1
|
Krzystolik J, Tański A, Piesiewicz R, Formicki K. The impact of electromagnetic fields generated by high-voltage power lines on the spatial arrangement of pike (Esox Lucius Linnaeus 1758) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47291-47297. [PMID: 38992303 PMCID: PMC11296963 DOI: 10.1007/s11356-024-34300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Urbanization and technological advancements result in the dispersion of antropogenic electromagnetic fields (EMF) that can affect on ecosystems. Therefore, it is important to understand their impact on the environment. Aquatic ecosystems are subject to EMF as part of various electricity sources, e.g., high-voltage transmission lines (HVTL). We examined the impact of EMF generated by HVTL on the spatial arrangement and survival of pike (Esox lucius) embryos. Fertilized eggs were incubated under two HVTL configurations 110 kV and 220 kV compared with a control group devoid of anthropogenic EMF. Embryo orientation and survival were monitored until blastopore closure. The control group showed dominance in the arrangement of embryos along the N-S, NNW-SSE, and NNE-SSW axes, with a slight prevalence of northern directions. EMF originating from HVTL did not exert a significant influence on the spatial arrangement of pike embryos, although some deviations from the arrangement noticed in the control group were observed. Increased embryo mortality was observed only at 110 kV site, but probably due to factors unrelated to EMF. In conclusion, EMF generated by HVTL did not significantly change pike embryo orientation or chances of survival. However, longer exposure or higher EMF levels could provoke notable reactions, requiring ongoing evaluation as power networks continue to spread more widely.
Collapse
Affiliation(s)
- Jan Krzystolik
- Department of Hydrobiology, Ichthyology and Biotechnology of Animal Reproduction, West Pomeranian University of Technology, Szczecin, Poland.
| | - Adam Tański
- Department of Hydrobiology, Ichthyology and Biotechnology of Animal Reproduction, West Pomeranian University of Technology, Szczecin, Poland
| | - Radosław Piesiewicz
- Department of Hydrobiology, Ichthyology and Biotechnology of Animal Reproduction, West Pomeranian University of Technology, Szczecin, Poland
| | - Krzysztof Formicki
- Department of Hydrobiology, Ichthyology and Biotechnology of Animal Reproduction, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
2
|
Hagstrum JT. Avian navigation: the geomagnetic field provides compass cues but not a bicoordinate "map" plus a brief discussion of the alternative infrasound direction-finding hypothesis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:295-313. [PMID: 37071206 DOI: 10.1007/s00359-023-01627-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
The geomagnetic field (GMF) is a worldwide source of compass cues used by animals and humans alike. The inclination of GMF flux lines also provides information on geomagnetic latitude. A long-disputed question, however, is whether horizontal gradients in GMF intensity, in combination with changes in inclination, provide bicoordinate "map" information. Multiple sources contribute to the total GMF, the largest of which is the core field. The ubiquitous crustal field is much less intense, but in both land and marine settings is strong enough at low altitudes (< 700 m; sea level) to mask the core field's weak N-S intensity gradient (~ 3-5 nT/km) over 10 s to 100 s of km. Non-orthogonal geomagnetic gradients, the lack of consistent E-W gradients, and the local masking of core-field intensity gradients by the crustal field, therefore, are grounds for rejection of the bicoordinate geomagnetic "map" hypothesis. In addition, the alternative infrasound direction-finding hypothesis is briefly reviewed. The GMF's diurnal variation has long been suggested as a possible Zeitgeber (timekeeper) for circadian rhythms and could explain the GMF's non-compass role in the avian navigational system. Requirements for detection of this weaker diurnal signal (~ 20-50 nT) might explain the magnetic alignment of resting and grazing animals.
