1
|
Korkutata M, De Luca R, Fitzgerald B, Khanday MA, Arrigoni E, Scammell TE. Afferent Projections to the Calca/CGRP-Expressing Parabrachial Neurons in Mice. J Comp Neurol 2025; 533:e70018. [PMID: 39801453 PMCID: PMC11777123 DOI: 10.1002/cne.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PBCalca /CGRP neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood. We mapped the afferent projections to the lateral part of the PB in mice using conventional cholera toxin B subunit (CTb) retrograde tracing and then used conditional rabies virus retrograde tracing to map monosynaptic inputs specifically targeting the PBCalca /CGRP neurons. Using vesicular GABA (vGAT) and glutamate (vGLUT2) transporter reporter mice, we found that lateral PB neurons receive GABAergic afferents from regions such as the lateral part of the central nucleus of the amygdala, lateral dorsal subnucleus of the bed nucleus of the stria terminalis, substantia innominata, and ventrolateral periaqueductal gray. Additionally, they receive glutamatergic afferents from the infralimbic and insular cortex, paraventricular nucleus, parasubthalamic nucleus, trigeminal complex, medullary reticular nucleus, and nucleus of the solitary tract. Using anterograde tracing and confocal microscopy, we then identified close axonal appositions between these afferents and PBCalca /CGRP neurons. Finally, we used channelrhodopsin-assisted circuit mapping and found that GABAergic neurons of the central nucleus of the amygdala directly inhibit the PBCalca /CGRP neurons. These findings provide a comprehensive neuroanatomical framework for understanding the afferent projections regulating the PBCalca /CGRP neurons.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Roberto De Luca
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Bridget Fitzgerald
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mudasir A. Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas E. Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Romito E, Battistella I, Plakhova V, Paplekaj A, Forastieri C, Toffolo E, Musio C, Conti L, Battaglioli E, Rusconi F. A comprehensive protocol for efficient differentiation of human NPCs into electrically competent neurons. J Neurosci Methods 2024; 410:110225. [PMID: 39053772 DOI: 10.1016/j.jneumeth.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications. Neural progenitor cells (NPCs) derived from hiPSCs can be efficiently differentiated into functional neurons, providing a platform to study human neural physiology and pathology in vitro. However, challenges persist in achieving consistent and reproducible outcomes across experimental settings. COMPARISON WITH EXISTING METHODS Our aim is to provide a step-by-step methodological protocol, augmenting existing procedures with additional instructions and parameters, to guide researchers in achieving reproducible results. METHODS AND RESULTS We outline procedures for the differentiation of hiPSC-derived NPCs into electrically competent neurons, encompassing initial cell density, morphology, maintenance, and differentiation. We also describe the analysis of specific markers for assessing neuronal phenotype, along with electrophysiological analysis to evaluate biophysical properties of neuronal excitability. Additionally, we conduct a comparative analysis of three different chemical methods-KCl, N-methyl-D-aspartate (NMDA), and bicuculline-to induce neuronal depolarization and assess their effects on the induction of both fast and slow post-translational, transcriptional, and post-transcriptional responses. CONCLUSION Our protocol provides clear instructions for generating reliable human neuronal cultures with defined electrophysiological properties to investigate neuronal differentiation and model diseases in vitro.
Collapse
Affiliation(s)
- Elena Romito
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Ingrid Battistella
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Via Sommarive, 9, Trento 38123, Italy
| | - Vera Plakhova
- Institute of Biophysics (IBF), National Research Council (CNR), Trento Unit, & LabSSAH, Bruno Kessler Foundation (FBK), Via Sommarive, 18, Trento 38123, Italy
| | - Arteda Paplekaj
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Chiara Forastieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Emanuela Toffolo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), National Research Council (CNR), Trento Unit, & LabSSAH, Bruno Kessler Foundation (FBK), Via Sommarive, 18, Trento 38123, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Via Sommarive, 9, Trento 38123, Italy.
