1
|
Becker AS, Oehmcke-Hecht S, Dargel E, Kaps P, Freitag T, Kreikemeyer B, Junghanss C, Maletzki C. Preclinical in vitro models of HNSCC and their role in drug discovery - an emphasis on the cancer microenvironment and microbiota. Expert Opin Drug Discov 2025; 20:81-101. [PMID: 39676285 DOI: 10.1080/17460441.2024.2439456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide. Treatment options and patient outcomes have not improved significantly over the past decades, increasing the need for better preclinical models. Holistic approaches that include an intact and functional immune compartment along with the patient's individual tumor microbiome will help improve the predictive value of novel drug efficacy. AREAS COVERED In this review, we describe the challenges of modeling the complex and heterogeneous tumor landscape in HNSCC and the importance of sophisticated patient-specific 3D in vitro models to pave the way for clinical trials with novel immunomodulatory drugs. We also discuss the impact of the tumor microbiome and the potential implications for prospective drug screening and validation trials. EXPERT OPINION The repertoire of well-characterized preclinical 3D in vitro models continues to grow. With the increasing attention to the complex cellular, immunological, molecular, and spatio-temporal characteristics of tumors, well-designed proof-of-concept studies to test novel drug efficacy are on the verge of providing valuable, practice-changing insights for clinical trials. Bringing together expertise and improving collaboration between clinicians, academics, and regulatory agencies will facilitate the translation of preclinical findings into clinically meaningful outcomes.
Collapse
Affiliation(s)
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Erik Dargel
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Philipp Kaps
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Thomas Freitag
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Kiweler N, Schwarz H, Nguyen A, Matschos S, Mullins C, Piée-Staffa A, Brachetti C, Roos WP, Schneider G, Linnebacher M, Brenner W, Krämer OH. The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biol Toxicol 2023; 39:2401-2419. [PMID: 35608750 PMCID: PMC10547618 DOI: 10.1007/s10565-022-09731-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
The epigenetic modifier histone deacetylase-2 (HDAC2) is frequently dysregulated in colon cancer cells. Microsatellite instability (MSI), an unfaithful replication of DNA at nucleotide repeats, occurs in about 15% of human colon tumors. MSI promotes a genetic frameshift and consequently a loss of HDAC2 in up to 43% of these tumors. We show that long-term and short-term cultures of colorectal cancers with MSI contain subpopulations of cells lacking HDAC2. These can be isolated as single cell-derived, proliferating populations. Xenografted patient-derived colon cancer tissues with MSI also show variable patterns of HDAC2 expression in mice. HDAC2-positive and HDAC2-negative RKO cells respond similarly to pharmacological inhibitors of the class I HDACs HDAC1/HDAC2/HDAC3. In contrast to this similarity, HDAC2-negative and HDAC2-positive RKO cells undergo differential cell cycle arrest and apoptosis induction in response to the frequently used chemotherapeutic 5-fluorouracil, which becomes incorporated into and damages RNA and DNA. 5-fluorouracil causes an enrichment of HDAC2-negative RKO cells in vitro and in a subset of primary colorectal tumors in mice. 5-fluorouracil induces the phosphorylation of KAP1, a target of the checkpoint kinase ataxia-telangiectasia mutated (ATM), stronger in HDAC2-negative cells than in their HDAC2-positive counterparts. Pharmacological inhibition of ATM sensitizes RKO cells to cytotoxic effects of 5-fluorouracil. These findings demonstrate that HDAC2 and ATM modulate the responses of colorectal cancer cells towards 5-FU.
