1
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
2
|
HMGA1-pseudogene7 transgenic mice develop B cell lymphomas. Sci Rep 2020; 10:7057. [PMID: 32341372 PMCID: PMC7184748 DOI: 10.1038/s41598-020-62974-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/22/2020] [Indexed: 01/07/2023] Open
Abstract
We have recently identified and characterized two pseudogenes (HMGA1P6 and HMGA1P7) of the HMGA1 gene, which has a critical role in malignant cell transformation and cancer progression. HMGA1P6 and HMGAP17 act as microRNA decoy for HMGA1 and other cancer-related genes upregulating their protein levels. We have previously shown that they are upregulated in several human carcinomas, and their expression positively correlates with a poor prognosis and an advanced cancer stage. To evaluate in vivo oncogenic activity of HMGA1 pseudogenes, we have generated a HMGA1P7 transgenic mouse line overexpressing this pseudogene. By a mean age of 12 months, about 50% of the transgenic mice developed splenomegaly and accumulation of lymphoid cells in several body compartments. For these mice FACS and immunohistochemical analyses suggested the diagnosis of B-cell lymphoma that was further supported by clonality analyses and RNA expression profile of the pathological tissues of the HMGA1P7 transgenic tissues. Therefore, these results clearly demonstrate the oncogenic activity of HMGA1 pseudogenes in vivo.
Collapse
|
3
|
Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. Cell Stem Cell 2019; 24:707-723.e8. [PMID: 30982771 DOI: 10.1016/j.stem.2019.03.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The identity and degree of heterogeneity of glial progenitors and their contributions to brain tumor malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover an unanticipated diversity of glial progenitor pools with unique molecular identities in developing brain. Our analysis identifies distinct transitional intermediate states and their divergent developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative, and progressively reprogrammed toward a stem-like state susceptible to further malignant transformation. Similar actively cycling intermediate progenitors are prominent components in human gliomas with distinct driver mutations. We further unveil lineage-driving networks underlying glial fate specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular nexus for balancing glial cell-fate decision and controlling gliomagenesis.
Collapse
|
4
|
Bönelt P, Wöhner M, Minnich M, Tagoh H, Fischer M, Jaritz M, Kavirayani A, Garimella M, Karlsson MC, Busslinger M. Precocious expression of Blimp1 in B cells causes autoimmune disease with increased self-reactive plasma cells. EMBO J 2018; 38:embj.2018100010. [PMID: 30498131 PMCID: PMC6331720 DOI: 10.15252/embj.2018100010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 11/25/2022] Open
Abstract
The transcription factor Blimp1 is not only an essential regulator of plasma cells, but also a risk factor for the development of autoimmune disease in humans. Here, we demonstrate in the mouse that the Prdm1 (Blimp1) gene was partially activated at the chromatin and transcription level in early B cell development, although mature Prdm1 mRNA did not accumulate due to posttranscriptional regulation. By analyzing a mouse model that facilitated ectopic Blimp1 protein expression throughout B lymphopoiesis, we could demonstrate that Blimp1 impaired B cell development by interfering with the B cell gene expression program, while leading to an increased abundance of plasma cells by promoting premature plasmablast differentiation of immature and mature B cells. With progressing age, these mice developed an autoimmune disease characterized by the presence of autoantibodies and glomerulonephritis. Hence, these data identified ectopic Blimp1 expression as a novel mechanism, through which Blimp1 can act as a risk factor in the development of autoimmune disease.
