1
|
Tan YR, Roan HY, Chen CH. Zebrafish tailfin as an in vivo model for capturing tissue-scale cell dynamics. Semin Cell Dev Biol 2025; 166:29-35. [PMID: 39724824 DOI: 10.1016/j.semcdb.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The intricate control of collective cell dynamics is crucial for enabling organismic development and tissue regeneration. Despite the availability of various in vitro and in vivo models, studies on tissue-scale cell dynamics and associated emergent properties in living systems remain methodically challenging. Here, we describe key advantages of using the adult zebrafish tailfin (caudal fin) as a robust in vivo model for dissecting millimeter-scale collective cell dynamics during regeneration and wound healing in a complex tissue. For researchers considering this model system, we briefly introduce the tailfin anatomy, as well as available transgenic reporter tools and live-imaging setups that may be utilized to study epidermal cell behaviors. To highlight the unique strengths of the zebrafish tailfin model, we present an example project that was made possible by techniques for tracking cell dynamics at a millimeter scale with single-cell resolution in live animals. Finally, we discuss the research directions at the interface of collective cell dynamics and regenerative biology that most excite us and can be examined using the tailfin model.
Collapse
Affiliation(s)
- Yue Rong Tan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Segone RT, Sandasi M, Ncube E, Gouws C, Viljoen AM. Insights into the wound-healing properties of medicinally important South African Bulbine species - A comparative study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118901. [PMID: 39369917 DOI: 10.1016/j.jep.2024.118901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE South Africa harbours a large number of Bulbine (Xanthorrhoeaceae) species, which includes ethnobotanically important indigenous species. Traditionally, Bulbine leaves are used by several ethnic groups in South Africa to treat dermatological conditions including wounds, which led to the development of Bulbine-containing cosmetic products. However, scientific evidence is needed to support the claims in treating skin conditions and wound-healing. AIM OF THE STUDY This comparative study was undertaken to investigate the wound-healing properties of five Bulbine species indigenous to South Africa, using in vitro and in vivo models. MATERIALS AND METHODS Five Bulbine species, B. abyssinica, B. asphodeloides, B. frutescens, B. latifolia and B. narcissifolia were collected from natural populations in the Eastern Cape Province of South Africa. The chemical profiles of the methanol leaf extracts were acquired using ultra-performance liquid chromatography with photodiode array detection in tandem with quadrupole time-of-flight mass spectrometry. The methyl thiazolyl tetrazolium (MTT) assay and maximum tolerated concentration (MTC) assay were used to assess the in vitro and in vivo toxicity of the extracts, respectively. The in vitro scratch assay was employed to monitor cell migration and wound-closure in a HaCaT cell monolayer, following treatment with the plant extracts for 48 h. In vivo wound-healing potential was determined using the zebrafish larvae caudal fin amputation assay, assessed in three-days post fertilization larvae and various concentrations of the plant extracts were tested in both assays to determine the concentration-response effect. Data were analysed using MS Excel® enhanced with the Real Statistics add-in. RESULTS AND DISCUSSION Using UPLC-MS, 11 major compounds were tentatively identified in the five Bulbine species. Although the compounds varied between species, all five Bulbine species contained the phenylanthraquinone, knipholone. Kaempferol glucoside was identified in four species, but not in B. abyssinica. The five Bulbine species were non-cytotoxic (cell viability > 80%) towards keratinocytes at all three tested concentrations. However, B. latifolia was toxic towards zebrafish larvae at all the tested concentrations, while the other four species were non-toxic at low concentrations. The results of the scratch assay revealed that B. abyssinica was the most active extract at 100 μg/mL. Compared to the untreated control, wound-closure notably increased by 28% (p < 0.05), 44% (p < 0.01) and 34% (p < 0.05) after 12 h, 24 h and 36 h post-treatment, respectively. Although none of the species achieved 100% caudal fin regeneration by the end of the treatment period, B. frutescens demonstrated the highest regeneration (90%) and most significant difference (p < 0.01) compared to the untreated control. CONCLUSION The results revealed that the five Bulbine species have complex chemical profiles, however, they share major compound classes (i.e. phenylanthroquinones and flavonoid analogues) across the species. The study highlights the wound-healing properties of the five species, which is consistent with their traditional use.
Collapse
Affiliation(s)
- Ramoagi T Segone
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria, 0001, South Africa
| | - Efficient Ncube
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, 2520, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
3
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
4
|
Begeman IJ, Emery B, Kurth A, Kang J. Regeneration and developmental enhancers are differentially compatible with minimal promoters. Dev Biol 2022; 492:47-58. [PMID: 36167150 PMCID: PMC10211259 DOI: 10.1016/j.ydbio.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022]
Abstract
Enhancers and promoters are cis-regulatory elements that control gene expression. Enhancers are activated in a cell type-, tissue-, and condition-specific manner to stimulate promoter function and transcription. Zebrafish have emerged as a powerful animal model for examining the activities of enhancers derived from various species through transgenic enhancer assays, in which an enhancer is coupled with a minimal promoter. However, the efficiency of minimal promoters and their compatibility with multiple developmental and regeneration enhancers have not been systematically tested in zebrafish. Thus, we assessed the efficiency of six minimal promoters and comprehensively interrogated the compatibility of the promoters with developmental and regeneration enhancers. We found that the fos minimal promoter and Drosophila synthetic core promoter (DSCP) yielded high rates of leaky expression that may complicate the interpretation of enhancer assays. Notably, the adenovirus E1b promoter, the zebrafish lepb 0.8-kb (P0.8) and lepb 2-kb (P2) promoters, and a new zebrafish synthetic promoter (ZSP) that combines elements of the E1b and P0.8 promoters drove little or no ectopic expression, making them suitable for transgenic assays. We also found significant differences in compatibility among specific combinations of promoters and enhancers, indicating the importance of promoters as key regulatory elements determining the specificity of gene expression. Our study provides guidelines for transgenic enhancer assays in zebrafish to aid in the discovery of functional enhancers regulating development and regeneration.