Collapse
|
3
|
Hubená P, Horký P, Grabic R, Grabicová K, Douda K, Slavík O, Randák T. Aggression repeatability in stressed fish in response to an environmental concentration of sertraline and lunar cycle as evidenced by brain metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106707. [PMID: 37806025 DOI: 10.1016/j.aquatox.2023.106707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Sertraline is an environmental pollutant which received magnified scientific attention due to its global presence in waters. Adverse effects on feeding, reproduction and other traits were observed mostly in unstressed aquatic organisms. Chronic stress, however, induces significant physiological changes, and the effects of sertraline in stressed fish may differ from those observed in non-stressed individuals. The current laboratory study addresses this gap by repeatedly monitoring the individual aggression of chronically stressed juvenile chub (Squalius cephalus L.) using the non-reversing mirror test at an environmental sertraline concentration of 0.022 g/L every three to four days for a period of 39 days. Specifically, it was hypothesized that the level and repeatability of aggressiveness would be (i) correlated with the concentration of sertraline/norsertraline in the fish brain; (ii) linked to the individual brain metabolomic profile described by LC-HRMS analyses; (iii) related to the lunar cycle. Sertraline led to an increase in fish aggression and more repeatable/consistent behaviour compared to control fish. While the level of sertraline in the brain did not correlate with aggressiveness, aggressive responses increased with higher norsertraline concentration. The observed aggressive behaviour also varied depending on the individual metabolomic profile of the brain. The behavioural outcome and metabolic change in fish brain may indicate that sertraline has demonstrated neuroprotective effects by reducing cortisol release. It is possible that fish exposed to sertraline could suffer a blunted stress response under the chronic stressors in the wild. Aggressiveness of both treatments evolved in time, revealing a sinusoid-like pattern corresponding to a lunar cycle with a peak of the aggressiveness during the new moon. There is a need for future studies to focus on this relationship to reveal its details and general validity. Our results emphasize that long-term behavioural variability should generally be taken into account in laboratory behavioural studies.
Collapse
Affiliation(s)
- Pavla Hubená
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic; Uppsala University, Uppsala Biomedical Centre, Department of Medical Cell Biology, Husargatan 3, 751 23 Uppsala, Sweden.
| | - Pavel Horký
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Karel Douda
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Ondřej Slavík
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| |
Collapse
|
4
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
5
|
Naisbett-Jones LC, Lohmann KJ. Magnetoreception and magnetic navigation in fishes: a half century of discovery. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:19-40. [PMID: 35031832 DOI: 10.1007/s00359-021-01527-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023]
Abstract
As the largest and most diverse vertebrate group on the planet, fishes have evolved an impressive array of sensory abilities to overcome the challenges associated with navigating the aquatic realm. Among these, the ability to detect Earth's magnetic field, or magnetoreception, is phylogenetically widespread and used by fish to guide movements over a wide range of spatial scales ranging from local movements to transoceanic migrations. A proliferation of recent studies, particularly in salmonids, has revealed that fish can exploit Earth's magnetic field not only as a source of directional information for maintaining consistent headings, but also as a kind of map for determining location at sea and for returning to natal areas. Despite significant advances, much about magnetoreception in fishes remains enigmatic. How fish detect magnetic fields remains unknown and our understanding of the evolutionary origins of vertebrate magnetoreception would benefit greatly from studies that include a wider array of fish taxa. The rich diversity of life-history characteristics that fishes exhibit, the wide variety of environments they inhabit, and their suitability for manipulative studies, make fishes promising subjects for magnetoreception studies.
Collapse
Affiliation(s)
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
|
7
|
Diego-Rasilla FJ, Phillips JB. Evidence for the use of a high-resolution magnetic map by a short-distance migrant, the Alpine newt (Ichthyosaura alpestris). J Exp Biol 2021; 224:269106. [PMID: 34114002 DOI: 10.1242/jeb.238345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
Newts can use spatial variation in the magnetic field (MF) to derive geographic position, but it is unclear how they detect the 'spatial signal', which, over the distances that newts move in a day, is an order of magnitude lower than temporal variation in the MF. Previous work has shown that newts take map readings using their light-dependent magnetic compass to align a magnetite-based 'map detector' relative to the MF. In this study, time of day, location and light exposure (required by the magnetic compass) were varied to determine when newts obtain map information. Newts were displaced from breeding ponds without access to route-based cues to sites where they were held and/or tested under diffuse natural illumination. We found that: (1) newts held overnight at the testing site exhibited accurate homing orientation, but not if transported to the testing site on the day of testing; (2) newts held overnight under diffuse lighting at a 'false testing site' and then tested at a site located in a different direction from their home pond oriented in the home direction from the holding site, not from the site where they were tested; and (3) newts held overnight in total darkness (except for light exposure for specific periods) only exhibited homing orientation the following day if exposed to diffuse illumination during the preceding evening twilight in the ambient MF. These findings demonstrate that, to determine the home direction, newts require access to light and the ambient MF during evening twilight when temporal variation in the MF is minimal.