Collapse
Affiliation(s)
- Peter Bönelt
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Miriam Wöhner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Martina Minnich
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Anoop Kavirayani
- Vienna Biocenter Core Facilities (VBCF), Vienna Biocenter (VBC), Vienna, Austria
| | - Manasa Garimella
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mikael Ci Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
5
|
Wang H, Mo L, Xiao X, An S, Liu X, Ba J, Wu W, Ran P, Yang P, Liu Z. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep 2017; 7:43322. [PMID: 28240301 PMCID: PMC5327411 DOI: 10.1038/srep43322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/25/2017] [Indexed: 11/09/2022] Open
Abstract
Our previous studies revealed that many proteins in addition to the known allergens of D. farinae have not been fully characterized. We observed that Pplase did not respond to serum collected from patients sensitized to D. farinae. In a mouse model, Pplase significantly enhanced airway hyperresponsiveness (AHR) and Th2 responses induced by ovalbumin (OVA) compared with mice treated with OVA alone. Moreover, exposure to Pplase significantly increased the expression of IRF4, CD80, CD83, MHCII and TNF-α in DC2.4 cells, which was abolished in the presence of a TLR4 inhibitor. In vitro T cell polarization experiments revealed that Pplase alone could not induce T cell polarization but enhanced T cell polarization together with OVA. In addition, transfer of Pplase-primed bone marrow-derived DCs (BMDCs) to naïve mice enhanced AHR and Th2 immune responses in mice sensitized to OVA. In conclusion, Pplase is not an allergen of D. farinae but can activate DC cells to facilitate OVA-induced allergic responses.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lihua Mo
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Shenzhen ENT Institute, Longgang ENT Hospital, Shenzhen, China
| | - Xiaojun Xiao
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shu An
- Luohu district people’s hospital, Shenzhen, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jinge Ba
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weifang Wu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510006, China
| | - Pingchang Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Shenzhen ENT Institute, Longgang ENT Hospital, Shenzhen, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Shenzhen ENT Institute, Longgang ENT Hospital, Shenzhen, China
- Luohu district people’s hospital, Shenzhen, China
| |
Collapse
|
6
|
Di Narzo AF, Peters LA, Argmann C, Stojmirovic A, Perrigoue J, Li K, Telesco S, Kidd B, Walker J, Dudley J, Cho J, Schadt EE, Kasarskis A, Curran M, Dobrin R, Hao K. Blood and Intestine eQTLs from an Anti-TNF-Resistant Crohn's Disease Cohort Inform IBD Genetic Association Loci. Clin Transl Gastroenterol 2016; 7:e177. [PMID: 27336838 PMCID: PMC4931595 DOI: 10.1038/ctg.2016.34] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/15/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES: Genome-wide association studies (GWAS) have identified loci reproducibly associated with inflammatory bowel disease (IBD) and other immune-mediated diseases; however, the molecular mechanisms underlying most of genetic susceptibility remain undefined. Expressional quantitative trait loci (eQTL) of disease-relevant tissue can be employed in order to elucidate the genes and pathways affected by disease-specific genetic variance. METHODS: In this study, we derived eQTLs for human whole blood and intestine tissues of anti-tumor necrosis factor-resistant Crohn's disease (CD) patients. We interpreted these eQTLs in the context of published IBD GWAS hits to inform on the disease process. RESULTS: At 10% false discovery rate, we discovered that 5,174 genes in blood and 2,063 genes in the intestine were controlled by a nearby single-nucleotide polymorphism (SNP) (i.e., cis-eQTL), among which 1,360 were shared between the two tissues. A large fraction of the identified eQTLs were supported by the regulomeDB database, showing that the eQTLs reside in regulatory elements (odds ratio; OR=3.44 and 3.24 for blood and intestine eQTLs, respectively) as opposed to protein-coding regions. Published IBD GWAS hits as a whole were enriched for blood and intestine eQTLs (OR=2.88 and 2.05; and P value=2.51E-9 and 0.013, respectively), thereby linking genetic susceptibility to control of gene expression in these tissues. Through a systematic search, we used eQTL data to inform 109 out of 372 IBD GWAS SNPs documented in National Human Genome Research Institute catalog, and we categorized the genes influenced by eQTLs according to their functions. Many of these genes have experimentally validated roles in specific cell types contributing to intestinal inflammation. CONCLUSIONS: The blood and intestine eQTLs described in this study represent a powerful tool to link GWAS loci to a regulatory function and thus elucidate the mechanisms underlying the genetic loci associated with IBD and related conditions. Overall, our eQTL discovery approach empirically identifies the disease-associated variants including their impact on the direction and extent of expression changes in the context of disease-relevant cellular pathways in order to infer the functional outcome of this aspect of genetic susceptibility.
