ge L, Wan Y, Jiang L. Screening of liothyronine network pharmacology role in the treatment of ischemic stroke and molecular mechanism. ENVIRONMENTAL TOXICOLOGY 2024; 39:1641-1649. [PMID: 38018869 DOI: 10.1002/tox.24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The present study aimed to elucidate mechanisms of liothyronine on the treatment of ischemic stroke (IS). METHODS Differential analysis based on R limma package was used to identify differentially expressed genes, which were then mapped into the connectivity map database for identification of liothyronine associated with IS. Tumor necrosis factor (TNF) signaling pathway was verified through pathway enrichment analysis via Enrichr online. Ischemia stroke mouse model was built up for further analysis. Infarct area and regional cerebral blood flow (rCBF) were measured by 2, 3, 5-triphenyltetrazolium chloride and laser Doppler flowmetry, respectively. Light microscope was used for the evaluation of body weight and dark neurons. Serum TXB2 , 6-Keto-PGF1a , TNF-α, and interleukin-6 (IL-6) levels in mice were measured using enzyme-linked immuno sorbent assay. In addition, relative protein expression levels of brain-derived neurotrophic factor, nestin, and Sox2 were detected by Western blot analysis. RESULTS Liothyronine with a negative connectivity was identified as one promising treatment for IS through TNF signaling pathway. The experimental results showed that liothyronine treatment significantly meliorated infarct area and the number of dark neurons in IS mice. Liothyronine greatly ameliorated the expression levels of TXB2 and 6-Keto-PGF1a . Besides, rCBF and body weight change of IS mice were increased gradually with increase of drug concentration. Based on pathway enrichment analysis, anti-inflammatory response (TNF-α and IL-6) relevant to TNF signaling pathway was identified, which was further validated in vitro. Furthermore, proteins as neural stem cell markers made a difference with liothyronine treatment. CONCLUSION Liothyronine may be a novel therapeutic component to exploit an effective medicine for the treatment of IS.
Collapse
Affiliation(s)
- Li Yuan
- Department of Neurology, Institute of Neurology, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rumei Yang
- Nursing Department, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Ge
- Special Ward, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuye Wan
- Department of Neurology, Institute of Neurology, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianglei Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Liu H, Jiang D, Yao F, Li T, Zhou B, Zhao S, Yang K, Feng H, Shen J, Tang J, Wang S, Zhang YX, Wang Y, Li Q, Zhao Y, Guo C, Tang TS. Restoring carboxypeptidase E rescues BDNF maturation and neurogenesis in aged brains. LIFE MEDICINE 2023; 2:lnad015. [PMID: 39872114 PMCID: PMC11749474 DOI: 10.1093/lifemedi/lnad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 01/29/2025]
Abstract
Adult neurogenesis declines with age due to the less functional neural stem cells (NSCs) and niches, but the underlying molecular bases for this impaired condition remain unclear. Here we analyzed >55,000 single-cell transcriptomes from two discrete neurogenic niches across the mouse lifespan, and identified new features and populations in NSCs, new markers, and neurogenic regional-specific alternations during aging. Intercellular communication analysis revealed defects in brain-derived neurotrophic factor (BDNF)-TrkB signaling cascade in old NSCs. Carboxypeptidase E (CPE) was found to be highly enriched in NSCs, and played a crucial role in mature/proBDNF balance and adult neurogenesis. Diminishment of CPE with aging resulted in impaired generation of BDNF, thus limiting the neurogenesis in old neurogenic niches. Restoring CPE expression markedly rescued the adult neurogenesis by increasing the production of mature BDNF, offering an attractive therapeutic strategy for the treatment of certain disorders in regions associated with constitutive neurogenesis.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dongfang Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuwen Yao
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Zhou
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing 100101, China
| | - Song Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Keyan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiping Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Shen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinglan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Xin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Li
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliang Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
7
|
Coradduzza D, Garroni G, Congiargiu A, Balzano F, Cruciani S, Sedda S, Nivoli A, Maioli M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int J Mol Sci 2022; 23:ijms231810489. [PMID: 36142403 PMCID: PMC9502703 DOI: 10.3390/ijms231810489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and disabling neuropsychiatric disorder characterized by recurrent mood disturbances (mania/hypomania and depression, with or without mixed features) and a constellation of cognitive, psychomotor, autonomic, and endocrine abnormalities. The etiology of BD is multifactorial, including both biological and epigenetic factors. Recently, microRNAs (miRNAs), a class of epigenetic regulators of gene expression playing a central role in brain development and plasticity, have been related to several neuropsychiatric disorders, including BD. Moreover, an alteration in the number/distribution and differentiation potential of neural stem cells has also been described, significantly affecting brain homeostasis and neuroplasticity. This review aimed to evaluate the most reliable scientific evidence on miRNAs as biomarkers for the diagnosis of BD and assess their implications in response to mood stabilizers, such as lithium. Neural stem cell distribution, regulation, and dysfunction in the etiology of BD are also dissected.