Collapse
Affiliation(s)
- Ian J Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Benjamin Emery
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA; UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Zhou S, Liu Z, Kawakami A. A PI3Kγ signal regulates macrophage recruitment to injured tissue for regenerative cell survival. Dev Growth Differ 2022; 64:433-445. [PMID: 36101496 PMCID: PMC9826243 DOI: 10.1111/dgd.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
The interaction between immune cells and injured tissues is crucial for regeneration. Previous studies have shown that macrophages attenuate inflammation caused by injuries to support the survival of primed regenerative cells. Macrophage loss in zebrafish mutants like cloche (clo) causes extensive apoptosis in the regenerative cells of the amputated larval fin fold. However, the mechanism of interaction between macrophage and injured tissue is poorly understood. Here, we show that a phosphoinositide 3-kinase gamma (PI3Kγ)-mediated signal is essential for recruiting macrophages to the injured tissue. PI3Kγ inhibition by the PI3Kγ-specific inhibitor, 5-quinoxalin-6-ylmethylene-thiazolidine-2,4-dione (AS605240 or AS), displayed a similar apoptosis phenotype with that observed in clo mutants. We further show that PI3Kγ function during the early regenerative stage is necessary for macrophage recruitment to the injured site. Additionally, protein kinase B (Akt) overexpression in the AS-treated larvae suggested that Akt is not the direct downstream mediator of PI3Kγ for macrophage recruitment, while it independently plays a role for the survival of regenerative cells. Together, our study reveals that PI3Kγ plays a role for recruiting macrophages in response to regeneration.
Collapse
Affiliation(s)
- Siyu Zhou
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Zhengcheng Liu
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Kawakami
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
6
|
Azulay RS, Lago D, Santos GAS, Tavares MDG, Rodrigues V, Magalhaês M, Reis RF, Nunes N, Almeida AGFP, Sá AG, Nascimento G, Damianse S, Rocha V, Silva DA, Gomes MB, Faria M. Relationship among health-related quality of life and global ancestry, clinical and socioeconomic factors in type 1 diabetes in an admixed Brazilian population. Sci Rep 2022; 12:11060. [PMID: 35773385 PMCID: PMC9246993 DOI: 10.1038/s41598-022-15138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
We aimed to evaluate the Health-related quality of life (HRQoL) of Type 1 diabetes mellitus (T1D) patients in an admixed Brazilian population. This is a cross-sectional study with 152 T1D patients. HRQoL information was obtained from two self-completed questionnaires: Short Form-6 dimensions and EuroQol-5 dimensions with visual analog scale. For inference of global ancestry, the panel of 46 autosomal informational insertion/deletion ancestry markers was used. Demographic and socioeconomic data, presence of chronic complications, glycemic control level, and type of treatment were obtained. Patients with good HRQoL were: male, under 18 years old, had health insurance, less than 5 years of diagnosis, practiced physical activity, without hypoglycemia in the last 30 days, absence of retinopathy and nephropathy, a participant in educational activities, used analogous insulin, monitoring blood glucose, observed maximum adherence to treatment and came from the secondary service. Global ancestry and self-reported color/race did not influence HRQoL indexes. Our study is the first to measure HRQoL, global ancestry and recognize the impact of T1D on the lives of patients in the State of Maranhão, Brazil. The results validate the need to provide T1D patients with continuous training on self-management and self-monitoring, aiming for better results in metabolic control and, subsequently, in the prevention of acute and chronic complications, in order to generate positive impacts on the quality of life of this population. We understand that global ancestry in a highly mixed population such as ours did not influence the HRQoL of these patients.
Collapse
Affiliation(s)
- Rossana Sousa Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil.
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil.
| | - Débora Lago
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Glaucia Abreu Silva Santos
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Maria da Glória Tavares
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Vandilson Rodrigues
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Marcelo Magalhaês
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Roberta Ferreira Reis
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Nayara Nunes
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Ana Gregória Ferreira Pereira Almeida
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Adriana Guimarães Sá
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Gilvan Nascimento
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Sabrina Damianse
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Viviane Rocha
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Manuel Faria
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
7
|
Chan KY, Yan CCS, Roan HY, Hsu SC, Tseng TL, Hsiao CD, Hsu CP, Chen CH. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 2022; 605:119-125. [PMID: 35477758 DOI: 10.1038/s41586-022-04641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
As an animal's surface area expands during development, skin cell populations must quickly respond to maintain sufficient epithelial coverage. Despite much progress in understanding of skin cell behaviours in vivo1,2, it remains unclear how cells collectively act to satisfy coverage demands at an organismic level. Here we created a multicolour cell membrane tagging system, palmskin, to monitor the entire population of superficial epithelial cells (SECs) in developing zebrafish larvae. Using time-lapse imaging, we found that many SECs readily divide on the animal body surface; during a specific developmental window, a single SEC can produce a maximum of four progeny cells over its lifetime on the surface of the animal. Remarkably, EdU assays, DNA staining and hydroxyurea treatment showed that these terminally differentiated skin cells continue splitting despite an absence of DNA replication, causing up to 50% of SECs to exhibit reduced genome size. On the basis of a simple mathematical model and quantitative analyses of cell volumes and apical surface areas, we propose that 'asynthetic fission' is used as an efficient mechanism for expanding epithelial coverage during rapid growth. Furthermore, global or local manipulation of body surface growth affects the extent and mode of SEC division, presumably through tension-mediated activation of stretch-activated ion channels. We speculate that this frugal yet flexible mode of cell proliferation might also occur in contexts other than zebrafish skin expansion.
Collapse
Affiliation(s)
- Keat Ying Chan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Division of Physics, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Bohaud C, Johansen MD, Varga B, Contreras-Lopez R, Barthelaix A, Hamela C, Sapède D, Cloitre T, Gergely C, Jorgensen C, Kremer L, Djouad F. Exploring Macrophage-Dependent Wound Regeneration During Mycobacterial Infection in Zebrafish. Front Immunol 2022; 13:838425. [PMID: 35401552 PMCID: PMC8987025 DOI: 10.3389/fimmu.2022.838425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.