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi, 93, Segrate, Milan 20054, Italy.
| |
Collapse
|
3
|
Korkutata M, De Luca R, Fitzgerald B, Arrigoni E, Scammell TE. Afferent projections to the Calca /CGRP-expressing parabrachial neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593004. [PMID: 38766214 PMCID: PMC11100666 DOI: 10.1101/2024.05.07.593004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons which regulate responses to a variety of interoceptive and cutaneous sensory signals. The lateral PB subpopulation expressing the Calca gene which produces the neuropeptide calcitonin gene-related peptide (CGRP) relays signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet the afferents to these neurons are only partially understood. We mapped the afferent projections to the lateral part of the PB in mice using conventional cholera toxin B subunit (CTb) retrograde tracing, and then used conditional rabies virus retrograde tracing to map monosynaptic inputs specifically targeting the PB Calca /CGRP neurons. Using vesicular GABA (vGAT) and glutamate (vGLUT2) transporter reporter mice, we found that lateral PB neurons receive GABAergic afferents from regions such as the lateral part of the central nucleus of the amygdala, lateral dorsal subnucleus of the bed nucleus of the stria terminalis, substantia innominata, and the ventrolateral periaqueductal gray. Additionally, they receive glutamatergic afferents from the infralimbic and insular cortex, paraventricular nucleus, parasubthalamic nucleus, trigeminal complex, medullary reticular nucleus, and nucleus of the solitary tract. Using anterograde tracing and confocal microscopy, we then identified close axonal appositions between these afferents and PB Calca /CGRP neurons. Finally, we used channelrhodopsin-assisted circuit mapping to test whether some of these inputs directly synapse upon the PB Calca /CGRP neurons. These findings provide a comprehensive neuroanatomical framework for understanding the afferent projections regulating the PB Calca /CGRP neurons.
Collapse
|
4
|
Peerboom C, de Kater S, Jonker N, Rieter MPJM, Wijne T, Wierenga CJ. Delaying the GABA Shift Indirectly Affects Membrane Properties in the Developing Hippocampus. J Neurosci 2023; 43:5483-5500. [PMID: 37438107 PMCID: PMC10376938 DOI: 10.1523/jneurosci.0251-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
During the first two postnatal weeks, intraneuronal chloride concentrations in rodents gradually decrease, causing a shift from depolarizing to hyperpolarizing GABA responses. The postnatal GABA shift is delayed in rodent models for neurodevelopmental disorders and in human patients, but the impact of a delayed GABA shift on the developing brain remains obscure. Here we examine the direct and indirect consequences of a delayed postnatal GABA shift on network development in organotypic hippocampal cultures made from 6- to 7-d-old mice by treating the cultures for 1 week with VU0463271, a specific inhibitor of the chloride exporter KCC2. We verified that VU treatment delayed the GABA shift and kept GABA signaling depolarizing until DIV9. We found that the structural and functional development of excitatory and inhibitory synapses at DIV9 was not affected after VU treatment. In line with previous studies, we observed that GABA signaling was already inhibitory in control and VU-treated postnatal slices. Surprisingly, 14 d after the VU treatment had ended (DIV21), we observed an increased frequency of spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, while excitatory currents were not changed. Synapse numbers and release probability were unaffected. We found that dendrite-targeting interneurons in the stratum radiatum had an elevated resting membrane potential, while pyramidal cells were less excitable compared with control slices. Our results show that depolarizing GABA signaling does not promote synapse formation after P7, and suggest that postnatal intracellular chloride levels indirectly affect membrane properties in a cell-specific manner.SIGNIFICANCE STATEMENT During brain development, the action of neurotransmitter GABA shifts from depolarizing to hyperpolarizing. This shift is a thought to play a critical role in synapse formation. A delayed shift is common in rodent models for neurodevelopmental disorders and in human patients, but its consequences for synaptic development remain obscure. Here, we delayed the GABA shift by 1 week in organotypic hippocampal cultures and carefully examined the consequences for circuit development. We find that delaying the shift has no direct effects on synaptic development, but instead leads to indirect, cell type-specific changes in membrane properties. Our data call for careful assessment of alterations in cellular excitability in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Sam de Kater
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Nikki Jonker
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Marijn P J M Rieter
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Tessel Wijne
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
5
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
6
|
Bahry JA, Fedder-Semmes KN, Sceniak MP, Sabo SL. An Autism-Associated de novo Mutation in GluN2B Destabilizes Growing Dendrites by Promoting Retraction and Pruning. Front Cell Neurosci 2021; 15:692232. [PMID: 34393725 PMCID: PMC8363002 DOI: 10.3389/fncel.2021.692232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in GRIN2B, which encodes the GluN2B subunit of NMDA receptors, lead to autism spectrum disorders (ASD), but the pathophysiological mechanisms remain unclear. Recently, we showed that a GluN2B variant that is associated with severe ASD (GluN2B724t) impairs dendrite morphogenesis. To determine which aspects of dendrite growth are affected by GluN2B724t, we investigated the dynamics of dendrite growth and branching in rat neocortical neurons using time-lapse imaging. GluN2B724t expression shifted branch motility toward retraction and away from extension. GluN2B724t and wild-type neurons formed new branches at similar rates, but mutant neurons exhibited increased pruning of dendritic branches. The observed changes in dynamics resulted in nearly complete elimination of the net expansion of arbor size and complexity that is normally observed during this developmental period. These data demonstrate that ASD-associated mutant GluN2B interferes with dendrite morphogenesis by reducing rates of outgrowth while promoting retraction and subsequent pruning. Because mutant dendrites remain motile and capable of growth, it is possible that reducing pruning or promoting dendrite stabilization could overcome dendrite arbor defects associated with GRIN2B mutations.