Collapse
Affiliation(s)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| |
Collapse
|
8
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
9
|
Melrose J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int J Mol Sci 2022; 23:5148. [PMID: 35563536 PMCID: PMC9103880 DOI: 10.3390/ijms23095148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to illustrate recent developments in neural repair utilizing hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair. Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation and differentiation to a pluripotent migratory progenitor cell type that can participate in repair processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor niche environment aids in these processes. Therapeutic procedures have been developed using olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now that recombinant perlecan domain I and domain V are available, strategies may also be expected in the near future using these to further promote neural repair strategies.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
10
|
Pagnin M, Kondos-Devcic D, Chincarini G, Cumberland A, Richardson SJ, Tolcos M. Role of thyroid hormones in normal and abnormal central nervous system myelination in humans and rodents. Front Neuroendocrinol 2021; 61:100901. [PMID: 33493504 DOI: 10.1016/j.yfrne.2021.100901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (THs) are instrumental in promoting the molecular mechanisms which underlie the complex nature of neural development and function within the central nervous system (CNS) in vertebrates. The key neurodevelopmental process of myelination is conserved between humans and rodents, of which both experience peak fetal TH concentrations concomitant with onset of myelination. The importance of supplying adequate levels of THs to the myelin producing cells, the oligodendrocytes, for promoting their maturation is crucial for proper neural function. In this review we examine the key TH distributor and transport proteins, including transthyretin (TTR) and monocarboxylate transporter 8 (MCT8), essential for supporting proper oligodendrocyte and myelin health; and discuss disorders with impaired TH signalling in relation to abnormal CNS myelination in humans and rodents. Furthermore, we explore the importance of using novel TH analogues in the treatment of myelination disorders associated with abnormal TH signalling.
Collapse
Affiliation(s)
- Maurice Pagnin
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Delphi Kondos-Devcic
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Ginevra Chincarini
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | | | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| |
Collapse
|
11
|
Harkins D, Cooper HM, Piper M. The role of lipids in ependymal development and the modulation of adult neural stem cell function during aging and disease. Semin Cell Dev Biol 2020; 112:61-68. [PMID: 32771376 DOI: 10.1016/j.semcdb.2020.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023]
Abstract
Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.
Collapse
Affiliation(s)
- Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
12
|
Liu JYW, Dzurova N, Al-Kaaby B, Mills K, Sisodiya SM, Thom M. Granule Cell Dispersion in Human Temporal Lobe Epilepsy: Proteomics Investigation of Neurodevelopmental Migratory Pathways. Front Cell Neurosci 2020; 14:53. [PMID: 32256318 PMCID: PMC7090224 DOI: 10.3389/fncel.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
Granule cell dispersion (GCD) is a common pathological feature observed in the hippocampus of patients with Mesial Temporal Lobe Epilepsy (MTLE). Pathomechanisms underlying GCD remain to be elucidated, but one hypothesis proposes aberrant reactivation of neurodevelopmental migratory pathways, possibly triggered by febrile seizures. This study aims to compare the proteomes of basal and dispersed granule cells in the hippocampus of eight MTLE patients with GCD to identify proteins that may mediate GCD in MTLE. Quantitative proteomics identified 1,882 proteins, of which 29% were found in basal granule cells only, 17% in dispersed only and 54% in both samples. Bioinformatics analyses revealed upregulated proteins in dispersed samples were involved in developmental cellular migratory processes, including cytoskeletal remodeling, axon guidance and signaling by Ras homologous (Rho) family of GTPases (P < 0.01). The expression of two Rho GTPases, RhoA and Rac1, was subsequently explored in immunohistochemical and in situ hybridization studies involving eighteen MTLE cases with or without GCD, and three normal post mortem cases. In cases with GCD, most dispersed granule cells in the outer-granular and molecular layers have an elongated soma and bipolar processes, with intense RhoA immunolabeling at opposite poles of the cell soma, while most granule cells in the basal granule cell layer were devoid of RhoA. A higher percentage of cells expressing RhoA was observed in cases with GCD than without GCD (P < 0.004). In GCD cases, the percentage of cells expressing RhoA was significantly higher in the inner molecular layer than the granule cell layer (P < 0.026), supporting proteomic findings. In situ hybridization studies using probes against RHOA and RAC1 mRNAs revealed fine peri- and nuclear puncta in granule cells of all cases. The density of cells expressing RHOA mRNAs was significantly higher in the inner molecular layer of cases with GCD than without GCD (P = 0.05). In summary, our study has found limited evidence for ongoing adult neurogenesis in the hippocampus of patients with MTLE, but evidence of differential dysmaturation between dispersed and basal granule cells has been demonstrated, and elevated expression of Rho GTPases in dispersed granule cells may contribute to the pathomechanisms underpinning GCD in MTLE.
Collapse
Affiliation(s)
- Joan Y W Liu
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,School of Life Sciences, University of Westminster, London, United Kingdom
| | - Natasha Dzurova
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Batoul Al-Kaaby
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Kevin Mills
- Biological Mass Spectrometry Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Maria Thom
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
13
|
Alshehri B, Pagnin M, Lee JY, Petratos S, Richardson SJ. The Role of Transthyretin in Oligodendrocyte Development. Sci Rep 2020; 10:4189. [PMID: 32144308 PMCID: PMC7060235 DOI: 10.1038/s41598-020-60699-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/14/2020] [Indexed: 01/23/2023] Open
Abstract
Transthyretin (TTR) is a protein that binds and distributes thyroid hormones (THs) in blood and cerebrospinal fluid. Previously, two reports identified TTR null mice as hypothyroid in the central nervous system (CNS). This prompted our investigations into developmentally regulated TH-dependent processes in brains of wildtype and TTR null mice. Despite logical expectations of a hypomyelinating phenotype in the CNS of TTR null mice, we observed a hypermyelination phenotype, synchronous with an increase in the density of oligodendrocytes in the corpus callosum and anterior commissure of TTR null mice during postnatal development. Furthermore, absence of TTR enhanced proliferation and migration of OPCs with decreased apoptosis. Neural stem cells (NSCs) isolated from the subventricular zone of TTR null mice at P21 revealed that the absence of TTR promoted NSC differentiation toward a glial lineage. Importantly, we identified TTR synthesis in OPCs, suggestive of an alternate biological function in these cells that may extend beyond an extracellular TH-distributor protein. The hypermyelination mechanism may involve increased pAKT (involved in oligodendrocyte maturation) in TTR null mice. Elucidating the regulatory role of TTR in NSC and OPC biology could lead to potential therapeutic strategies for the treatment of acquired demyelinating diseases.