Collapse
Affiliation(s)
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Dora Sapède
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Farida Djouad
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- *Correspondence: Farida Djouad,
| |
Collapse
|
9
|
Heller IS, Guenther CA, Meireles AM, Talbot WS, Kingsley DM. Characterization of mouse Bmp5 regulatory injury element in zebrafish wound models. Bone 2022; 155:116263. [PMID: 34826632 PMCID: PMC9007314 DOI: 10.1016/j.bone.2021.116263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Many key signaling molecules used to build tissues during embryonic development are re-activated at injury sites to stimulate tissue regeneration and repair. Bone morphogenetic proteins provide a classic example, but the mechanisms that lead to reactivation of BMPs following injury are still unknown. Previous studies have mapped a large "injury response element" (IRE) in the mouse Bmp5 gene that drives gene expression following bone fractures and other types of injury. Here we show that the large mouse IRE region is also activated in both zebrafish tail resection and mechanosensory hair cell injury models. Using the ability to test multiple constructs and image temporal and spatial dynamics following injury responses, we have narrowed the original size of the mouse IRE region by over 100 fold and identified a small 142 bp minimal enhancer that is rapidly induced in both mesenchymal and epithelial tissues after injury. These studies identify a small sequence that responds to evolutionarily conserved local signals in wounded tissues and suggest candidate pathways that contribute to BMP reactivation after injury.
Collapse
Affiliation(s)
- Ian S Heller
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America
| | - Ana M Meireles
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America.
| |
Collapse
|
10
|
Scott CA, Carney TJ, Amaya E. Aerobic glycolysis is important for zebrafish larval wound closure and tail regeneration. Wound Repair Regen 2022; 30:665-680. [PMID: 36148505 PMCID: PMC9828577 DOI: 10.1111/wrr.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 01/12/2023]
Abstract
The underlying mechanisms of appendage regeneration remain largely unknown and uncovering these mechanisms in capable organisms has far-reaching implications for potential treatments in humans. Recent studies implicate a requirement for metabolic reprogramming reminiscent of the Warburg effect during successful appendage and organ regeneration. As changes are thus predicted to be highly dynamic, methods permitting direct, real-time visualisation of metabolites at the tissue and organismal level would offer a significant advance in defining the influence of metabolism on regeneration and healing. We sought to examine whether glycolytic activity was altered during larval fin regeneration, utilising the genetically encoded biosensor, Laconic, enabling the spatiotemporal assessment of lactate levels in living zebrafish. We present evidence for a rapid increase in lactate levels within min following injury, with a role of aerobic glycolysis in actomyosin contraction and wound closure. We also find a second wave of lactate production, associated with overall larval tail regeneration. Chemical inhibition of glycolysis attenuates both the contraction of the wound and regrowth of tissue following tail amputation, suggesting aerobic glycolysis is necessary at two distinct stages of regeneration.
Collapse
Affiliation(s)
- Claire A. Scott
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK,Institute of Molecular and Cell Biology (IMCB)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
| | - Tom J. Carney
- Institute of Molecular and Cell Biology (IMCB)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore,Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden CampusNanyang Technological UniversitySingaporeSingapore
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
11
|
Investigating Pathogenicity and Virulence of Staphylococcus pettenkoferi: An Emerging Pathogen. Int J Mol Sci 2021; 22:ijms222413614. [PMID: 34948410 PMCID: PMC8704685 DOI: 10.3390/ijms222413614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus pettenkoferi is a coagulase-negative Staphylococcus identified in 2002 that has been implicated in human diseases as an opportunistic pathogenic bacterium. Its multiresistant character is becoming a major health problem, yet the pathogenicity of S. pettenkoferi is poorly characterized. In this study, the pathogenicity of a S. pettenkoferi clinical isolate from diabetic foot osteomyelitis was compared with a Staphylococcus aureus strain in various in vitro and in vivo experiments. Growth kinetics were compared against S. aureus, and bacteria survival was assessed in the RAW 264.7 murine macrophage cell line, the THP-1 human leukemia monocytic cell line, and the HaCaT human keratinocyte cell line. Ex vivo analysis was performed in whole blood survival assays and in vivo assays via the infection model of zebrafish embryos. Moreover, whole-genome analysis was performed. Our results show that S. pettenkoferi was able to survive in human blood, human keratinocytes, murine macrophages, and human macrophages. S. pettenkoferi demonstrated its virulence by causing substantial embryo mortality in the zebrafish model. Genomic analysis revealed virulence factors such as biofilm-encoding genes (e.g., icaABCD; rsbUVW) and regulator-encoding genes (e.g., agr, mgrA, sarA, saeS) well characterized in S. aureus. This study thus advances the knowledge of this under-investigated pathogen and validates the zebrafish infection model for this bacterium.
Collapse
|
12
|
Aztekin C. Tissues and Cell Types of Appendage Regeneration: A Detailed Look at the Wound Epidermis and Its Specialized Forms. Front Physiol 2021; 12:771040. [PMID: 34887777 PMCID: PMC8649801 DOI: 10.3389/fphys.2021.771040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic implementation of human limb regeneration is a daring aim. Studying species that can regrow their lost appendages provides clues on how such a feat can be achieved in mammals. One of the unique features of regeneration-competent species lies in their ability to seal the amputation plane with a scar-free wound epithelium. Subsequently, this wound epithelium advances and becomes a specialized wound epidermis (WE) which is hypothesized to be the essential component of regenerative success. Recently, the WE and specialized WE terminologies have been used interchangeably. However, these tissues were historically separated, and contemporary limb regeneration studies have provided critical new information which allows us to distinguish them. Here, I will summarize tissue-level observations and recently identified cell types of WE and their specialized forms in different regeneration models.
Collapse
Affiliation(s)
- Can Aztekin
- Swiss Federal Institute of Technology Lausanne, EPFL, School of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
13
|
Lin YF, Sam J, Evans T. Sirt1 promotes tissue regeneration in zebrafish through regulating the mitochondrial unfolded protein response. iScience 2021; 24:103118. [PMID: 34622167 PMCID: PMC8479786 DOI: 10.1016/j.isci.2021.103118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an organellar stress signaling pathway that functions to detect and restore disruption of mitochondrial proteostasis. The UPRmt is involved in a wide range of physiological and disease conditions, including aging, stem cell maintenance, innate immunity, neurodegeneration, and cancer. Here we report that the UPRmt is integral to zebrafish fin regeneration. Taking advantage of a novel zebrafish UPRmt reporter, we observed that UPRmt activation occurs in regenerating fin tissue shortly after injury. Through chemical and genetic approaches, we discovered that the Sirt1-UPRmt pathway, best known for its role in promoting lifespan extension, is crucial for fin regeneration. The metabolism of NAD+ is an important contributor to Sirt1 activity in this context. We propose that Sirt1 activation induces mitochondrial biogenesis in injured fin tissue, which leads to UPRmt activation and promotes tissue regeneration.