Collapse
Affiliation(s)
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA
| |
Collapse
|
8
|
Hunt RD, Ashbaugh RC, Reimers M, Udpa L, Saldana De Jimenez G, Moore M, Gilad AA, Pelled G. Swimming direction of the glass catfish is responsive to magnetic stimulation. PLoS One 2021; 16:e0248141. [PMID: 33667278 PMCID: PMC7935302 DOI: 10.1371/journal.pone.0248141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
Several marine species have developed a magnetic perception that is essential for navigation and detection of prey and predators. One of these species is the transparent glass catfish that contains an ampullary organ dedicated to sense magnetic fields. Here we examine the behavior of the glass catfish in response to static magnetic fields which will provide valuable insight on function of this magnetic response. By utilizing state of the art animal tracking software and artificial intelligence approaches, we quantified the effects of magnetic fields on the swimming direction of glass catfish. The results demonstrate that glass catfish placed in a radial arm maze, consistently swim away from magnetic fields over 20 μT and show adaptability to changing magnetic field direction and location.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Ryan C. Ashbaugh
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Mark Reimers
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Lalita Udpa
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Gabriela Saldana De Jimenez
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Moore
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- Synthetic Biology Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
10
|
Ectosymbionts alter spontaneous responses to the Earth's magnetic field in a crustacean. Sci Rep 2019; 9:3105. [PMID: 30816116 PMCID: PMC6395607 DOI: 10.1038/s41598-018-38404-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
Magnetic sensing is used to structure every-day, non-migratory behaviours in many animals. We show that crayfish exhibit robust spontaneous magnetic alignment responses. These magnetic behaviours are altered by interactions with Branchiobdellidan worms, which are obligate ectosymbionts. Branchiobdellidan worms have previously been shown to have positive effects on host growth when present at moderate densities, and negative effects at relatively high densities. Here we show that crayfish with moderate densities of symbionts aligned bimodally along the magnetic northeast-southwest axis, similar to passive magnetic alignment responses observed across a range of stationary vertebrates. In contrast, crayfish with high symbiont densities failed to exhibit consistent alignment relative to the magnetic field. Crayfish without symbionts shifted exhibited quadramodal magnetic alignment and were more active. These behavioural changes suggest a change in the organization of spatial behaviour with increasing ectosymbiont densities. We propose that the increased activity and a switch to quadramodal magnetic alignment may be associated with the use of systematic search strategies. Such a strategy could increase contact-rates with conspecifics in order to replenish the beneficial ectosymbionts that only disperse between hosts during direct contact. Our results demonstrate that crayfish perceive and respond to magnetic fields, and that symbionts influence magnetically structured spatial behaviour of their hosts.
Collapse
|
11
|
Malewski S, Begall S, Schleich CE, Antenucci CD, Burda H. Do subterranean mammals use the Earth's magnetic field as a heading indicator to dig straight tunnels? PeerJ 2018; 6:e5819. [PMID: 30402349 PMCID: PMC6215444 DOI: 10.7717/peerj.5819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022] Open
Abstract
Subterranean rodents are able to dig long straight tunnels. Keeping the course of such "runways" is important in the context of optimal foraging strategies and natal or mating dispersal. These tunnels are built in the course of a long time, and in social species, by several animals. Although the ability to keep the course of digging has already been described in the 1950s, its proximate mechanism could still not be satisfactorily explained. Here, we analyzed the directional orientation of 68 burrow systems in five subterranean rodent species (Fukomys anselli, F. mechowii, Heliophobius argenteocinereus, Spalax galili, and Ctenomys talarum) on the base of detailed maps of burrow systems charted within the framework of other studies and provided to us. The directional orientation of the vast majority of all evaluated burrow systems on the individual level (94%) showed a significant deviation from a random distribution. The second order statistics (averaging mean vectors of all the studied burrow systems of a respective species) revealed significant deviations from random distribution with a prevalence of north-south (H. argenteocinereus), NNW-SSE (C. talarum), and NE-SW (Fukomys mole-rats) oriented tunnels. Burrow systems of S. galili were randomly oriented. We suggest that the Earth's magnetic field acts as a common heading indicator, facilitating to keep the course of digging. This study provides a field test and further evidence for magnetoreception and its biological meaning in subterranean mammals. Furthermore, it lays the foundation for future field experiments.