Collapse
Affiliation(s)
- Bandar Alshehri
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.,Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Maurice Pagnin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.,ToolGen, Inc., Seoul, 08501, Korea
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Samantha J Richardson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia. .,School of Science, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
14
|
Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse. Sci Rep 2019; 9:19689. [PMID: 31873158 PMCID: PMC6927974 DOI: 10.1038/s41598-019-56156-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases.
Collapse
|
15
|
Şuşman S, Leucuţa DC, Kacso G, Florian ŞI. High dose vs low dose irradiation of the subventricular zone in patients with glioblastoma-a systematic review and meta-analysis. Cancer Manag Res 2019; 11:6741-6753. [PMID: 31410064 PMCID: PMC6645358 DOI: 10.2147/cmar.s206033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/06/2019] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The published data indicate that the irradiation of the subventricular zone (SVZ) might play a role in the treatment of patients with glioblastoma (GBM). We aimed to determine whether radiation treatment doses (high vs low) applied to the SVZ can lead to an increase in progression free survival (PFS) and overall survival (OS). PATIENTS AND METHODS We undertook a systematic review and meta-analysis according to the PICOS research criteria of patients with glioblastoma which received high doses compared to low doses in order to determine if they have a better survival in observational and experimental studies. RESULTS Our survey of the literature yielded 2573 unique records. After screening, 17 were assessed for eligibility, and in the end 8 were included in the qualitative and 4 in the quantitative analysis. Subjects who received higher doses of ipsilateral SVZ (iSVZ) irradiation had a statistically significant better PFS than those receiving lower doses (HR 0.58 [95% CI 0.42-0.82], p=0.002). Subjects receiving higher doses of contralateral SVZ (cSVZ) irradiation did not have a statistically significant better PFS than those receiving lower doses (HR =0.89 [95% CI 0.35-2.26], p=0.81). Also for OS the subjects receiving higher doses to the iSVZ did not have a statistically significant better survival than those receiving lower doses (HR =0.75 [95% CI 0.51-1.11], p=0.15). CONCLUSION The data indicate a possible involvement of the SVZ in the onset and progression of the GBM, as well as a possible role of the SVZ in radiation therapy.
Collapse
Affiliation(s)
- Sergiu Şuşman
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Neuropathology-Imogen Research Center, Emergency County Hospital, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuţa
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Kacso
- Department of Oncology and Radiotherapy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Amethyst Radiotherapy Center, Cluj-Napoca, Romania
| | - Ştefan Ioan Florian
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
16
|
The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Treatment of Neurodegenerative Diseases. Mol Neurobiol 2019; 56:8157-8167. [PMID: 31197655 DOI: 10.1007/s12035-019-01663-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
Neurologic complications are commonly regarded as irreversible impairments that stem from limited potential of regeneration of the central nervous system (CNS). On the other side, the regenerative potential of stem cells has been evaluated in basic research, as well as in preclinical studies. Mesenchymal stem cells (MSCs) have been regarded as candidate cell sources for therapeutic purposes of various neurological disorders, because of their self-renewal ability, plasticity in differentiation, neurotrophic characteristics, and immunomodulatory properties. Exosomes are extracellular vesicles which can deliver biological information over long distances and thereby influencing normal and abnormal processes in cells and tissues. The therapeutic capacity of exosomes relies on the type of cell, as well as on the physiological condition of a given cell. Therefore, based on tissue type and physiological condition of CNS, exosomes may function as contributors or suppressors of pathological conditions in this tissue. When it comes to the therapeutic viewpoint, the most promising cellular source of exosomes is considered to be MSCs. The aim of this review article is to discuss the current knowledge around the potential of stem cells and MSC-derived exosomes in the treatment of neurodegenerative diseases.
Collapse
|
17
|
Xiao L, Yang X, Loh YP. Neurotrophic, Gene Regulation, and Cognitive Functions of Carboxypeptidase E-Neurotrophic Factor-α1 and Its Variants. Front Neurosci 2019; 13:243. [PMID: 30941009 PMCID: PMC6433828 DOI: 10.3389/fnins.2019.00243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Carboxypeptidase E, also known as neurotrophic factor-α1 (CPE-NFα1), was first discovered as an exopeptidase and is known to work by cleaving C-terminal basic amino acids from prohormone intermediates to produce mature peptide hormones and neuropeptides in the endocrine and central nervous systems, respectively. CPE-NFα1 also plays a critical role in prohormone sorting and secretory vesicle transportation. Recently, emerging studies have indicated that CPE-NFα1 exerts multiple non-enzymatic physiological roles in maintaining normal central nervous system function and in neurodevelopment. This includes potent neuroprotective and anti-depressant activities, as well as stem cell differentiation functions. In addition, N-terminal truncated variants of CPE-NFα1 have been identified to regulate expression of important neurodevelopmental genes. This mini-review summarizes recent advances in understanding the mechanisms underlying CPE-NFα1’s function in neuroprotection during stress and aspects of neurodevelopment.