Collapse
Affiliation(s)
- Jacob A Bahry
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States.,Graduate Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Karlie N Fedder-Semmes
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Michael P Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States.,Graduate Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States.,Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
7
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Sceniak MP, Fedder KN, Wang Q, Droubi S, Babcock K, Patwardhan S, Wright-Zornes J, Pham L, Sabo SL. An autism-associated mutation in GluN2B prevents NMDA receptor trafficking and interferes with dendrite growth. J Cell Sci 2019; 132:jcs.232892. [PMID: 31548203 DOI: 10.1242/jcs.232892] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders with multiple genetic associations. Analysis of de novo mutations identified GRIN2B, which encodes the GluN2B subunit of NMDA receptors, as a gene linked to ASDs with high probability. However, the mechanisms by which GRIN2B mutations contribute to ASD pathophysiology are not understood. Here, we investigated the cellular phenotypes induced by a human mutation that is predicted to truncate GluN2B within the extracellular loop. This mutation abolished NMDA-dependent Ca2+ influx. Mutant GluN2B co-assembled with GluN1 but was not trafficked to the cell surface or dendrites. When mutant GluN2B was expressed in developing cortical neurons, dendrites appeared underdeveloped, with shorter and fewer branches, while spine density was unaffected. Mutant dendritic arbors were often dysmorphic, displaying abnormal filopodial-like structures. Interestingly, dendrite maldevelopment appeared when mutant GluN2B was expressed on a wild-type background, reflecting the disease given that individuals are heterozygous for GRIN2B mutations. Restoring the fourth transmembrane domain and cytoplasmic tail did not rescue the phenotypes. Finally, abnormal development was not accompanied by reduced mTOR signaling. These data suggest that mutations in GluN2B contribute to ASD pathogenesis by disrupting dendrite development.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Karlie N Fedder
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Qian Wang
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Sammy Droubi
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Katie Babcock
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Sagar Patwardhan
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jazmin Wright-Zornes
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Lucynda Pham
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA .,Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Nguyen UP, Imamura F. Regional differences in mitral cell development in mouse olfactory bulb. J Comp Neurol 2019; 527:2233-2244. [PMID: 30864157 DOI: 10.1002/cne.24683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/09/2022]
Abstract
Olfactory sensory neurons (OSNs) located in the dorsomedial and ventromedial regions of the olfactory epithelium (OE) are distinguished from one another based on their molecular expression patterns. This difference is reflected in the separation of the glomerular layer of the olfactory bulb (OB) into dorsomedial and ventrolateral regions. However, it is unclear whether a complementary separation is also evident in the projection neurons that innervate the OB glomeruli. In this study, we compared the development of the OB between different regions by focusing on the transcription factor, Tbx21, which is expressed by mitral and tufted cells in the mature OB. Examining the OB at different developmental ages, we found that Tbx21 expression commenced in the anteromedial region called the tongue-shaped area, followed by the dorsomedial and then ventrolateral areas. We also showed that the tongue-shaped area was innervated by the OSNs located in the most dorsomedial part of the ventrolateral OE, the V-zone:DM. Interestingly, the generation of OSNs occurred first in the dorsomedial zone including the V-zone:DM, suggesting a correlation between the time course of OSN generation in the OE and Tbx21 expression in their target region of the OB. In contrast, expression of vGluT1, which is also found in all mitral cells in the mature OB, was first detected in the ventrolateral region during development. Our findings demonstrate that the development of projection neurons occurs in a compartmentalized manner in the OB; tongue-shaped, dorsomedial, and ventrolateral areas, and that not all projection neurons follow the same developmental pathway.