Collapse
Affiliation(s)
- Nicole Kiweler
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
- Present Address: Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Helena Schwarz
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alexandra Nguyen
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Christina Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wynand P. Roos
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Günter Schneider
- Klinikum Rechts Der Isar, Medical Clinic and Polyclinic II, Technical University Munich, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13:1089681. [PMID: 37228492 PMCID: PMC10203569 DOI: 10.3389/fonc.2023.1089681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION For pre-clinical drug development and precision oncology research, robust cancer cell models are essential. Patient-derived models in low passages retain more genetic and phenotypic characteristics of their original tumors than conventional cancer cell lines. Subentity, individual genetics, and heterogeneity greatly influence drug sensitivity and clinical outcome. MATERIALS AND METHODS Here, we report on the establishment and characterization of three patient-derived cell lines (PDCs) of different subentities of non-small cell lung cancer (NSCLC): adeno-, squamous cell, and pleomorphic carcinoma. The in-depth characterization of our PDCs included phenotype, proliferation, surface protein expression, invasion, and migration behavior as well as whole-exome and RNA sequencing. Additionally, in vitro drug sensitivity towards standard-of-care chemotherapeutic regimens was evaluated. RESULTS The pathological and molecular properties of the patients' tumors were preserved in the PDC models HROLu22, HROLu55, and HROBML01. All cell lines expressed HLA I, while none were positive for HLA II. The epithelial cell marker CD326 and the lung tumor markers CCDC59, LYPD3, and DSG3 were also detected. The most frequently mutated genes included TP53, MXRA5, MUC16, and MUC19. Among the most overexpressed genes in tumor cells compared to normal tissue were the transcription factors HOXB9, SIM2, ZIC5, SP8, TFAP2A, FOXE1, HOXB13, and SALL4; the cancer testis antigen CT83; and the cytokine IL23A. The most downregulated genes on the RNA level encode the long non-coding RNA LANCL1-AS1, LINC00670, BANCR, and LOC100652999; the regulator of angiogenesis ANGPT4; the signaling molecules PLA2G1B and RS1; and the immune modulator SFTPD. Furthermore, neither pre-existing therapy resistances nor drug antagonistic effects could be observed. CONCLUSION In summary, we successfully established three novel NSCLC PDC models from an adeno-, a squamous cell, and a pleomorphic carcinoma. Of note, NSCLC cell models of the pleomorphic subentity are very rare. The detailed characterization including molecular, morphological, and drug-sensitivity profiling makes these models valuable pre-clinical tools for drug development applications and research on precision cancer therapy. The pleomorphic model additionally enables research on a functional and cell-based level of this rare NCSLC subentity.
Collapse
Affiliation(s)
- Ingo Andus
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Christina S. Linnebacher
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
4
|
Marx C, Sonnemann J, Maddocks ODK, Marx-Blümel L, Beyer M, Hoelzer D, Thierbach R, Maletzki C, Linnebacher M, Heinzel T, Krämer OH. Global metabolic alterations in colorectal cancer cells during irinotecan-induced DNA replication stress. Cancer Metab 2022; 10:10. [PMID: 35787728 PMCID: PMC9251592 DOI: 10.1186/s40170-022-00286-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic adaptations can allow cancer cells to survive DNA-damaging chemotherapy. This unmet clinical challenge is a potential vulnerability of cancer. Accordingly, there is an intense search for mechanisms that modulate cell metabolism during anti-tumor therapy. We set out to define how colorectal cancer CRC cells alter their metabolism upon DNA replication stress and whether this provides opportunities to eliminate such cells more efficiently. METHODS We incubated p53-positive and p53-negative permanent CRC cells and short-term cultured primary CRC cells with the topoisomerase-1 inhibitor irinotecan and other drugs that cause DNA replication stress and consequently DNA damage. We analyzed pro-apoptotic mitochondrial membrane depolarization and cell death with flow cytometry. We evaluated cellular metabolism with immunoblotting of electron transport chain (ETC) complex subunits, analysis of mitochondrial mRNA expression by qPCR, MTT assay, measurements of oxygen consumption and reactive oxygen species (ROS), and metabolic flux analysis with the Seahorse platform. Global metabolic alterations were assessed using targeted mass spectrometric