Collapse
Affiliation(s)
- Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Phillipps HR, Rand CJ, Brown RSE, Kokay IC, Stanton J, Grattan DR. Prolactin regulation of insulin‐like growth factor 2 gene expression in the adult mouse choroid plexus. FASEB J 2019; 33:6115-6128. [DOI: 10.1096/fj.201802262r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hollian R. Phillipps
- Centre for NeuroendocrinologyUniversity of Otago Dunedin New Zealand
- Department of AnatomySchool of Medical SciencesUniversity of Otago Dunedin New Zealand
| | - Christy J. Rand
- Department of AnatomySchool of Medical SciencesUniversity of Otago Dunedin New Zealand
| | - Rosemary S. E. Brown
- Centre for NeuroendocrinologyUniversity of Otago Dunedin New Zealand
- Department of AnatomySchool of Medical SciencesUniversity of Otago Dunedin New Zealand
| | - Ilona C. Kokay
- Centre for NeuroendocrinologyUniversity of Otago Dunedin New Zealand
- Department of AnatomySchool of Medical SciencesUniversity of Otago Dunedin New Zealand
| | - Jo‐Ann Stanton
- Department of AnatomySchool of Medical SciencesUniversity of Otago Dunedin New Zealand
| | - David R. Grattan
- Centre for NeuroendocrinologyUniversity of Otago Dunedin New Zealand
- Department of AnatomySchool of Medical SciencesUniversity of Otago Dunedin New Zealand
| |
Collapse
|
19
|
Kim E, Hwang SU, Yoon JD, Kim H, Lee G, Hyun SH. Isolation and characterization of GFAP-positive porcine neural stem/progenitor cells derived from a GFAP-CreER T2 transgenic piglet. BMC Vet Res 2018; 14:331. [PMID: 30404643 PMCID: PMC6222979 DOI: 10.1186/s12917-018-1660-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/22/2018] [Indexed: 01/17/2023] Open
Abstract
Background The porcine brain is gyrencephalic with similar gray and white matter composition and size more comparable to the human rather than the rodent brain; however, there is lack of information about neural progenitor cells derived from this model. Results Here, we isolated GFAP-positive porcine neural stem cells (NSCs) from the brain explant of a transgenic piglet, with expression of CreERT2 under the control of the GFAP promoter (pGFAP-CreERT2). The isolated pGFAP-CreERT2 NSCs showed self-renewal and expression of representative NSC markers such as Nestin and Sox2. Pharmacological inhibition studies revealed that Notch1 signaling is necessary to maintain NSC identity, whereas serum treatment induced cell differentiation into reactive astrocytes and neurons. Conclusions Collectively, these results indicate that GFAP promoter-driven porcine CreERT2 NSCs would be a useful tool to study neurogenesis of the porcine adult central nervous system and furthers our understanding of its potential clinical application in the future. Graphical abstract ᅟ![]() Electronic supplementary material The online version of this article (10.1186/s12917-018-1660-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Republic of Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea. .,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Republic of Korea.
| |
Collapse
|
20
|
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2018; 28:397-415. [PMID: 28195555 DOI: 10.1515/revneuro-2016-0071] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.
Collapse
|
21
|
Shan X, Tomlinson L, Yang Q, Colognato H. Distinct Requirements for Extracellular and Intracellular MMP12 in the Development of the Adult V-SVZ Neural Stem Cell Niche. Stem Cell Reports 2018; 10:984-999. [PMID: 29503085 PMCID: PMC5918618 DOI: 10.1016/j.stemcr.2018.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/04/2023] Open
Abstract
The regulatory mechanisms that control neural stem cell (NSC) activation in the adult ventricular-subventricular zone (V-SVZ) stem cell niche have been the focus of intense investigation, yet how the niche first develops and organizes is poorly understood. Here, we examined matrix metalloproteinases (MMPs) for potential roles in V-SVZ stem cell niche development. MMP12 was found to promote appropriate niche cellular arrangements, the formation of specialized niche extracellular matrix, and the translational planar cell polarity of ependymal cells that surround and support niche NSCs. Surprisingly, ependymal cells were found to have an intracellular pool of MMP12 that promoted ependymal cell ciliogenesis by upregulating FOXJ1. In addition, both extracellular and intracellular MMP12 were found to regulate V-SVZ niche output by promoting NSC quiescence. These findings reveal that extracellular and intracellular MMP12 have both unique and overlapping roles that help orchestrate the development of the adult V-SVZ stem cell niche.
Collapse
Affiliation(s)
- Xiwei Shan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lyl Tomlinson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qian Yang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
22
|
Simitzi C, Karali K, Ranella A, Stratakis E. Controlling the Outgrowth and Functions of Neural Stem Cells: The Effect of Surface Topography. Chemphyschem 2018; 19:1143-1163. [DOI: 10.1002/cphc.201701175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/19/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Chara Simitzi
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Kanelina Karali
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| |
Collapse
|
23
|
Qin EY, Cooper DD, Abbott KL, Lennon J, Nagaraja S, Mackay A, Jones C, Vogel H, Jackson PK, Monje M. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma. Cell 2017; 170:845-859.e19. [PMID: 28823557 PMCID: PMC5587159 DOI: 10.1016/j.cell.2017.07.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
Abstract
The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP.