Collapse
Affiliation(s)
- Yi-Fan Lin
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, LC-708, New York, NY 10065, USA
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jessica Sam
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, LC-708, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, LC-708, New York, NY 10065, USA
| |
Collapse
|
14
|
Bohaud C, Johansen MD, Jorgensen C, Ipseiz N, Kremer L, Djouad F. The Role of Macrophages During Zebrafish Injury and Tissue Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707824. [PMID: 34367168 PMCID: PMC8334857 DOI: 10.3389/fimmu.2021.707824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
The future of regenerative medicine relies on our understanding of the mechanistic processes that underlie tissue regeneration, highlighting the need for suitable animal models. For many years, zebrafish has been exploited as an adequate model in the field due to their very high regenerative capabilities. In this organism, regeneration of several tissues, including the caudal fin, is dependent on a robust epimorphic regenerative process, typified by the formation of a blastema, consisting of highly proliferative cells that can regenerate and completely grow the lost limb within a few days. Recent studies have also emphasized the crucial role of distinct macrophage subpopulations in tissue regeneration, contributing to the early phases of inflammation and promoting tissue repair and regeneration in late stages once inflammation is resolved. However, while most studies were conducted under non-infectious conditions, this situation does not necessarily reflect all the complexities of the interactions associated with injury often involving entry of pathogenic microorganisms. There is emerging evidence that the presence of infectious pathogens can largely influence and modulate the host immune response and the regenerative processes, which is sometimes more representative of the true complexities underlying regenerative mechanics. Herein, we present the current knowledge regarding the paths involved in the repair of non-infected and infected wounds using the zebrafish model.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | |
Collapse
|
15
|
A Novel Infection Protocol in Zebrafish Embryo to Assess Pseudomonas aeruginosa Virulence and Validate Efficacy of a Quorum Sensing Inhibitor In Vivo. Pathogens 2021; 10:pathogens10040401. [PMID: 33805384 PMCID: PMC8065929 DOI: 10.3390/pathogens10040401] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.
Collapse
|
16
|
Paredes LC, Luz RBDS, Tozzi ON, de Carvalho LÂSJ, Calado SLDM, Padovani BN, Fénero CIM, do Amaral MA, de Assis HCDS, Câmara NOS, Braga TT. Distinct macrophage phenotypes and redox environment during the fin fold regenerative process in zebrafish. Scand J Immunol 2021; 94:e13026. [PMID: 33565093 DOI: 10.1111/sji.13026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
In contrast to mammals, zebrafish (Danio rerio) has the ability to regenerate injured sites such as different tissues present in the fin. It is known that cells of the innate immune system play essential roles in regeneration; however, some aspects of the molecular mechanisms by which these cells orchestrate regeneration remain unknown. This study aimed to evaluate the infiltration dynamics of neutrophils and macrophages in the regenerative process of fin fold in regard to the influence of the redox environment and oxidative pathways. Fin fold amputation was performed on transgenic larvae for macrophage-expressed gene 1 (mpeg1), lysozyme (lyz), myeloperoxidase (mpo) and tumour necrosis factor alpha (TNFα) at 3 days post-fertilization, followed by confocal microscopy imaging and measurement of the activities of oxidant and antioxidant enzymes. We observed initially an increase in the number of neutrophils (lyz:DsRed+/mpx:GFP+) and then macrophages (mpeg1+) in the injury site followed by a decrease in neutrophils at 7 days post-amputation (dpa). Moreover, macrophages switch from a pro-inflammatory to an anti-inflammatory profile throughout the process, while the activity of superoxide dismutase (SOD) increased at 1 dpa and catalase (CAT) at 5 dpa. Higher levels of lipid peroxidation were also detected during regeneration. Despite oxidative stress, there is, therefore, an antioxidant response throughout the regeneration of the caudal fin. The present work can contribute to future studies on the development of cell therapies, achieving greater effectiveness in the treatment of diseases related to the formation of fibrotic tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Bárbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | | | - Mariana Abrantes do Amaral
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Graduate Program in Biosciences and Biotechnology, Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| |
Collapse
|
17
|
Abstract
Tissue or organ regeneration is a complex process with successful outcomes depending on the type of tissue and organism. Upon damage, mammals can only efficiently restore a few tissues including the liver, skin, epithelia of the lung, kidney, and gut. In contrast, lower vertebrates such as zebrafish possess an extraordinary regeneration ability, which restores the normal function of a broad spectrum of tissues including heart, fin, brain, spinal cord, and retina. This regeneration process is either mediated by the proliferation of resident stem cells, or cells that dedifferentiate into a stem cell-like. In recent years, evidence has suggested that the innate immune system can modulate stem cell activity to initiate the regenerative response to damage. This review will explore some of the newer concepts of inflammation in zebrafish regeneration in different tissues. Understanding how inflammation regulates regeneration in zebrafish would provide important clues to improve the therapeutic strategies for repairing injured mammalian tissues that do not have an inherent regenerative capacity.