analysis of extra- and intracellular metabolites. RESULTS Chemotherapeutics that cause DNA replication stress induce metabolic changes in p53-positive and p53-negative CRC cells. Irinotecan enhances glycolysis, oxygen consumption, mitochondrial ETC activation, and ROS production in CRC cells. This is connected to increased levels of electron transport chain complexes involving mitochondrial translation. Mass spectrometric analysis reveals global metabolic adaptations of CRC cells to irinotecan, including the glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways. P53-proficient CRC cells, however, have a more active metabolism upon DNA replication stress than their p53-deficient counterparts. This metabolic switch is a vulnerability of p53-positive cells to irinotecan-induced apoptosis under glucose-restricted conditions. CONCLUSION Drugs that cause DNA replication stress increase the metabolism of CRC cells. Glucose restriction might improve the effectiveness of classical chemotherapy against p53-positive CRC cells. The topoisomerase-1 inhibitor irinotecan and other chemotherapeutics that cause DNA damage induce metabolic adaptations in colorectal cancer (CRC) cells irrespective of their p53 status. Irinotecan enhances the glycolysis and oxygen consumption in CRC cells to deliver energy and biomolecules necessary for DNA repair and their survival. Compared to p53-deficient cells, p53-proficient CRC cells have a more active metabolism and use their intracellular metabolites more extensively. This metabolic switch creates a vulnerability to chemotherapy under glucose-restricted conditions for p53-positive cells.
Collapse
Affiliation(s)
- Christian Marx
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Building 905, Mainz, Germany.
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany.
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Current Address: Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul Ehrlich Institute, Langen, Germany.
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lisa Marx-Blümel
- Department of Paediatric Haematology and Oncology, Jena University Hospital, Children's Clinic, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Mandy Beyer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Building 905, Mainz, Germany
| | - Doerte Hoelzer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University of Jena, Jena, Germany
- Current address: Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - René Thierbach
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University of Jena, Jena, Germany
| | - Claudia Maletzki
- Molecular Oncology and Immunotherapy, Thoracic, Vascular and Transplantation Surgery, Clinic of General, University of Rostock, VisceralRostock, Germany
- Current address: Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Thoracic, Vascular and Transplantation Surgery, Clinic of General, University of Rostock, VisceralRostock, Germany
| | - Thorsten Heinzel
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Building 905, Mainz, Germany.
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Friedrich Schiller University of Jena, Jena, Germany.
| |
Collapse
|
5
|
Lu L, Przybylla R, Shang Y, Dai M, Krohn M, Krämer OH, Mullins CS, Linnebacher M. Microsatellite Status and IκBα Expression Levels Predict Sensitivity to Pharmaceutical Curcumin in Colorectal Cancer Cells. Cancers (Basel) 2022; 14:1032. [PMID: 35205780 PMCID: PMC8870219 DOI: 10.3390/cancers14041032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Clinical utilization of curcumin in colorectal cancer (CRC) was revived as a result of the development of novel curcumin formulations with improved bioavailability. Additionally, identification of biomarkers for curcumin sensitivity would also promote successful clinical applications. Here, we wanted to identify such biomarkers in order to establish a predictive model for curcumin sensitivity. Thirty-two low-passage CRC cell lines with specified tumor characteristics were included. Curcumin suppressed cell proliferation, yet sensitivity levels were distinct. Most curcumin-sensitive CRC cell lines were microsatellite stable and expressed high levels of IκBα. The predictive capacity of this biomarker combination possessed a statistical significance of 72% probability to distinguish correctly between curcumin-sensitive and -resistant CRC cell lines. Detailed functional analyses were performed with three sensitive and three resistant CRC cell lines. As curcumin's mode of action, inhibition of NF-κB p65 activation via IκBα was identified. In consequence, we hypothesize that novel curcumin formulations-either alone or, more likely, in combination with standard therapeutics-can be expected to prove clinically beneficial for CRC patients with high IκBα expression levels.