Collapse
Affiliation(s)
- Elizabeth Y Qin
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | | | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA
| | - James Lennon
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Alan Mackay
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Hannes Vogel
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
24
|
Sato Y, Uchida Y, Hu J, Young-Pearse TL, Niikura T, Mukouyama YS. Soluble APP functions as a vascular niche signal that controls adult neural stem cell number. Development 2017; 144:2730-2736. [PMID: 28694255 DOI: 10.1242/dev.143370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 06/29/2017] [Indexed: 12/18/2022]
Abstract
The molecular mechanism by which NSC number is controlled in the neurogenic regions of the adult brain is not fully understood but it has been shown that vascular niche signals regulate neural stem cell (NSC) quiescence and growth. Here, we have uncovered a role for soluble amyloid precursor protein (sAPP) as a vascular niche signal in the subventricular zone (SVZ) of the lateral ventricle of the adult mouse brain. sAPP suppresses NSC growth in culture. Further in vivo studies on the role of APP in regulating NSC number in the SVZ clearly demonstrate that endothelial deletion of App causes a significant increase in the number of BrdU label-retaining NSCs in the SVZ, whereas NSC/astrocyte deletion of App has no detectable effect on the NSC number. Taken together, these results suggest that endothelial APP functions as a vascular niche signal that negatively regulates NSC growth to control the NSC number in the SVZ.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA
| | - Yutaka Uchida
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jingqiong Hu
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA.,Stem Cell Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Kim JY, Shaker MR, Lee JH, Lee B, Kim H, Sun W. Identification of molecular markers distinguishing adult neural stem cells in the subventricular and subcallosal zones. Anim Cells Syst (Seoul) 2017; 21:152-159. [PMID: 30460064 PMCID: PMC6138335 DOI: 10.1080/19768354.2017.1324522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells (NSCs) in the adult subventricular zone (SVZ) are regionally specified and have distinct molecular gene expression signatures. Recently, we identified the subcallosal zone (SCZ) as a novel brain region where adult NSCs maintain and spontaneously produce neuroblasts. In an attempt to isolate genes specifically expressed in the SCZ or SVZ, microarray analyses of their differentially expressing transcripts were done. The comparison between neurospheres generated from SVZ and SCZ revealed differential expression >1.5-fold in two groups in only 83 genes, representing <0.03% of the genes examined, suggesting that these two populations are largely similar. The differential expression patterns SCZ and SVZ genes were confirmed by RT-PCR and Western blots. The selective expressions of two genes (CRBP1, HMGA1) in SVZ-NSCs were further confirmed by immunohistochemistry. These molecular markers could be useful for further molecular and cellular characterization of NSCs.
Collapse
Affiliation(s)
- Joo Yeon Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Mohammed R. Shaker
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Ju-Hyun Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Boram Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Sabbaghziarani F, Mortezaee K, Akbari M, Kashani IR, Soleimani M, Moini A, Ataeinejad N, Zendedel A, Hassanzadeh G. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury. Metab Brain Dis 2017; 32:185-193. [PMID: 27549229 DOI: 10.1007/s11011-016-9897-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
Abstract
Stroke is the consequence of limited blood flow to the brain with no established treatment to reduce the neurological deficits. Focusing on therapeutic protocols in targeting subventricular zone (SVZ) neurogenesis has been investigated recently. This study was designed to evaluate the effects of retinoic acid (RA)-pretreated Wharton's jelly mesenchymal stem cells (WJ-MSCs) in combination with triiodothyronine (T3) in the ischemia stroke model. Male Wistar rats were used to induce focal cerebral ischemia by middle cerebral artery occlusion (MCAO). There were seven groups of six animals: Sham, Ischemic, WJ-MSCs, RA-pretreated WJ-MSCs, T3, WJ-MSCs +T3, and RA-pretreated WJ-MSCs + T3. The treatment was performed at 24 h after ischemia, and animals were sacrificed one week later for assessments of retinoid X receptor β (RXRβ), brain-derived neurotrophic factor (BDNF), Sox2 and nestin in the SVZ. Pro-inflammatory cytokines in sera were measured at days four and seven after ischemia. RXRβ, BDNF, Sox2 and nestin had the significant expressions in gene and protein levels in the treatment groups, compared with the ischemic group, which were more vivid in the RA-pretreated WJ-MSCs + T3 (p ≤ 0.05). The same trend was also resulted for the levels of TNF-α and IL-6 at four days after ischemia (p ≤ 0.05). In conclusion, application of RA-pretreated WJ-MSCs + T3 could be beneficial in exerting better neurotrophic function probably via modulation of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Fatemeh Sabbaghziarani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Mansooreh Soleimani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Department of Gynecology and Obstetrics, Roointan Arash women's Health Research and Education Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Ataeinejad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran.