Collapse
Affiliation(s)
- Maria Iribarne
- Center for Zebrafish Research, Department of Biological Sciences; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
18
|
Kennard A, Prinz C, Labuz E, Theriot J. Wounding Zebrafish Larval Epidermis by Laceration. Bio Protoc 2021; 11:e4260. [DOI: 10.21769/bioprotoc.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/02/2022] Open
|
19
|
van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, Williams S, Koekemoer TC, Venables L. Wild-Type Zebrafish ( Danio rerio) Larvae as a Vertebrate Model for Diabetes and Comorbidities: A Review. Animals (Basel) 2020; 11:E54. [PMID: 33396883 PMCID: PMC7824285 DOI: 10.3390/ani11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have become a popular alternative to higher animals in biomedical and pharmaceutical research. The development of stable mutant lines to model target specific aspects of many diseases, including diabetes, is well reported. However, these mutant lines are much more costly and challenging to maintain than wild-type zebrafish and are simply not an option for many research facilities. As an alternative to address the disadvantages of advanced mutant lines, wild-type larvae may represent a suitable option. In this review, we evaluate organ development in zebrafish larvae and discuss established methods that use wild-type zebrafish larvae up to seven days post fertilization to test for potential drug candidates for diabetes and its commonly associated conditions of oxidative stress and inflammation. This provides an up to date overview of the relevance of wild-type zebrafish larvae as a vertebrate antidiabetic model and confidence as an alternative tool for preclinical studies. We highlight the advantages and disadvantages of established methods and suggest recommendations for future developments to promote the use of zebrafish, specifically larvae, rather than higher animals in the early phase of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Jenske Didloff
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Shanika Reddy
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Sharlene Govender
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Ntokozo Shirley Dambuza
- Department of Pharmacy, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa;
| | - Saralene Williams
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Trevor Craig Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| |
Collapse
|
20
|
Kennard AS, Theriot JA. Osmolarity-independent electrical cues guide rapid response to injury in zebrafish epidermis. eLife 2020; 9:e62386. [PMID: 33225997 PMCID: PMC7721437 DOI: 10.7554/elife.62386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/17/2020] [Indexed: 01/02/2023] Open
Abstract
The ability of epithelial tissues to heal after injury is essential for animal life, yet the mechanisms by which epithelial cells sense tissue damage are incompletely understood. In aquatic organisms such as zebrafish, osmotic shock following injury is believed to be an early and potent activator of a wound response. We find that, in addition to sensing osmolarity, basal skin cells in zebrafish larvae are also sensitive to changes in the particular ionic composition of their surroundings after wounding, specifically the concentration of sodium chloride in the immediate vicinity of the wound. This sodium chloride-specific wound detection mechanism is independent of cell swelling, and instead is suggestive of a mechanism by which cells sense changes in the transepithelial electrical potential generated by the transport of sodium and chloride ions across the skin. Consistent with this hypothesis, we show that electric fields directly applied within the skin are sufficient to initiate actin polarization and migration of basal cells in their native epithelial context in vivo, even overriding endogenous wound signaling. This suggests that, in order to mount a robust wound response, skin cells respond to both osmotic and electrical perturbations arising from tissue injury.
Collapse
Affiliation(s)
- Andrew S Kennard
- Biophysics Program, Stanford UniversityStanfordUnited States
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
21
|
Breus O, Dickmeis T. Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration. Biol Chem 2020; 402:363-378. [PMID: 33021959 DOI: 10.1515/hsz-2020-0269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Important roles for reactive oxygen species (ROS) and redox signaling in embryonic development and regenerative processes are increasingly recognized. However, it is difficult to obtain information on spatiotemporal dynamics of ROS production and signaling in vivo. The zebrafish is an excellent model for in vivo bioimaging and possesses a remarkable regenerative capacity upon tissue injury. Here, we review data obtained in this model system with genetically encoded redox-sensors targeting H2O2 and glutathione redox potential. We describe how such observations have prompted insight into regulation and downstream effects of redox alterations during tissue differentiation, morphogenesis and regeneration. We also discuss the properties of the different sensors and their consequences for the interpretation of in vivo imaging results. Finally, we highlight open questions and additional research fields that may benefit from further application of such sensor systems in zebrafish models of development, regeneration and disease.
Collapse
Affiliation(s)
- Oksana Breus
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Cavanah P, Itou J, Rusman Y, Tahara N, Williams JM, Salomon CE, Kawakami Y. A nontoxic fungal natural product modulates fin regeneration in zebrafish larvae upstream of FGF-WNT developmental signaling. Dev Dyn 2020; 250:160-174. [PMID: 32857425 DOI: 10.1002/dvdy.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The regeneration of larvae zebrafish fin emerged as a new model of regeneration in the last decade. In contrast to genetic tools to study fin regeneration, chemical probes to modulate and interrogate regeneration processes are not well developed. RESULTS We set up a zebrafish larvae fin regeneration assay system and tested activities of natural product compounds and extracts, prepared from various microbes. Colomitide C, a recently isolated product from a fungus obtained from Antarctica, inhibited larvae fin regeneration. Using fluorescent reporter transgenic lines, we show that colomitide C inhibited fibroblast growth factor (FGF) signaling and WNT/β-catenin signaling, which were activated after larvae fin amputation. By using the endothelial cell reporter line and immunofluorescence, we showed that colomitide C did not affect migration of the blood vessel and nerve into the injured larvae fin. Colomitide C did not show any cytotoxic activities when tested against FGF receptor-amplified human cancer cell lines. CONCLUSION Colomitide C, a natural product, modulated larvae fin regeneration likely acting upstream of FGF and WNT signaling. Colomitide C may serve as a template for developing new chemical probes to study regeneration and other biological processes.
Collapse
Affiliation(s)
- Paul Cavanah
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yudi Rusman
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica M Williams
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christine E Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Nguyen-Chi M, Luz-Crawford P, Balas L, Sipka T, Contreras-López R, Barthelaix A, Lutfalla G, Durand T, Jorgensen C, Djouad F. Pro-resolving mediator protectin D1 promotes epimorphic regeneration by controlling immune cell function in vertebrates. Br J Pharmacol 2020; 177:4055-4073. [PMID: 32520398 DOI: 10.1111/bph.15156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Specialized pro-resolving mediators (SPMs) are a family of lipids controlling the resolution of inflammation and playing a role in many processes including organ protection and tissue repair. While SPMs are potent bioactive molecules in vivo, their role in epimorphic regeneration of organs in vertebrates has not been tested. Using the zebrafish larva as a robust regenerative vertebrate system, we studied the role of the SPM neuroprotectin/protectin D1 (PD1) during the caudal fin fold regeneration. EXPERIMENTAL APPROACH Regeneration of the fin fold was analysed when exposed to a synthetic PD1. The effect of PD1 on immune cell recruitment and activation was further investigated using live imaging combined with fluorescent reporter lines. Using genetic and pharmacological approaches, we dissected the role of neutrophils and macrophages on driving the pro-regenerative effect of PD1. KEY RESULTS We showed that PD1 improves fin fold regeneration. Acting in a narrow time window during regeneration, PD1 accelerates the resolution of inflammation without affecting the initial kinetic of neutrophil recruitment but instead, promotes their reverse migration potential. In addition, PD1 induces macrophage polarization switch towards non-inflammatory states in both zebrafish and mammalian system. Finally, macrophages but not neutrophils are essential for PD1-mediated regeneration. CONCLUSION AND IMPLICATIONS These results reveal the pro-regenerative action of PD1 and its role in regulating neutrophil and macrophage response in vertebrates. These findings strongly support the development of pro-resolving mediators as natural therapeutic candidates for degenerative disorders and the use of the zebrafish as a tool to investigate pro-regenerative drugs.