Collapse
Affiliation(s)
- Uyen P Nguyen
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
10
|
Anglada-Huguet M, Giralt A, Rué L, Alberch J, Xifró X. Loss of striatal 90-kDa ribosomal S6 kinase (Rsk) is a key factor for motor, synaptic and transcription dysfunction in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1255-66. [DOI: 10.1016/j.bbadis.2016.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/09/2016] [Accepted: 04/03/2016] [Indexed: 12/20/2022]
|
11
|
Seal RP. Do the distinct synaptic properties of VGLUTs shape pain? Neurochem Int 2016; 98:82-8. [PMID: 27180049 DOI: 10.1016/j.neuint.2016.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
Abstract
The somatosensory system transmits touch, temperature, itch and pain. Three vesicular glutamate transporter isoforms mediate the release of glutamate throughout the mammalian nervous system with largely non-overlapping distributions and unique roles at the synapse. This review discusses the contribution of each of these essential transporters to circuits underlying pain and other somatosensory behaviors throughout postnatal development and in the adult. A better understanding of the individual contributions of the VGLUT isoforms could provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Fedder KN, Sabo SL. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors. Biomolecules 2015; 5:3448-66. [PMID: 26694480 PMCID: PMC4693286 DOI: 10.3390/biom5043448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/22/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases.
Collapse
Affiliation(s)
- Karlie N Fedder
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shasta L Sabo
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Dennison CS, King CM, Dicken MS, Hentges ST. Age-dependent changes in amino acid phenotype and the role of glutamate release from hypothalamic proopiomelanocortin neurons. J Comp Neurol 2015; 524:1222-35. [PMID: 26361382 DOI: 10.1002/cne.23900] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons are important regulators of energy balance. Recent studies indicate that in addition to their peptides, POMC neurons can release either the amino acid (AA) transmitter gamma-aminobutyric acid (GABA) or glutamate. A small subset of POMC neurons appears to have a dual AA phenotype based on coexpression of mRNA for the vesicular glutamate transporter (vGlut2) and the GABA synthetic enzyme Gad67. To determine whether the colocalization of GABAergic and glutamatergic markers may be indicative of a switch in AA transmitter phenotype, fluorescent in situ hybridization was used to detect vGlut2 and Gad mRNA in POMC neurons during early postnatal development. The percentage of POMC neurons expressing vGlut2 mRNA in POMC neurons progressively decreased from ∼40% at day 1 to less than 10% by 8 weeks of age, whereas Gad67 was only expressed in ∼10% of POMC neurons at day 1 and increased until ∼45% of POMC neurons coexpressed Gad67 at 8 weeks of age. To determine whether the expression of vGlut2 may play a role in energy balance regulation, genetic deletion of vGlut2 in POMC neurons was accomplished using Cre-lox technology. Male, but not female, mice lacking vGlut2 in POMC neurons were unable to maintain energy balance to the same extent as control mice when fed a high-fat diet. Altogether, the results indicate that POMC neurons are largely glutamatergic early in life and that the release of glutamate from these cells is involved in sex- and diet-specific regulation of energy balance.
Collapse
Affiliation(s)
- Christina S Dennison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Matthew S Dicken
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
14
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
15
|
Gill I, Droubi S, Giovedi S, Fedder KN, Bury LAD, Bosco F, Sceniak MP, Benfenati F, Sabo SL. Presynaptic NMDA receptors - dynamics and distribution in developing axons in vitro and in vivo. J Cell Sci 2014; 128:768-80. [PMID: 25526735 DOI: 10.1242/jcs.162362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons - including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development.
Collapse
Affiliation(s)
- Ishwar Gill
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Sammy Droubi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Silvia Giovedi
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Karlie N Fedder
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Federica Bosco
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Michael P Sceniak
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
16
|
Moczulska KE, Pichler P, Schutzbier M, Schleiffer A, Rumpel S, Mechtler K. Deep and precise quantification of the mouse synaptosomal proteome reveals substantial remodeling during postnatal maturation. J Proteome Res 2014; 13:4310-24. [PMID: 25157418 DOI: 10.1021/pr500456t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During postnatal murine maturation, behavioral patterns emerge and become shaped by experience-dependent adaptations. During the same period, the morphology of dendritic spines, the morphological correlates of excitatory synapses, is known to change, and there is evidence of concurrent alterations of the synaptosomal protein machinery. To obtain comprehensive and quantitative insights in the developmental regulation of the proteome of synapses, we prepared cortical synaptosomal fractions from a total of 16 individual juvenile and adult mouse brains (age 3 or 8 weeks, respectively). We then applied peptide-based iTRAQ labeling (four pools of 4 animals) and high-resolution two-dimensional peptide fractionation (99 SCX fractions and 3 h reversed-phase gradients) using a hybrid CID-HCD acquisition method on a Velos Orbitrap mass spectrometer to identify a comprehensive set of synaptic proteins and to quantify changes in protein expression. We obtained a data set tracking expression levels of 3500 proteins mapping to 3427 NCBI GeneIDs during development with complete quantification data available for 3422 GeneIDs, which, to the best of our knowledge, constitutes the deepest coverage of the synaptosome proteome to date. The inclusion of biological replicates in a single mass spectrometry analysis demonstrated both high reproducibility of our synaptosome preparation method as well as high precision of our quantitative data (correlation coefficient R = 0.87 for the biological replicates). To evaluate the validity of our data, the developmental regulation of eight proteins identified in our analysis was confirmed independently using western blotting. A gene ontology analysis confirmed the synaptosomal nature of a large fraction of identified proteins. Of note, the set of the most strongly regulated proteins revealed candidates involved in neurological processes in health and disease states. This highlights the fact that developmentally regulated proteins can play additional roles in neurological disease processes. All data have been deposited to the ProteomeXchange with identifier PXD000552.