| |
Collapse
|
27
|
Sabbaghziarani F, Mortezaee K, Akbari M, Kashani IR, Soleimani M, Hassanzadeh G, Zendedel A. Stimulation of neurotrophic factors and inhibition of proinflammatory cytokines by exogenous application of triiodothyronine in the rat model of ischemic stroke. Cell Biochem Funct 2017; 35:50-55. [PMID: 28083964 DOI: 10.1002/cbf.3244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 01/19/2023]
Abstract
There is a positive relation between decreases of triiodothyronine (T3) amounts and severity of stroke. The aim of this study was to evaluate the effect of exogenous T3 application on levels of neurogenesis markers in the subventricular zone. Cerebral ischemia was induced by middle cerebral artery occlusion in male Wistar rats. There were 4 experimental groups: sham, ischemic, vehicle, and treatment. Rats were injected with T3 (25 μg/kg, IV injection) at 24 hours after ischemia. Animals were sacrificed at day 7 after ischemia. There were high levels of brain-derived neurotrophic factor, nestin, and Sox2 expressions in gene and protein levels in the T3 treatment group (P ≤ .05 vs ischemic group). Treatment group showed high levels of sera T3 and thyroxine (T4) but low levels of thyrotropin (TSH), tumor necrosis factor-α, and interleukin-6 (P ≤ .05 vs ischemic group) at day 4 after ischemia induction. Findings of this study revealed the effectiveness of exogenous T3 application in the improvement of neurogenesis possibly via regulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Fatemeh Sabbaghziarani
- Department of Anatomy, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansooreh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany.,Department of Anatomical Sciences, Faculty of Medicine, Giulan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
28
|
Cong L, Cheng Y, Cawley NX, Murthy SRK, Loh YP. A Novel Single Nucleotide T980C Polymorphism in the Human Carboxypeptidase E Gene Results in Loss of Neuroprotective Function. PLoS One 2017; 12:e0170169. [PMID: 28114332 PMCID: PMC5256889 DOI: 10.1371/journal.pone.0170169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022] Open
Abstract
Report of a human with a homozygous truncating null mutation of the Carboxypeptidase E (CPE) gene with endocrinological and neurological deficits prompted us to search for other mutations in the human CPE gene that might be linked to disease. We searched an EST database and identified from a small population of patients, a novel T to C single nucleotide polymorphism (SNP) in the CPE gene at bp980 of exon 4, herein called TC-CPE. This introduces a tryptophan to arginine (W235R) mutation in the catalytic domain of human CPE protein. Over-expression of TC-CPE in N2A cells, a neuroendocrine cell line, showed that it was synthesized, but was found in lesser amounts compared to over-expressed WT-CPE in these cells. Furthermore, TC-CPE was secreted poorly from these N2A cells. The levels of TC-CPE were significantly increased after the N2A cells were treated with MG132 (a proteasome inhibitor), suggesting that TC-CPE was targeted to proteasomes for degradation in N2A cells. In addition, TC-CPE induced ER stress as demonstrated by the increased expression of CHOP in N2A cells. Double labeling of CPE and calnexin (and ER marker) suggested the accumulation of TC-CPE in the ER, and the accumulation appears to be enhanced by the treatment of MG132 in the cells. Moreover, the secreted levels of TC-CPE were not affected by the treatment of MG132 in the cells. Over-expression studies revealed that while N2A cells transfected with WT-CPE showed reduced cytotoxicity when challenged with H2O2 compared to cells expressing an empty vector, cells transfected with TC-CPE had no effect. Furthermore, WT-CPE condition medium showed protective effect against oxidative stress, but not TC-CPE condition medium. Although co-expression of WT-CPE and TC-CPE in N2A cells resulted in the reduction in secretion of WT-CPE, co-expression of WT-CPE and TC-CPE did not significantly affect the protective effect of WT-CPE. Taken together, we have identified a novel SNP in the CPE gene which results in the loss of its neuroprotective function in cells and may confer neurological disorders in humans.
Collapse
Affiliation(s)
- Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Yong Cheng
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Saravana R. K. Murthy
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
29
|
Selvaraj P, Xiao L, Lee C, Murthy SRK, Cawley NX, Lane M, Merchenthaler I, Ahn S, Loh YP. Neurotrophic Factor-α1: A Key Wnt-β-Catenin Dependent Anti-Proliferation Factor and ERK-Sox9 Activated Inducer of Embryonic Neural Stem Cell Differentiation to Astrocytes in Neurodevelopment. Stem Cells 2016; 35:557-571. [PMID: 27709799 DOI: 10.1002/stem.2511] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/08/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
Embryonic neurodevelopment involves inhibition of proliferation of multipotent neural stem cells (NSCs) followed by differentiation into neurons, astrocytes and oligodendrocytes to form the brain. We have identified a new neurotrophic factor, NF-α1, which inhibits proliferation and promotes differentiation of NSC/progenitors derived from E13.5 mouse cortex. Inhibition of proliferation of these cells was mediated through negatively regulating the Wnt pathway and decreasing β-catenin. NF-α1 induced differentiation of NSCs to astrocytes by enhancing Glial Fibrillary Acidic Protein (GFAP) expression through activating the ERK1/2-Sox9 signaling pathway. Cultured E13.5 cortical stem cells from NF-α1-knockout mice showed decreased astrocyte numbers compared to wild-type mice, which was rescued by treatment with NF-α1. In vivo, immunocytochemistry of brain sections and Western blot analysis of neocortex of mice showed a gradual increase of NF-α1 expression from E14.5 to P1 and a surge of GFAP expression at P1, the time of increase in astrogenesis. Importantly, NF-α1-Knockout mice showed ∼49% fewer GFAP positive astrocytes in the neocortex compared to WT mice at P1. Thus, NF-α1 is critical for regulating antiproliferation and cell fate determination, through differentiating embryonic stem cells to GFAP-positive astrocytes for normal neurodevelopment. Stem Cells 2017;35:557-571.