Collapse
Affiliation(s)
- Mai Nguyen-Chi
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France.,LPHI, CNRS, Univ Montpellier, Montpellier, France
| | - Patricia Luz-Crawford
- Centro de Investigación Biomédical, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Laurence Balas
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Tamara Sipka
- LPHI, CNRS, Univ Montpellier, Montpellier, France
| | - Rafael Contreras-López
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France.,Centro de Investigación Biomédical, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Audrey Barthelaix
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| | | | - Thierry Durand
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | | | - Farida Djouad
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
24
|
Mateus R, Holtzer L, Seum C, Hadjivasiliou Z, Dubois M, Jülicher F, Gonzalez-Gaitan M. BMP Signaling Gradient Scaling in the Zebrafish Pectoral Fin. Cell Rep 2020; 30:4292-4302.e7. [PMID: 32209485 PMCID: PMC7109522 DOI: 10.1016/j.celrep.2020.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023] Open
Abstract
Secreted growth factors can act as morphogens that form spatial concentration gradients in developing organs, thereby controlling growth and patterning. For some morphogens, adaptation of the gradients to tissue size allows morphological patterns to remain proportioned as the organs grow. In the zebrafish pectoral fin, we found that BMP signaling forms a two-dimensional gradient. The length of the gradient scales with tissue length and its amplitude increases with fin size according to a power-law. Gradient scaling and amplitude power-laws are signatures of growth control by time derivatives of morphogenetic signaling: cell division correlates with the fold change over time of the cellular signaling levels. We show that Smoc1 regulates BMP gradient scaling and growth in the fin. Smoc1 scales the gradient by means of a feedback loop: Smoc1 is a BMP agonist and BMP signaling represses Smoc1 expression. Our work uncovers a layer of morphogen regulation during vertebrate appendage development.
Collapse
Affiliation(s)
- Rita Mateus
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Laurent Holtzer
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Carole Seum
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Zena Hadjivasiliou
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Marine Dubois
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | |
Collapse
|
25
|
Dóró É, Jacobs SH, Hammond FR, Schipper H, Pieters RP, Carrington M, Wiegertjes GF, Forlenza M. Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. eLife 2019; 8:48388. [PMID: 31547905 PMCID: PMC6759355 DOI: 10.7554/elife.48388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are important disease agents of humans, livestock and cold-blooded species, including fish. The cellular morphology of trypanosomes is central to their motility, adaptation to the host’s environments and pathogenesis. However, visualizing the behaviour of trypanosomes resident in a live vertebrate host has remained unexplored. In this study, we describe an infection model of zebrafish (Danio rerio) with Trypanosoma carassii. By combining high spatio-temporal resolution microscopy with the transparency of live zebrafish, we describe in detail the swimming behaviour of trypanosomes in blood and tissues of a vertebrate host. Besides the conventional tumbling and directional swimming, T. carassii can change direction through a ‘whip-like’ motion or by swimming backward. Further, the posterior end can act as an anchoring site in vivo. To our knowledge, this is the first report of a vertebrate infection model that allows detailed imaging of trypanosome swimming behaviour in vivo in a natural host environment. Trypanosomes are one-celled parasites that cause the disease trypanosomiasis, which is also known as sleeping sickness. Trypanosomiasis is transmitted to humans and animals by a type of fly, known as tse-tse, which is commonly found in sub-Saharan Africa. A bite from the tse-tse fly transfers the trypanosome cells into the host’s bloodstream, where they spread from the blood to the internal organs and brain. This leads to a long-term illness, which can sometimes result in a coma and eventually death. Once in the blood trypanosomes move around using a structure similar to an underwater propeller called the flagellum. How the trypanosomes move and behave in the blood determines how the infection will progress. Until now it has only been possible to observe trypanosomes in plastic dishes or in blood drawn from infected patients. However, neither of these settings mimic the conditions of the bloodstream, and it is currently impossible to look inside human hosts to watch how trypanosomes move. To overcome this hurdle, Doro et al. infected zebrafish with Trypanosoma carassii, a close relative of the sub-Saharan trypanosomes that specifically infects fish. Zebrafish are transparent when young, making it possible to observe the parasite in the blood and tissues of live fish using a microscope. Doro et al. noticed that Trypanosoma carassii cells adapt to different environments in the host by using different swimming techniques. For example, in small capillaries trypanosomes were dragged along with the blood flow, whilst in larger vessels, when blood flow was slow or there were fewer red blood cells, trypanosomes actively swam against the current. The parasites were also able to change direction by using their flagella in a ‘whip-like’ motion. Lastly, it was discovered that Trypanosoma carassii could rapidly attach to blood vessel walls using one end of its cell body, even when blood flow was strong. This behaviour may help the parasites escape from the bloodstream into the surrounding tissues, making the infection more dangerous. Studying how trypanosomes infect zebrafish at this high level of detail provides new insights into how these parasites move and behave inside a host. An important question that remains to be answered, is how exactly the trypanosomes leave the bloodstream. A better understanding of the whole infection process may hint at new ways of fighting these deadly infections in future.
Collapse
Affiliation(s)
- Éva Dóró
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sem H Jacobs
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Henk Schipper
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Remco Pm Pieters
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Geert F Wiegertjes
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Department of Animal Sciences, Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
26
|
Moro A, Driscoll TP, Boraas LC, Armero W, Kasper DM, Baeyens N, Jouy C, Mallikarjun V, Swift J, Ahn SJ, Lee D, Zhang J, Gu M, Gerstein M, Schwartz M, Nicoli S. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat Cell Biol 2019; 21:348-358. [PMID: 30742093 PMCID: PMC6528464 DOI: 10.1038/s41556-019-0272-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate tissues exhibit mechanical homeostasis, showing stable stiffness and tension over time and recovery after changes in mechanical stress. However, the regulatory pathways that mediate these effects are unknown. A comprehensive identification of Argonaute-2(AGO2)-associated microRNAs and mRNAs in endothelial cells identified a network of 122 microRNA families that target 73 mRNAs encoding cytoskeletal, contractile, adhesive and extracellular matrix (CAM) proteins. These microRNAs increased in cells plated on stiff vs. soft substrates, consistent with homeostasis, and suppressed targets via microRNA recognition elements (MREs) within the 3’UTRs of CAM mRNAs. Inhibition of DROSHA or AGO2, or disruption of MREs within individual target mRNAs such as Connective Tissue Growth Factor (CTGF), induced hyper-adhesive, hyper-contractile phenotypes in endothelial and fibroblast cells in vitro, and increased tissue stiffness, contractility and extracellular matrix (ECM) deposition in the zebrafish fin-fold in vivo. Thus, a network of microRNAs buffers CAM expression to mediate tissue mechanical homeostasis.