Collapse
Affiliation(s)
- Antonio F Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lauren A Peters
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Katherine Li
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, USA
| | | | - Brian Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jennifer Walker
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joel Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark Curran
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, USA
| | - Radu Dobrin
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Chen MT, Dong L, Zhang XH, Yin XL, Ning HM, Shen C, Su R, Li F, Song L, Ma YN, Wang F, Zhao HL, Yu J, Zhang JW. ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6. Sci Rep 2015; 5:16229. [PMID: 26542173 PMCID: PMC4635361 DOI: 10.1038/srep16229] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
RNA binding proteins (RBPs)-mediated post-transcriptional control has been implicated in influencing various aspects of RNA metabolism and playing important roles in mammalian development and pathological diseases. However, the functions of specific RBPs and the molecular mechanisms through which they act in monocyte/macrophage differentiation remain to be determined. In this study, through bioinformatics analysis and experimental validation, we identify that ZFP36L1, a member of ZFP36 zinc finger protein family, exhibits significant decrease in acute myeloid leukemia (AML) patients compared with normal controls and remarkable time-course increase during monocyte/macrophage differentiation of PMA-induced THP-1 and HL-60 cells as well as induction culture of CD34+ hematopoietic stem/progenitor cells (HSPCs). Lentivirus-mediated gain and loss of function assays demonstrate that ZFP36L1 acts as a positive regulator to participate in monocyte/macrophage differentiation. Mechanistic investigation further reveals that ZFP36L1 binds to the CDK6 mRNA 3′untranslated region bearing adenine-uridine rich elements and negatively regulates the expression of CDK6 which is subsequently demonstrated to impede the in vitro monocyte/macrophage differentiation of CD34+ HSPCs. Collectively, our work unravels a ZFP36L1-mediated regulatory circuit through repressing CDK6 expression during monocyte/macrophage differentiation, which may also provide a therapeutic target for AML therapy.
Collapse
Affiliation(s)
- Ming-Tai Chen
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lei Dong
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xin-Hua Zhang
- Haematology Department, the 303 Hospital, Nanning, China
| | - Xiao-Lin Yin
- Haematology Department, the 303 Hospital, Nanning, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Science, Beijing, China
| | - Chao Shen
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Rui Su
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Feng Li
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Li Song
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan-Ni Ma
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Wang
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hua-Lu Zhao
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jun-Wu Zhang
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
8
|
Hyatt LD, Wasserman GA, Rah YJ, Matsuura KY, Coleman FT, Hilliard KL, Pepper-Cunningham ZA, Ieong M, Stumpo DJ, Blackshear PJ, Quinton LJ, Mizgerd JP, Jones MR. Myeloid ZFP36L1 does not regulate inflammation or host defense in mouse models of acute bacterial infection. PLoS One 2014; 9:e109072. [PMID: 25299049 PMCID: PMC4192124 DOI: 10.1371/journal.pone.0109072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022] Open
Abstract
Zinc finger protein 36, C3H type-like 1 (ZFP36L1) is one of several Zinc Finger Protein 36 (Zfp36) family members, which bind AU rich elements within 3' untranslated regions (UTRs) to negatively regulate the post-transcriptional expression of targeted mRNAs. The prototypical member of the family, Tristetraprolin (TTP or ZFP36), has been well-studied in the context of inflammation and plays an important role in repressing pro-inflammatory transcripts such as TNF-α. Much less is known about the other family members, and none have been studied in the context of infection. Using macrophage cell lines and primary alveolar macrophages we demonstrated that, like ZFP36, ZFP36L1 is prominently induced by infection. To test our hypothesis that macrophage production of ZFP36L1 is necessary for regulation of the inflammatory response of the lung during pneumonia, we generated mice with a myeloid-specific deficiency of ZFP36L1. Surprisingly, we found that myeloid deficiency of ZFP36L1 did not result in alteration of lung cytokine production after infection, altered clearance of bacteria, or increased inflammatory lung injury. Although alveolar macrophages are critical components of the innate defense against respiratory pathogens, we concluded that myeloid ZFP36L1 is not essential for appropriate responses to bacteria in the lungs. Based on studies conducted with myeloid-deficient ZFP36 mice, our data indicate that, of the Zfp36 family, ZFP36 is the predominant negative regulator of cytokine expression in macrophages. In conclusion, these results imply that myeloid ZFP36 may fully compensate for loss of ZFP36L1 or that Zfp36l1-dependent mRNA expression does not play an integral role in the host defense against bacterial pneumonia.
Collapse
Affiliation(s)
- Lynnae D. Hyatt
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yoon J. Rah
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kori Y. Matsuura
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fadie T. Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kristie L. Hilliard
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Michael Ieong
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Deborah J. Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kallionpää H, Laajala E, Öling V, Härkönen T, Tillmann V, Dorshakova NV, Ilonen J, Lähdesmäki H, Knip M, Lahesmaa R. Standard of hygiene and immune adaptation in newborn infants. Clin Immunol 2014; 155:136-147. [PMID: 25245264 DOI: 10.1016/j.clim.2014.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 01/09/2023]
Abstract
The prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from infants born in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economic conditions). The whole blood transcriptome of Finnish and Estonian neonates differed from their Karelian counterparts, suggesting exposure to toll-like receptor (TLR) ligands and a more matured immune response in infants born in Karelia. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation in accordance with the surrounding microbial milieu.