Collapse
Affiliation(s)
- Lili Lu
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Randy Przybylla
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Yuru Shang
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Meng Dai
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | | | - Christina Susanne Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany; (L.L.); (R.P.); (Y.S.); (M.D.); (M.K.); (C.S.M.)
| |
Collapse
|
6
|
Höpfner D, Fauser J, Kaspers MS, Pett C, Hedberg C, Itzen A. Erratum: Monoclonal Anti-AMP Antibodies Are Sensitive and Valuable Tools for Detecting Patterns of AMPylation. iScience 2021; 24:102731. [PMID: 34235414 PMCID: PMC8250444 DOI: 10.1016/j.isci.2021.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Durinikova E, Buzo K, Arena S. Preclinical models as patients' avatars for precision medicine in colorectal cancer: past and future challenges. J Exp Clin Cancer Res 2021; 40:185. [PMID: 34090508 PMCID: PMC8178911 DOI: 10.1186/s13046-021-01981-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a complex and heterogeneous disease, characterized by dismal prognosis and low survival rate in the advanced (metastatic) stage. During the last decade, the establishment of novel preclinical models, leading to the generation of translational discovery and validation platforms, has opened up a new scenario for the clinical practice of CRC patients. To bridge the results developed at the bench with the medical decision process, the ideal model should be easily scalable, reliable to predict treatment responses, and flexibly adapted for various applications in the research. As such, the improved benefit of novel therapies being tested initially on valuable and reproducible preclinical models would lie in personalized treatment recommendations based on the biology and genomics of the patient's tumor with the overall aim to avoid overtreatment and unnecessary toxicity. In this review, we summarize different in vitro and in vivo models, which proved efficacy in detection of novel CRC culprits and shed light into the biology and therapy of this complex disease. Even though cell lines and patient-derived xenografts remain the mainstay of colorectal cancer research, the field has been confidently shifting to the use of organoids as the most relevant preclinical model. Prioritization of organoids is supported by increasing body of evidence that these represent excellent tools worth further therapeutic explorations. In addition, novel preclinical models such as zebrafish avatars are emerging as useful tools for pharmacological interrogation. Finally, all available models represent complementary tools that can be utilized for precision medicine applications.
Collapse
Affiliation(s)
- Erika Durinikova
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Kristi Buzo
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
| |
Collapse
|
8
|
Shariati M. The cancer therapy materialization by theranostic nanoparticles based on gold doped iron oxide under electromagnetic field amplification. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102406. [PMID: 33932592 DOI: 10.1016/j.nano.2021.102406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 01/17/2023]
Abstract
The harnessing of the cancer X-ray radiation therapy by gold-decorated Fe3O4 theranostic nanoparticles (Au-Fe3O4 NPs) under electromagnetic field was articulated. The applied electromagnetic field could assemble the NPs inside cell in oriented field direction and enhance the local irradiation dose inside cell. By materializing NPs, the absorption of the energy exposed by X-ray radiation under electromagnetic field was restricted. The cytotoxic properties of the Au-Fe3O4 NPs were assessed using MTT assay in L929, HeLa and PC3 cell lines under radiation and dark conditions. The efficiency of the Au-Fe3O4 NPs under 2 Gy dose radiations was higher than 6 Gy radiations in untreated cells. The in vitro measurements showed that under electromagnetic field and X-ray radiation therapy with Au-Fe3O4 NPs, around 90% of the cancer cells population was annihilated. The in vivo measurements indicated that the tumor shape and size under X-ray with Au-Fe3O4 NPs after 3 weeks were efficiently deteriorated.