Collapse
Affiliation(s)
- Albertomaria Moro
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tristan P Driscoll
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Liana C Boraas
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - William Armero
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dionna M Kasper
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nicolas Baeyens
- Laboratoire de Physiologie et Pharmacologie, Faculty of Medicine, Université Libre De Bruxelles, Brussels, Belgium.,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Charlene Jouy
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Venkatesh Mallikarjun
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Joe Swift
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sang Joon Ahn
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | - Donghoon Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jing Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mengting Gu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Computer Science, Yale University, New Haven, CT, USA
| | - Martin Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA. .,Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK. .,Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Romero MMG, McCathie G, Jankun P, Roehl HH. Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells. Nat Commun 2018; 9:4010. [PMID: 30275454 PMCID: PMC6167316 DOI: 10.1038/s41467-018-06460-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Many aquatic vertebrates have a remarkable ability to regenerate limbs and tails after amputation. Previous studies indicate that reactive oxygen species (ROS) signalling initiates regeneration, but the mechanism by which this takes place is poorly understood. Developmental signalling pathways have been shown to have proregenerative roles in many systems. However, whether these are playing roles that are specific to regeneration, or are simply recapitulating their developmental functions is unclear. Here, we analyse zebrafish larval tail regeneration and find evidence that ROS released upon wounding cause repositioning of notochord cells to the damage site. These cells secrete Hedgehog ligands that are required for regeneration. Hedgehog signalling is not required for normal tail development suggesting that it has a regeneration-specific role. Our results provide a model for how ROS initiate tail regeneration, and indicate that developmental signalling pathways can play regenerative functions that are not directly related to their developmental roles. Reactive oxygen species (ROS) are required to initiate regeneration but the mechanisms regulating its production are unclear. Here, the authors show in zebrafish larval tail regeneration that ROS is released by mobilised notochord cells enables their repositioning in the damage site, assisted by secreted Hh.
Collapse
Affiliation(s)
- Maria Montserrat Garcia Romero
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Gareth McCathie
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Philip Jankun
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Henry Hamilton Roehl
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
28
|
Cristo I, Carvalho L, Ponte S, Jacinto A. Novel role for Grainy head in the regulation of cytoskeletal and junctional dynamics during epithelial repair. J Cell Sci 2018; 131:jcs.213595. [PMID: 30131442 DOI: 10.1242/jcs.213595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/06/2018] [Indexed: 12/23/2022] Open
Abstract
Tissue repair is critical for the maintenance of epithelial integrity and permeability. Simple epithelial repair relies on a combination of collective cell movements and the action of a contractile actomyosin cable at the wound edge that together promote the fast and efficient closure of tissue discontinuities. The Grainy head family of transcription factors (Grh in flies; GRHL1-GRHL3 in mammals) are essential proteins that have been implicated both in the development and repair of epithelia. However, the genes and the molecular mechanisms that it controls remain poorly understood. Here, we show that Grh knockdown disrupts actomyosin dynamics upon injury of the Drosophila pupa epithelial tissue. This leads to the formation of an ectopic actomyosin cable away from the wound edge and impaired wound closure. We also uncovered that E-Cadherin is downregulated in the Grh-depleted tissue around the wound, likely as a consequence of Dorsal (an NF-κB protein) misregulation, which also affects actomyosin cable formation. Our work highlights the importance of Grh as a stress response factor and its central role in the maintenance of epithelial characteristics necessary for tissue repair through regulating cytoskeleton and E-Cadherin dynamics.
Collapse
Affiliation(s)
- Inês Cristo
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Lara Carvalho
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Susana Ponte
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - António Jacinto
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
29
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
30
|
TNF signaling and macrophages govern fin regeneration in zebrafish larvae. Cell Death Dis 2017; 8:e2979. [PMID: 28796253 PMCID: PMC5596562 DOI: 10.1038/cddis.2017.374] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Abstract
Macrophages are essential for appendage regeneration after amputation in regenerative species. The molecular mechanisms through which macrophages orchestrate blastema formation and regeneration are still unclear. Here, we use the genetically tractable and transparent zebrafish larvae to study the functions of polarized macrophage subsets during caudal fin regeneration. After caudal fin amputation, we show an early and transient accumulation of pro-inflammatory macrophages concomitant with the accumulation of non-inflammatory macrophages which, in contrast to pro-inflammatory macrophages, remain associated to the fin until the end of the regeneration. Chemical and genetic depletion of macrophages suggested that early recruited macrophages that express TNFα are critical for blastema formation. Combining parabiosis and morpholino knockdown strategies, we show that TNFα/TNFR1 signaling pathway is required for the fin regeneration. Our study reveals that TNFR1 has a necessary and direct role in blastema cell activation suggesting that macrophage subset balance provides the accurate TNFα signal to prime regeneration in zebrafish.