Collapse
Affiliation(s)
- Sandra Malewski
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
- Department of Game Management and Wildlife Biology, Czech University of Agriculture, Prague, Czech Republic
| | - Cristian E. Schleich
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - C. Daniel Antenucci
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Hynek Burda
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
- Department of Game Management and Wildlife Biology, Czech University of Agriculture, Prague, Czech Republic
| |
Collapse
|
12
|
Rothschild BM, Naples V. Apparent sixth sense in theropod evolution: The making of a Cretaceous weathervane. PLoS One 2017; 12:e0187064. [PMID: 29095949 PMCID: PMC5667833 DOI: 10.1371/journal.pone.0187064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Objective Two separate and distinctive skills are necessary to find prey: Detection of its presence and determination of its location. Surface microscopy of the dentary of albertosaurines revealed a previously undescribed sensory modification, as will be described here. While dentary “foramina” were previously thought to contain tactile sensory organs, the potential function of this theropod modification as a unique localizing system is explored in this study. Method Dentary surface perforations were examined by surface epi-illumination microscopy in tyrannosaurine and albertosaurine dinosaurs to characterize their anatomy. Fish lateral lines were examined as potentially comparable structures. Result In contrast to the subsurface vascular bifurcation noted in tyrannosaurines (which lack a lateral dentary surface groove), the area subjacent to the apertures in albertosaurine grooves has the appearance of an expanded chamber. That appearance seemed to be indistinguishable from the lateral line of fish. Conclusion Dentary groove apertures in certain tyrannosaurid lines (specifically albertosaurines) not only have a unique appearance, but one with significant functional and behavior implications. The appearance of the perforations in the dentary groove of albertosaurines mirrors that previously noted only with specialized neurologic structures accommodating derived sensory functions, as seen in the lateral line of fish. The possibility that this specialized morphology could also represent a unique function in albertosaurine theropods for interacting with the environment or facilitating prey acquisition cannot be ignored. It is suggested that these expanded chambers function in perceiving and aligning the body relative to the direction of wind, perhaps a Cretaceous analogue of the contemporary midwestern weathervane.
Collapse
Affiliation(s)
- Bruce M Rothschild
- West Virginia University College of Medicine, Department of Medicine, Morgantown, West Virginia United States of America.,Carnegie Museum, Pittsburgh, Pennsylvania, United States of America
| | - Virginia Naples
- Northern Illinois University, DeKalb, Illinois, United States of America
| |
Collapse
|
13
|
Čapek F, Průcha J, Socha V, Hart V, Burda H. Directional orientation of pheasant chicks at the drinking dish and its potential for research on avian magnetoreception. FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i3.a5.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- František Čapek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Jaroslav Průcha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vladimír Socha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University Duisburg-Essen, 451 17 Essen, Germany
| |
Collapse
|
14
|
Pleskač L, Hart V, Nováková P, Painter MS. Spatial orientation of foraging corvids consistent with spontaneous magnetic alignment responses observed in a variety of free-roaming vertebrates. FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i2.a3.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lukáš Pleskač
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| | - Petra Nováková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| | - Michael S. Painter
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic;, , ,
| |
Collapse
|
15
|
Nováková P, Kořanová D, Begall S, Malkemper EP, Pleskač L, Čapek F, Červený J, Hart V, Hartová V, Husinec V, Burda H. Direction indicator and magnetic compass-aided tracking of the sun by flamingos? FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i2.a2.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Petra Nováková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Diana Kořanová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Erich P. Malkemper
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lukáš Pleskač
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - František Čapek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Jaroslav Červený
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Veronika Hartová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Václav Husinec
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
16
|
Spontaneous magnetic alignment behaviour in free-living lizards. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2017; 104:13. [DOI: 10.1007/s00114-017-1439-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/25/2022]
|
17
|
Červený J, Burda H, Ježek M, Kušta T, Husinec V, Nováková P, Hart V, Hartová V, Begall S, Malkemper EP. Magnetic alignment in warthogs
Phacochoerus africanus
and wild boars