Collapse
Affiliation(s)
- Henna Kallionpää
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20521 Turku, Finland; Turku Doctoral Programme of Biomedical Sciences, Kiinamyllynkatu 13, 20520 Turku, Finland; The Finnish Centre of Excellence in Molecular Systems Immunology and Physiology Research, Finland
| | - Essi Laajala
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20521 Turku, Finland; The Finnish Centre of Excellence in Molecular Systems Immunology and Physiology Research, Finland; The National Graduate School in Informational and Structural Biology, 20520 Turku, Finland; Department of Information and Computer Science, Aalto University School of Science, 00076 Aalto, Finland
| | - Viveka Öling
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20521 Turku, Finland; The Finnish Centre of Excellence in Molecular Systems Immunology and Physiology Research, Finland
| | - Taina Härkönen
- The Finnish Centre of Excellence in Molecular Systems Immunology and Physiology Research, Finland; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Tartu University Hospital, 51014 Tartu, Estonia
| | | | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20521 Turku, Finland; The Finnish Centre of Excellence in Molecular Systems Immunology and Physiology Research, Finland; Department of Information and Computer Science, Aalto University School of Science, 00076 Aalto, Finland
| | - Mikael Knip
- The Finnish Centre of Excellence in Molecular Systems Immunology and Physiology Research, Finland; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, 00014 Helsinki, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20521 Turku, Finland; The Finnish Centre of Excellence in Molecular Systems Immunology and Physiology Research, Finland.
| | | |
Collapse
|
10
|
Zekavati A, Nasir A, Alcaraz A, Aldrovandi M, Marsh P, Norton JD, Murphy JJ. Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS One 2014; 9:e102625. [PMID: 25014217 PMCID: PMC4094554 DOI: 10.1371/journal.pone.0102625] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/22/2014] [Indexed: 12/25/2022] Open
Abstract
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the 'maximum information coefficient' (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3' untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3' untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.
Collapse
Affiliation(s)
- Anna Zekavati
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Asghar Nasir
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Amor Alcaraz
- Department of Biomedical Sciences, University of Westminster, London, United Kingdom
| | - Maceler Aldrovandi
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Phil Marsh
- Division of Endocrinology, King's College London, London, United Kingdom
| | - John D. Norton
- School of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - John J. Murphy
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
- Department of Biomedical Sciences, University of Westminster, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Inhibition of breast cancer metastasis suppressor 1 promotes a mesenchymal phenotype in lung epithelial cells that express oncogenic K-RasV12 and loss of p53. PLoS One 2014; 9:e95869. [PMID: 24763730 PMCID: PMC3999110 DOI: 10.1371/journal.pone.0095869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Expression of the breast cancer metastasis suppressor 1 (BRMS1) protein is dramatically reduced in non-small cell lung cancer (NSCLC) cells and in primary human tumors. Although BRMS1 is a known suppressor of metastasis, the mechanisms through which BRMS1 functions to regulate cell migration and invasion in response to specific NSCLC driver mutations are poorly understood. To experimentally address this, we utilized immortalized human bronchial epithelial cells in which p53 was knocked down in the presence of oncogenic K-RasV12 (HBEC3-p53KD-K-RasV12). These genetic alterations are commonly found in NSCLC and are associated with a poor prognosis. To determine the importance of BRMS1 for cytoskeletal function, cell migration and invasion in our model system we stably knocked down BRMS1. Here, we report that loss of BRMS1 in HBEC3-p53KD-K-RasV12 cells results in a dramatic increase in cell migration and invasion compared to controls that expressed BRMS1. Moreover, the loss of BRMS1 resulted in additional morphological changes including F-actin re-distribution, paxillin accumulation at the leading edge of the lamellapodium, and cellular shape changes resembling mesenchymal phenotypes. Importantly, re-expression of BRMS1 restores, in part, cell migration and invasion; however it does not fully reestablish the epithelial phenotype. These finding suggests that loss of BRMS1 results in a permanent, largely irreversible, mesenchymal phenotype associated with increased cell migration and invasion. Collectively, in NSCLC cells without p53 and expression of oncogenic K-Ras our study identifies BRMS1 as a key regulator required to maintain a cellular morphology and cytoskeletal architecture consistent with an epithelial phenotype.
Collapse
|