Collapse
|
31
|
Hasegawa T, Hall CJ, Crosier PS, Abe G, Kawakami K, Kudo A, Kawakami A. Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold. eLife 2017; 6:22716. [PMID: 28229859 PMCID: PMC5360449 DOI: 10.7554/elife.22716] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 12/19/2022] Open
Abstract
Cellular responses to injury are crucial for complete tissue regeneration, but their underlying processes remain incompletely elucidated. We have previously reported that myeloid-defective zebrafish mutants display apoptosis of regenerative cells during fin fold regeneration. Here, we found that the apoptosis phenotype is induced by prolonged expression of interleukin 1 beta (il1b). Myeloid cells are considered to be the principal source of Il1b, but we show that epithelial cells express il1b in response to tissue injury and initiate the inflammatory response, and that its resolution by macrophages is necessary for survival of regenerative cells. We further show that Il1b plays an essential role in normal fin fold regeneration by regulating expression of regeneration-induced genes. Our study reveals that proper levels of Il1b signaling and tissue inflammation, which are tuned by macrophages, play a crucial role in tissue regeneration. DOI:http://dx.doi.org/10.7554/eLife.22716.001 Animals and other multicellular organisms all have at least some ability to regenerate lost or wounded tissues. Zebrafish are particularly good at this to the extent that they can replace damaged or lost body parts with exact replicas of the originals. In 2015, a team of researchers found that some mutant zebrafish that lack blood cells including immune cells are unable to regenerate lost tissues. This is because the cells that are primed to regenerate die instead, but it was not clear why this happens. Many immune cells have roles in fighting infection and in responding to tissue damage.When a tissue is damaged, the area often becomes inflamed as white blood cells called macrophages flock to the damaged area to protect it from infection and remove damaged cells. Hasegawa et al. – who include several researchers involved in the 2015 study – used genetic approaches to investigate the role of inflammation in tissue regeneration in zebrafish. The experiments show that several genes involved in inflammation – including one called interleukin 1b – were active over longer periods of time in the mutant fish compared with normal zebrafish. The gene produces a signal protein and this prolonged activity causes the primed regenerative cells to die. However, the cells can survive if interleukin 1b activity is quickly suppressed by macrophages. The experiments also show that, in order for tissues to regenerate properly, interleukin 1b needs to be active for only a short period of time. The findings reveal that some inflammation is needed for tissues to regenerate, but that a more severe inflammatory response can block the process. A future challenge will be to identify the signals that macrophages produce to suppress inflammation to allow tissues to regenerate. These anti-inflammatory signals may have the potential to be used as drugs to cure chronic inflammatory diseases and boost tissue regeneration potential in humans. DOI:http://dx.doi.org/10.7554/eLife.22716.002
Collapse
Affiliation(s)
- Tomoya Hasegawa
- School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Japan
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Gembu Abe
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Akira Kudo
- School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Japan
| | - Atsushi Kawakami
- School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Japan
| |
Collapse
|
32
|
The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation. Cell 2016; 165:1160-1170. [PMID: 27203112 DOI: 10.1016/j.cell.2016.04.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/18/2016] [Accepted: 04/01/2016] [Indexed: 01/14/2023]
Abstract
Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling.
Collapse
|
33
|
Alwes F, Enjolras C, Averof M. Live imaging reveals the progenitors and cell dynamics of limb regeneration. eLife 2016; 5. [PMID: 27776632 PMCID: PMC5079749 DOI: 10.7554/elife.19766] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023] Open
Abstract
Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg.
Collapse
Affiliation(s)
- Frederike Alwes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Camille Enjolras
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| |
Collapse
|
34
|
Ducuing A, Vincent S. The actin cable is dispensable in directing dorsal closure dynamics but neutralizes mechanical stress to prevent scarring in the Drosophila embryo. Nat Cell Biol 2016; 18:1149-1160. [DOI: 10.1038/ncb3421] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
|
35
|
Grillo M, Konstantinides N, Averof M. Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr Opin Genet Dev 2016; 40:23-31. [DOI: 10.1016/j.gde.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
36
|
Mateus R, Lourenço R, Fang Y, Brito G, Farinho A, Valério F, Jacinto A. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Development 2015. [PMID: 26209644 DOI: 10.1242/dev.119701] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.
Collapse
Affiliation(s)
- Rita Mateus
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Yi Fang
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Gonçalo Brito
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Fábio Valério
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto Gulbenkian Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| |
Collapse
|
37
|
Lisse TS, Brochu EA, Rieger S. Capturing tissue repair in zebrafish larvae with time-lapse brightfield stereomicroscopy. J Vis Exp 2015. [PMID: 25742070 PMCID: PMC4330669 DOI: 10.3791/52654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse video brightfield stereomicroscopy. We demonstrate that fin amputation triggers a contraction of the amputation wound and extrusion of cells around the wound margin, leading to their subsequent clearance. Fin regeneration proceeds from proximal to distal direction after a short delay. In addition, developmental growth of the larva can be observed during all stages. The presented method provides an opportunity for observing and analyzing whole tissue-scale behaviors such as fin development and growth in a simple microscope setting, which is easily adaptable to any stereomicroscope with time-lapse capabilities.
Collapse
Affiliation(s)
- Thomas S Lisse
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory
| | - Elizabeth A Brochu
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory;
| |
Collapse
|
38
|
Monteiro J, Aires R, Becker JD, Jacinto A, Certal AC, Rodríguez-León J. V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration. PLoS One 2014; 9:e92594. [PMID: 24671205 PMCID: PMC3966808 DOI: 10.1371/journal.pone.0092594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.
Collapse
Affiliation(s)
- Joana Monteiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Rita Aires
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - António Jacinto
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Ana C. Certal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Champalimaud Foundation, Lisboa, Portugal
- * E-mail: (JRL); (ACC)
| | - Joaquín Rodríguez-León
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department de Anatomía Humana, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- * E-mail: (JRL); (ACC)
| |
Collapse
|
39
|
Blum N, Begemann G. The roles of endogenous retinoid signaling in organ and appendage regeneration. Cell Mol Life Sci 2013; 70:3907-27. [PMID: 23479131 PMCID: PMC11113817 DOI: 10.1007/s00018-013-1303-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 12/20/2022]
Abstract
The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes "super-regeneration" initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
40
|
Tissue damage detection by osmotic surveillance. Nat Cell Biol 2013; 15:1123-30. [PMID: 23934216 PMCID: PMC3826879 DOI: 10.1038/ncb2818] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
How tissue damage is detected to induce inflammatory responses is unclear. Most studies have focused on damage signals released by cell breakage and necrosis1. Whether tissues utilize other cues besides cell lysis to detect that they are damaged is unknown. We find that osmolarity differences between interstitial fluid and the external environment mediate rapid leukocyte recruitment to sites of tissue damage in zebrafish by activating cytosolic phospholipase a2 (cPLA2) at injury sites. cPLA2 initiates the production of non-canonical arachidonate metabolites that mediate leukocyte chemotaxis via a 5-oxo-ETE receptor (OXE-R). Thus, tissues can detect damage through direct surveillance of barrier integrity. By this mechanism, cell-swelling likely functions as a pro-inflammatory intermediate.
Collapse
|