Collapse
Affiliation(s)
- Kaja Ewa Moczulska
- Research Institute of Molecular Pathology , Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Bury LA, Sabo SL. Dynamic mechanisms of neuroligin-dependent presynaptic terminal assembly in living cortical neurons. Neural Dev 2014; 9:13. [PMID: 24885664 PMCID: PMC4049477 DOI: 10.1186/1749-8104-9-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022] Open
Abstract
Background Synapse formation occurs when synaptogenic signals trigger coordinated development of pre and postsynaptic structures. One of the best-characterized synaptogenic signals is trans-synaptic adhesion. However, it remains unclear how synaptic proteins are recruited to sites of adhesion. In particular, it is unknown whether synaptogenic signals attract synaptic vesicle (SV) and active zone (AZ) proteins to nascent synapses or instead predominantly function to create sites that are capable of forming synapses. It is also unclear how labile synaptic proteins are at developing synapses after their initial recruitment. To address these issues, we used long-term, live confocal imaging of presynaptic terminal formation in cultured cortical neurons after contact with the synaptogenic postsynaptic adhesion proteins neuroligin-1 or SynCAM-1. Results Surprisingly, we find that trans-synaptic adhesion does not attract SV or AZ proteins nor alter their transport. In addition, although neurexin (the presynaptic partner of neuroligin) typically accumulates over the entire region of contact between axons and neuroligin-1-expressing cells, SV proteins selectively assemble at spots of enhanced neurexin clustering. The arrival and maintenance of SV proteins at these sites is highly variable over the course of minutes to hours, and this variability correlates with neurexin levels at individual synapses. Conclusions Together, our data support a model of synaptogenesis where presynaptic proteins are trapped at specific axonal sites, where they are stabilized by trans-synaptic adhesion signaling.
Collapse
Affiliation(s)
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies. Int J Dev Neurosci 2013; 31:679-91. [PMID: 23501475 DOI: 10.1016/j.ijdevneu.2013.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/24/2013] [Accepted: 03/03/2013] [Indexed: 12/23/2022] Open
Abstract
The major advantage of the neuronal cell culture models derived from human stem cells is their ability to replicate the crucial stages of neurodevelopment such as the commitment of human stem cells to the neuronal lineage and their subsequent stages of differentiation into neuronal and glial-like cell. In these studies we used mixed neuronal/glial culture derived from the NTERA-2 (NT-2) cell line, which has been established from human pluripotent testicular embryonal carcinoma cells. After characterization of the different stages of cell differentiation into neuronal- and glial-like phenotype toxicity studies were performed to evaluate whether this model would be suitable for developmental neurotoxicity studies. The cells were exposed during the differentiation process to non-cytotoxic concentrations of methylmercury chloride, lead chloride and aluminum nitrate for two weeks. The toxicity was then evaluated by measuring the mRNA levels of cell specific markers (neuronal and glial). The results obtained suggest that lead chloride and aluminum nitrate at low concentrations were toxic primarily to astrocytes and at the higher concentrations it also induced neurotoxicity. In contrast, MetHgCl was toxic for both cell types, neuronal and glial, as mRNA specific for astrocytes and neuronal markers were affected. The results obtained suggest that a neuronal mixed culture derived from human NT2 precursor cells is a suitable model for developmental neurotoxicity studies and gene expression could be used as a sensitive endpoint for initial screening of potential neurotoxic compounds.
Collapse
|