Collapse
Affiliation(s)
- Mohsen Shariati
- Department of Physics, Faculty of Science, Pardis Branch, Islamic Azad University, Pardis, Iran.
| |
Collapse
|
9
|
Monoclonal Anti-AMP Antibodies Are Sensitive and Valuable Tools for Detecting Patterns of AMPylation. iScience 2020; 23:101800. [PMID: 33299971 PMCID: PMC7704405 DOI: 10.1016/j.isci.2020.101800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
AMPylation is a post-translational modification that modifies amino acid side chains with adenosine monophosphate (AMP). Recently, a role of AMPylation as a universal regulatory mechanism in infection and cellular homeostasis has emerged, driving the demand for universal tools to study this modification. Here, we describe three monoclonal anti-AMP antibodies (mAbs) from mouse that are capable of protein backbone-independent recognition of AMPylation, in denatured (western blot) as well as native (ELISA, IP) applications, thereby outperforming previously reported tools. These antibodies are highly sensitive and specific for AMP modifications, highlighting their potential as tools for new target identification, as well as for validation of known targets. Interestingly, applying the anti-AMP mAbs to various cancer cell lines reveals a previously undescribed broad and diverse AMPylation pattern. In conclusion, these anti-AMP mABs will further advance the current understanding of AMPylation and the spectrum of modified targets. Generation of murine monoclonal anti-AMP antibodies via synthetic AMPylated peptide Characterization in the applications western blot, ELISA, and immunoprecipitation Sensitive and specific recognition of AMPylation independent of protein backbone Expansion of toolbox for the detection and enrichment of AMPylation
Collapse
|
10
|
Gock M, Kordt M, Matschos S, Mullins CS, Linnebacher M. Patient-individual cancer cell lines and tissue analysis delivers no evidence of sequences from DNA viruses in colorectal cancer cells. BMC Gastroenterol 2020; 20:260. [PMID: 32762707 PMCID: PMC7409650 DOI: 10.1186/s12876-020-01404-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several DNA viruses are highly suspicious to have oncogenic effects in humans. This study investigates the presence of potentially oncogenic viruses such as SV40, JCV, BKV and EBV in patient-derived colorectal carcinoma (CRC) cells typifying all molecular subtypes of CRC. METHODS Sample material (gDNA and cDNA) of a total of 49 patient-individual CRC cell lines and corresponding primary material from 11 patients, including normal, tumor-derived and metastasis-derived tissue were analyzed for sequences of SV40, JVC, BKV and EBV using endpoint PCR. In addition, the susceptibility of CRC cells to JCV and BKV was examined using a long-term cultivation approach of patient-individual cells in the presence of viruses. RESULTS No virus-specific sequences could be detected in all specimens. Likewise, no morphological changes were observed and no evidence for viral infection or integration could be provided after long term CRC cell cultivation in presence of viral particles. CONCLUSIONS In summary, the presented data suggest that there is no direct correlation between tumorigenesis and viral load and consequently no evidence for a functional role of the DNA viruses included into this analysis in CRC development.
Collapse
Affiliation(s)
- Michael Gock
- Department of General Surgery, University of Rostock, Rostock, Germany
| | - Marcel Kordt
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany
| | - Christina S Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Schillingallee 35, D-18057, Rostock, Germany.
| |
Collapse
|
11
|
Characteristics of head and neck squamous cell carcinoma cell Lines reflect human tumor biology independent of primary etiologies and HPV status. Transl Oncol 2020; 13:100808. [PMID: 32574978 PMCID: PMC7317296 DOI: 10.1016/j.tranon.2020.100808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Explanations for the differences in clinical outcomes in head and neck squamous cell carcinomas (HNSCCs) when compared by similar tumor location, stage, nodal status, human papillomavirus (HPV) status, and patient history remain elusive. Cell lines are an excellent tool of study for understanding the in vitro properties of cancers. However, HNSCC cell lines from progression-free and/or HPV-positive tumors are very rare. Here we studied HPV-positive and HPV-negative University of Michigan squamous cell carcinoma cell lines (2 HPV−, 2 HPV16+, 1 HPV18+) coming from donors with nonoropharyngeal sites and variant clinical outcomes. Cell morphology and proliferation were assessed, and immunofluorescence and Western blotting evaluated tumor biomarkers (TP53, RB1, p16, HPV E6 and E7, EGFR, Cyclin D1, Ki-67, and beta-catenin). Slow in vitro proliferation, long lag phase before exponential proliferation, lower maximal cell density, and higher wild-type TP53 expression were common to cell lines from patients who experienced long-term disease-free survival. In contrast, shorter lag phases, rapid proliferation, and high maximal cell density were observed in cell lines from patients who experienced aggressive tumor progression leading to death. Membrane-bound beta-catenin was present in all cell lines, but nuclear beta-catenin was associated with the more lethal cancers. In summary, the HNSCC cell lines present key characteristics, independent of primary etiologies and HPV infection, that mirror the behavior of the tumors from which they were derived.