Sus scrofa. Mamm Rev 2016. [DOI: 10.1111/mam.12077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaroslav Červený
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
- Department of General ZoologyFaculty of Biology University of Duisburg‐Essen 45117 Essen Germany
| | - Miloš Ježek
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
| | - Tomáš Kušta
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
| | - Václav Husinec
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
| | - Petra Nováková
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
| | - Veronika Hartová
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
| | - Sabine Begall
- Department of General ZoologyFaculty of Biology University of Duisburg‐Essen 45117 Essen Germany
| | - E. Pascal Malkemper
- Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16521Praha 6 Czech Republic
- Department of General ZoologyFaculty of Biology University of Duisburg‐Essen 45117 Essen Germany
| |
Collapse
|
18
|
Obleser P, Hart V, Malkemper EP, Begall S, Holá M, Painter MS, Červený J, Burda H. Compass-controlled escape behavior in roe deer. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Malkemper EP, Painter MS, Landler L. Shifted magnetic alignment in vertebrates: Evidence for neural lateralization? J Theor Biol 2016; 399:141-7. [PMID: 27059891 DOI: 10.1016/j.jtbi.2016.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/13/2016] [Accepted: 03/28/2016] [Indexed: 11/15/2022]
Abstract
A wealth of evidence provides support for magnetic alignment (MA) behavior in a variety of disparate species within the animal kingdom, in which an animal, or a group of animals, show a tendency to align the body axis in a consistent orientation relative to the geomagnetic field lines. Interestingly, among vertebrates, MA typically coincides with the north-south magnetic axis, however, the mean directional preferences of an individual or group of organisms is often rotated clockwise from the north-south axis. We hypothesize that this shift is not a coincidence, and future studies of this subtle, yet consistent phenomenon may help to reveal some properties of the underlying sensory or processing mechanisms, that, to date, are not well understood. Furthermore, characterizing the fine structure exhibited in MA behaviors may provide key insights to the biophysical substrates mediating magnetoreception in vertebrates. Therefore, in order to determine if a consistent shift is exhibited in taxonomically diverse vertebrates, we performed a meta-analysis on published MA datasets from 23 vertebrate species that exhibited an axial north-south preference. This analysis revealed a significant clockwise shift from the north-south magnetic axis. We summarize and discuss possible competing hypotheses regarding the proximate mechanisms underlying the clockwise shifted MA and conclude that the most likely cause of such a shift would be a lateralization in central processing of magnetic information.
Collapse
Affiliation(s)
- E Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse. 2, 45117 Essen, Germany; Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
| | - Michael S Painter
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Lukas Landler
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
20
|
Landler L, Siegel PB. A Mysterious Topographic Bias: No Magnetic Effects on Chick Embryo Alignment? ANN ZOOL FENN 2016. [DOI: 10.5735/086.053.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Luchiari AC. How Betta splendens finds its way. Behav Processes 2016; 124:47-51. [DOI: 10.1016/j.beproc.2015.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022]
|
22
|
Belova NA, Acosta-Avalos D. The Effect of Extremely Low Frequency Alternating Magnetic Field on the Behavior of Animals in the Presence of the Geomagnetic Field. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2015; 2015:423838. [PMID: 26823664 PMCID: PMC4707359 DOI: 10.1155/2015/423838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022]
Abstract
It is known that the geomagnetic field can influence animal migration and homing. The magnetic field detection by animals is known as magnetoreception and it is possible due to two different transduction mechanisms: the first one through magnetic nanoparticles able to respond to the geomagnetic field and the second one through chemical reactions influenced by magnetic fields. Another behavior is the magnetic alignment where animals align their bodies to the geomagnetic field. It has been observed that magnetic alignment of cattle can be disrupted near electric power lines around the world. Experimentally, it is known that alternating magnetic fields can influence living beings, but the exact mechanism is unknown. The parametric resonance model proposes a mechanism to explain that effect on living beings and establishes that, in the presence of a constant magnetic field, molecules associated with biochemical reactions inside cells can absorb resonantly alternating magnetic fields with specific frequencies. In the present paper, a review is made about animal magnetoreception and the effects of alternating magnetic fields in living beings. It is suggested how alternating magnetic fields can interfere in the magnetic alignment of animals and a general conclusion is obtained: alternating magnetic field pollution can affect the magnetic sensibility of animals.