Collapse
Affiliation(s)
| | - Lan Xiao
- Section on Cellular Neurobiology, Bethesda, Maryland, USA
| | - Cheol Lee
- Unit on Developmental Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Niamh X Cawley
- Section on Cellular Neurobiology, Bethesda, Maryland, USA
| | - Malcolm Lane
- Department of Epidemiology and Public Health and Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland, USA
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health and Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland, USA
| | - Sohyun Ahn
- Unit on Developmental Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells Int 2016; 2016:5736059. [PMID: 27195011 PMCID: PMC4853949 DOI: 10.1155/2016/5736059] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/27/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.
Collapse
|
31
|
Regalado-Santiago C, Juárez-Aguilar E, Olivares-Hernández JD, Tamariz E. Mimicking Neural Stem Cell Niche by Biocompatible Substrates. Stem Cells Int 2016; 2016:1513285. [PMID: 26880934 PMCID: PMC4736764 DOI: 10.1155/2016/1513285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix components that conform their niche. The interplay among the niche elements and NSCs determines the balance between stemness and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity is critical to building in vitro models that include the relevant components of the in vivo niche and to developing neuroregenerative approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivo mimicking of extracellular NSCs conditions.
Collapse
Affiliation(s)
- Citlalli Regalado-Santiago
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Enrique Juárez-Aguilar
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Juan David Olivares-Hernández
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| |
Collapse
|
32
|
Patel B, Patel J, Cho JH, Manne S, Bonala S, Henske E, Roegiers F, Markiewski M, Karbowniczek M. Exosomes mediate the acquisition of the disease phenotypes by cells with normal genome in tuberous sclerosis complex. Oncogene 2015; 35:3027-36. [DOI: 10.1038/onc.2015.358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 01/14/2023]
|
33
|
Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci 2015; 35:4528-39. [PMID: 25788671 DOI: 10.1523/jneurosci.1188-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.
Collapse
|
34
|
Wang H, Kane AW, Lee C, Ahn S. Gli3 repressor controls cell fates and cell adhesion for proper establishment of neurogenic niche. Cell Rep 2014; 8:1093-104. [PMID: 25127137 DOI: 10.1016/j.celrep.2014.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 10/24/2022] Open
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) rely on environmental signals provided by the neurogenic niche for their proper function. However, little is known about the initial steps of niche establishment, as embryonic radial glia transition to postnatal NSCs. Here, we identify Gli3 repressor (Gli3R), a component of the Sonic hedgehog (Shh) pathway, as a critical factor controlling both cell-type specification and structural organization of the developing SVZ. We demonstrate that Gli3R expressed in radial glia temporally regulates gp130/STAT3 signaling at the transcriptional level to suppress glial characteristics in differentiating ependymal cells. In addition, Gli3R maintains the proper level of Numb in ependymal cells to allow localization of cell adhesion molecules such as vascular cell adhesion molecule (VCAM) and E-cadherin. Thus, our findings reveal a role for Gli3R as a mediator of niche establishment and provide insights into the conditions required for proper SVZ neurogenic niche formation.
Collapse
Affiliation(s)
- Hui Wang
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna W Kane
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; Brown-NIH Graduate Partnership Program, Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Cheol Lee
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Li M, Sun L, Luo Y, Xie C, Pang Y, Li Y. High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells. Int J Mol Med 2014; 34:705-14. [PMID: 24970310 PMCID: PMC4121357 DOI: 10.3892/ijmm.2014.1820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are major components of the adult neurogenic niche and play a crucial role in regulating neural stem cell proliferation and differentiation. Following brain injury, astrocytes become reactive and release high-mobility group box 1 (HMGB1), which plays a crucial role in the inflammatory process. However, although it has been reported that HMGB1 promotes neural stem/progenitor cell (NS/PC) proliferation in the developing brain, whether HMGB1 released by reactive astrocytes regulates NS/PC proliferation remains unknown. In this study, we aimed to investigate whether HMGB1 released from reactive astrocytes enhances NS/PC proliferation and to elucidate the possible mechanisms involved in this process. To evaluate the effects of HMGB1 on NS/PC proliferation, NS/PCs were cultured in HMGB1 culture medium and astrocyte-conditioned medium with or without reactive astrocyte-derived HMGB1 by RNA interference (RNAi). To explore the possible mechanisms, the HMGB1 receptor for advanced glycation endproducts (RAGE) in the NS/PCs was blocked with anti-RAGE antibody, and c-Jun N-terminal protein kinase (JNK) in the NS/PCs was inhibited using the potent JNK inhibitor, SP600125. Our results suggested that HMGB1 released from reactive astrocytes promoted NS/PC proliferation in vitro, and the blockade of RAGE or the inhibition of the JNK signaling pathway in the NS/PCs prevented the HMGB1-induced NS/PC proliferation. Our findings demonstrated that HMGB1 released by reactive astrocytes promoted NS/PC proliferation by binding RAGE and enhancing the phosphorylation of the JNK signaling pathway. These findings support a previously described mechanism of a crosstalk between astrocytes and NS/PCs, and suggest that reactive astrocyte-derived HMGB1 plays an important role in the repair of the central nervous system following brain injury.