Collapse
|
12
|
Zhang H, Qi L, Du Y, Huang LF, Braun FK, Kogiso M, Zhao Y, Li C, Lindsay H, Zhao S, Injac SG, Baxter PA, Su JM, Stephan C, Keller C, Heck KA, Harmanci A, Harmanci AO, Yang J, Klisch TJ, Li XN, Patel AJ. Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers (Basel) 2020; 12:cancers12061478. [PMID: 32517016 PMCID: PMC7352400 DOI: 10.3390/cancers12061478] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meningiomas constitute one-third of all primary brain tumors. Although typically benign, about 20% of these tumors recur despite surgery and radiation, and may ultimately prove fatal. There are currently no effective chemotherapies for meningioma. We, therefore, set out to develop patient-derived orthotopic xenograft (PDOX) mouse models of human meningioma using tumor. METHOD Of nine patients, four had World Health Organization (WHO) grade I tumors, five had WHO grade II tumors, and in this second group two patients also had recurrent (WHO grade III) meningioma. We also classified the tumors according to our recently developed molecular classification system (Types A, B, and C, with C being the most aggressive). We transplanted all 11 surgical samples into the skull base of immunodeficient (SCID) mice. Only the primary and recurrent tumor cells from one patient-both molecular Type C, despite being WHO grades II and III, respectively-led to the formation of meningioma in the resulting mouse models. We characterized the xenografts by histopathology and RNA-seq and compared them with the original tumors. We performed an in vitro drug screen using 60 anti-cancer drugs followed by in vivo validation. RESULTS The PDOX models established from the primary and recurrent tumors from patient K29 (K29P-PDOX and K29R-PDOX, respectively) replicated the histopathology and key gene expression profiles of the original samples. Although these xenografts could not be subtransplanted, the cryopreserved primary tumor cells were able to reliably generate PDOX tumors. Drug screening in K29P and K29R tumor cell lines revealed eight compounds that were active on both tumors, including three histone deacetylase (HDAC) inhibitors. We tested the HDAC inhibitor Panobinostat in K29R-PDOX mice, and it significantly prolonged mouse survival (p < 0.05) by inducing histone H3 acetylation and apoptosis. CONCLUSION Meningiomas are not very amenable to PDOX modeling, for reasons that remain unclear. Yet at least some of the most malignant tumors can be modeled, and cryopreserved primary tumor cells can create large panels of tumors that can be used for preclinical drug testing.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - L. Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Frank K. Braun
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Yanling Zhao
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Can Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (C.L.); (C.S.)
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Sarah G. Injac
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Patricia A. Baxter
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Jack M. Su
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (C.L.); (C.S.)
| | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR 97005, USA;
| | - Kent A. Heck
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Akdes Harmanci
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Arif O. Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Jianhua Yang
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Tiemo J. Klisch
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (X.-N.L.); (A.J.P.)
| | - Akash J. Patel
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.-N.L.); (A.J.P.)