Collapse
Affiliation(s)
- Natalia A. Belova
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow 142290, Russia
| | - Daniel Acosta-Avalos
- Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Landler L, Painter MS, Youmans PW, Hopkins WA, Phillips JB. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PLoS One 2015; 10:e0124728. [PMID: 25978736 PMCID: PMC4433231 DOI: 10.1371/journal.pone.0124728] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.
Collapse
Affiliation(s)
- Lukas Landler
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael S. Painter
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Paul W. Youmans
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William A. Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - John B. Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
24
|
Hart V, Nováková P, Malkemper EP, Begall S, Hanzal V, Ježek M, Kušta T, Němcová V, Adámková J, Benediktová K, Červený J, Burda H. Dogs are sensitive to small variations of the Earth's magnetic field. Front Zool 2013; 10:80. [PMID: 24370002 PMCID: PMC3882779 DOI: 10.1186/1742-9994-10-80] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Several mammalian species spontaneously align their body axis with respect to the Earth’s magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics. Results Dogs preferred to excrete with the body being aligned along the North–South axis under calm MF conditions. This directional behavior was abolished under unstable MF. The best predictor of the behavioral switch was the rate of change in declination, i.e., polar orientation of the MF. Conclusions It is for the first time that (a) magnetic sensitivity was proved in dogs, (b) a measurable, predictable behavioral reaction upon natural MF fluctuations could be unambiguously proven in a mammal, and (c) high sensitivity to small changes in polarity, rather than in intensity, of MF was identified as biologically meaningful. Our findings open new horizons in magnetoreception research. Since the MF is calm in only about 20% of the daylight period, our findings might provide an explanation why many magnetoreception experiments were hardly replicable and why directional values of records in diverse observations are frequently compromised by scatter.
Collapse
Affiliation(s)
- Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Petra Nováková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Erich Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Vladimír Hanzal
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Miloš Ježek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Tomáš Kušta
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Veronika Němcová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Jana Adámková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Kateřina Benediktová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Jaroslav Červený
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic.,Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
25
|
Hart V, Malkemper EP, Kušta T, Begall S, Nováková P, Hanzal V, Pleskač L, Ježek M, Policht R, Husinec V, Cervený J, Burda H. Directional compass preference for landing in water birds. Front Zool 2013; 10:38. [PMID: 23835450 PMCID: PMC3710278 DOI: 10.1186/1742-9994-10-38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022] Open
Abstract
Introduction Landing flight in birds is demanding on visual control of velocity, distance to target, and slope of descent. Birds flying in flocks must also keep a common course of landing in order to avoid collisions. Whereas the wind direction may provide a cue for landing, the nature of the landing direction indicator under windless conditions has been unknown. We recorded and analysed landing directions of 3,338 flocks in 14 species of water birds in eight countries. Results We show that the preferred landing direction, independently of the direction from which the birds have arrived, is along the north-south axis. We analysed the effect of the time of the year, time of the day (and thus sun position), weather (sunny versus overcast), light breeze, locality, latitude, and magnetic declination in 2,431 flocks of mallards (Anas platyrhynchos) and found no systematic effect of these factors upon the preferred direction of landing. We found that magnetic North was a better predictor for landing direction than geographic North. Conclusions In absence of any other common denominator determining the landing direction, the alignment with the magnetic field lines seems to be the most plausible if not the only explanation for the directional landing preference under windless and overcast conditions and we suggest that the magnetic field thus provides a landing direction indicator.
Collapse
Affiliation(s)
- Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Durif CMF, Browman HI, Phillips JB, Skiftesvik AB, Vøllestad LA, Stockhausen HH. Magnetic compass orientation in the European eel. PLoS One 2013; 8:e59212. [PMID: 23554997 PMCID: PMC3598651 DOI: 10.1371/journal.pone.0059212] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/12/2013] [Indexed: 11/22/2022] Open
Abstract
European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (∼ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12°C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12–17°C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel’s seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier.
Collapse
Affiliation(s)
- Caroline M F Durif
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway.
| | | | | | | | | | | |
Collapse
|