Collapse
Affiliation(s)
- Man Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Lin Sun
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Chenchen Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yueshan Pang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yuan Li
- Basic Medicine College of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
36
|
Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 2014; 82:545-59. [PMID: 24811379 DOI: 10.1016/j.neuron.2014.02.039] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 12/14/2022]
Abstract
Adult neurogenic niches harbor quiescent neural stem cells; however, their in vivo identity has been elusive. Here, we prospectively isolate GFAP(+)CD133(+) (quiescent neural stem cells [qNSCs]) and GFAP(+)CD133(+)EGFR(+) (activated neural stem cells [aNSCs]) from the adult ventricular-subventricular zone. aNSCs are rapidly cycling, highly neurogenic in vivo, and enriched in colony-forming cells in vitro. In contrast, qNSCs are largely dormant in vivo, generate olfactory bulb interneurons with slower kinetics, and only rarely form colonies in vitro. Moreover, qNSCs are Nestin negative, a marker widely used for neural stem cells. Upon activation, qNSCs upregulate Nestin and EGFR and become highly proliferative. Notably, qNSCs and aNSCs can interconvert in vitro. Transcriptome analysis reveals that qNSCs share features with quiescent stem cells from other organs. Finally, small-molecule screening identified the GPCR ligands, S1P and PGD2, as factors that actively maintain the quiescent state of qNSCs.
Collapse
|
37
|
Oxygen Glucose Deprivation/Reperfusion Astrocytes Promotes Primary Neural Stem/Progenitor Cell Proliferation by Releasing High-Mobility Group Box 1. Neurochem Res 2014; 39:1440-50. [DOI: 10.1007/s11064-014-1333-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 01/09/2023]
|
38
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 4846=3354-- srqx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
39
|
Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014; 3:e02669. [PMID: 24843006 PMCID: PMC4038845 DOI: 10.7554/elife.02669] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo. DOI:http://dx.doi.org/10.7554/eLife.02669.001 Neurons that arise in the adult nervous system originate from neural stem cells and neural progenitor cells. Neural stem cells have long lives, much of which they spend in a quiescent state. Neural stem cells can also give rise to neural progenitor cells, which proliferate rapidly during their short lives and then ‘differentiate’ into neurons or glia. Unlike some other tissues, it has not been possible to identify or purify neural stem cells directly from the tissue. Consequently, neural stem and progenitor cells have usually been studied retrospectively, based on their ability to form colonies in laboratory cell cultures. A region of the brain called the subventricular zone contains both neural stem cells and neural progenitor cells, and is one of only two regions of the brain where neural stem cells are found in adult mammals. When cells from the subventricular zone are cultured in a way that allows the cells to freely float around (rather than growing on a surface), a few percent form spherical colonies called neurospheres. Since neurosphere-forming cells can self-renew and differentiate into neurons and glia, the ability of cells to form neurospheres has generally been taken as evidence that they are stem cells. However, the exact relationship between neural stem cells and neurosphere-forming cells has been uncertain. Now, Mich, Signer et al. have used a technique called flow cytometry to identify and isolate neural stem cells and neurosphere-forming cells directly from the subventricular zone. The neural stem cells, which Mich, Signer et al. term pre-GEPCOT cells (based on an acronym of the markers used to isolate the cells), were long-lived and quiescent, but they lacked the ability to form colonies in culture. The neurosphere-forming cells, named GEPCOT cells, were short-lived and highly proliferative in the brain. These results demonstrate that the cells that form neurospheres in culture are not stem cells at all, and that real stem cells are not able to form colonies under existing culture conditions. The identification of undifferentiated pre-GEPCOT and GEPCOT cells will make it possible to directly study the properties of these cells inside the mouse brain, and to isolate live cells to test how they function. The results also highlight the need for new tests to study neural stem cell function, given that current tests using neurospheres do not detect stem cells as commonly assumed. DOI:http://dx.doi.org/10.7554/eLife.02669.002
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert Aj Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
40
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 6145=cast((chr(113)||chr(107)||chr(106)||chr(118)||chr(113))||(select (case when (6145=6145) then 1 else 0 end))::text||(chr(113)||chr(113)||chr(120)||chr(113)||chr(113)) as numeric)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
41
|
Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [PMID: 24843006 DOI: 10.7554/elife.02669;select dbms_pipe.receive_message(chr(77)||chr(67)||chr(121)||chr(65),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as Glast(mid)EGFR(high)PlexinB2(high)CD24(-/low)O4/PSA-NCAM(-/low)Ter119/CD45(-) (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1(CreERT2) and Dlx1(CreERT2). In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreER(T), GFAP-CreER(T2), Sox2(CreERT2), and Gli1(CreERT2) and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16(Ink4a)) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.DOI: http://dx.doi.org/10.7554/eLife.02669.001.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert Aj Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
42
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 6145=cast((chr(113)||chr(107)||chr(106)||chr(118)||chr(113))||(select (case when (6145=6145) then 1 else 0 end))::text||(chr(113)||chr(113)||chr(120)||chr(113)||chr(113)) as numeric)-- shpv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
43
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 3797=dbms_pipe.receive_message(chr(74)||chr(81)||chr(113)||chr(120),5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
44
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 5827=5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
45
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 5827=5827-- hjie] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
46
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 5849 in (select (char(113)+char(107)+char(106)+char(118)+char(113)+(select (case when (5849=5849) then char(49) else char(48) end))+char(113)+char(113)+char(120)+char(113)+char(113)))-- tpwv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
47
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and (select 3651 from (select(sleep(5)))tjwn)-- bjqr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
48
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
49
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 8335=3140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
50
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 3797=dbms_pipe.receive_message(chr(74)||chr(81)||chr(113)||chr(120),5)-- kbdw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|