| |
Collapse
|
13
|
Maletzki C, Bock S, Fruh P, Macius K, Witt A, Prall F, Linnebacher M. NSG mice as hosts for oncological precision medicine. J Transl Med 2020; 100:27-37. [PMID: 31409886 DOI: 10.1038/s41374-019-0298-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Patient-derived xenograft (PDX) models have been rediscovered as meaningful research tool. By using severely immunodeficient mice, high-engraftment rates can be theoretically achieved, permitting clinical stratification strategies. Apart from engraftment efficacy, tolerability towards certain cytostatic drugs varies among individual mouse strains thus impeding large-scale screenings. Here, we aimed at optimizing an in vivo treatment schedule using the widely applied cytostatic drug 5-fluoruracil (5-FU) for exemplary response prediction in colorectal cancer (CRC) PDX models. Four different individual CRC PDX models were engrafted into NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) mice. Mice with established PDX were allocated to different treatment groups, receiving 5-FU, the oral prodrug Capecitabine, or 5-FU/leucovorin (LV) at different doses. Body weight, tumor size, and general behavior were assessed during therapy. Ex vivo analyses were done from blood samples, liver, as well as tumor resection specimen. Engraftment efficacy was high as expected in NSG mice, yielding stable PDX growth for therapy stratification. However, overall tolerability towards 5-FU was unexpectedly low, whereas the prodrug Capecitabine as well as the combination of 5-FU/LV at low doses were well tolerated. Accompanying plasma level determination of DYPD, the rate-limiting enzyme for 5-FU-mediated toxicity, revealed reduced activity in NSG mice compared with other common laboratory mouse strains, offering a likely explanation for the drug incompatibility. Also, the De Ritis quotient was highly elevated in treated mice, reflecting overall organ injury even at low doses. Summarizing these findings, NSG mice are ideal hosts for in vivo engraftment studies. However, the complex immunodeficiency reduces tolerance to certain drugs, thus making those mice especially sensitive. Consequently, such dose finding and tolerance tests constitute a necessity for similar cancer precision medicine approaches.
Collapse
Affiliation(s)
- Claudia Maletzki
- Department of Medicine, Clinic III-Hematology/Oncology/Palliative Care Rostock, Rostock, Germany
| | - Stephanie Bock
- Molecular Oncology and Immunotherapy; Department of General Surgery, Rostock, Germany
| | - Philipp Fruh
- Molecular Oncology and Immunotherapy; Department of General Surgery, Rostock, Germany
| | - Karolis Macius
- Molecular Oncology and Immunotherapy; Department of General Surgery, Rostock, Germany
| | - Anika Witt
- Molecular Oncology and Immunotherapy; Department of General Surgery, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Centre, 18057, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy; Department of General Surgery, Rostock, Germany.
| |
Collapse
|
14
|
Baur F, Nietzer SL, Kunz M, Saal F, Jeromin J, Matschos S, Linnebacher M, Walles H, Dandekar T, Dandekar G. Connecting Cancer Pathways to Tumor Engines: A Stratification Tool for Colorectal Cancer Combining Human In Vitro Tissue Models with Boolean In Silico Models. Cancers (Basel) 2019; 12:28. [PMID: 31861874 PMCID: PMC7017315 DOI: 10.3390/cancers12010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is-in contrast to melanoma-not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification.
Collapse
Affiliation(s)
- Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
| | - Sarah L. Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Fabian Saal
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Julian Jeromin
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Stephanie Matschos
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany; (S.M.); (M.L.)
| | - Michael Linnebacher
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany; (S.M.); (M.L.)
| | - Heike Walles
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
- EMBL Heidelberg, Structural and Computational Biology, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
15
|
Mullins CS, Micheel B, Matschos S, Leuchter M, Bürtin F, Krohn M, Hühns M, Klar E, Prall F, Linnebacher M. Integrated Biobanking and Tumor Model Establishment of Human Colorectal Carcinoma Provides Excellent Tools for Preclinical Research. Cancers (Basel) 2019; 11:1520. [PMID: 31601052 PMCID: PMC6826890 DOI: 10.3390/cancers11101520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Over the time period from 2006 to 2017, consecutive patients operated on at the University Medical Center Rostock participated in the comprehensive biobanking and tumor-modelling approach known as the HROC collection. Samples were collected using strict standard operating procedures including blood (serum and lymphocytes), tumor tissue (vital and snap frozen), and adjacent normal epithelium. Patient and tumor data including classification, molecular type, clinical outcome, and results of the model establishment are the essential pillars. Overall, 149 patient-derived xenografts with 34 primary and 35 secondary cell lines were successfully established and encompass all colorectal carcinoma anatomic sites, grading and staging types, and molecular classes. The HROC collection represents one of the largest model assortments from consecutive clinical colorectal carcinoma (CRC) cases worldwide. Statistical analysis identified a variety of clinicopathological and molecular factors associated with model success in univariate analysis. Several of them not identified before include localization, mutational status of K-Ras and B-Raf, MSI-status, and grading and staging parameters. In a multivariate analysis model, success solely correlated positively with the nodal status N1 and mutations in the genes K-Ras and B-Raf. These results imply that generating CRC tumor models on the individual patient level is worth considering especially for advanced tumor cases with a dismal prognosis.
Collapse
Affiliation(s)
- Christina S Mullins
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany.
| | - Bianca Micheel
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany.
| | - Stephanie Matschos
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany.
| | - Matthias Leuchter
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Schillingallee 35, 18057 Rostock, Germany.
| | - Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Schillingallee 35, 18057 Rostock, Germany.
| | - Mathias Krohn
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany.
| | - Maja Hühns
- Institute of Pathology, University Medical Center Rostock, Strempelstraße 10, 18057 Rostock, Germany.
| | - Ernst Klar
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Schillingallee 35, 18057 Rostock, Germany.
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Strempelstraße 10, 18057 Rostock, Germany.
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
16
|
Lazzari L, Corti G, Picco G, Isella C, Montone M, Arcella P, Durinikova E, Zanella ER, Novara L, Barbosa F, Cassingena A, Cancelliere C, Medico E, Sartore-Bianchi A, Siena S, Garnett MJ, Bertotti A, Trusolino L, Di Nicolantonio F, Linnebacher M, Bardelli A, Arena S. Patient-Derived Xenografts and Matched Cell Lines Identify Pharmacogenomic Vulnerabilities in Colorectal Cancer. Clin Cancer Res 2019; 25:6243-6259. [PMID: 31375513 DOI: 10.1158/1078-0432.ccr-18-3440] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Patient-derived xenograft (PDX) models accurately recapitulate the tumor of origin in terms of histopathology, genomic landscape, and therapeutic response, but some limitations due to costs associated with their maintenance and restricted amenability for large-scale screenings still exist. To overcome these issues, we established a platform of 2D cell lines (xeno-cell lines, XL), derived from PDXs of colorectal cancer with matched patient germline gDNA available. EXPERIMENTAL DESIGN Whole-exome and transcriptome sequencing analyses were performed. Biomarkers of response and resistance to anti-HER therapy were annotated. Dependency on the WRN helicase gene was assessed in MSS, MSI-H, and MSI-like XLs using a reverse genetics functional approach. RESULTS XLs recapitulated the entire spectrum of colorectal cancer transcriptional subtypes. Exome and RNA-seq analyses delineated several molecular biomarkers of response and resistance to EGFR and HER2 blockade. Genotype-driven responses observed in vitro in XLs were confirmed in vivo in the matched PDXs. MSI-H models were dependent upon WRN gene expression, while loss of WRN did not affect MSS XLs growth. Interestingly, one MSS XL with transcriptional MSI-like traits was sensitive to WRN depletion. CONCLUSIONS The XL platform represents a preclinical tool for functional gene validation and proof-of-concept studies to identify novel druggable vulnerabilities in colorectal cancer.
Collapse
Affiliation(s)
- Luca Lazzari
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | | | - Claudio Isella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Monica Montone
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Pamela Arcella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | | | | | - Luca Novara
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Fabiane Barbosa
- Department of Interventional Radiology, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | | | - Andrea Bertotti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, Torino, Italy. .,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
17
|
Targeting Immune-Related Molecules in Cancer Therapy: A Comprehensive In Vitro Analysis on Patient-Derived Tumor Models. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4938285. [PMID: 30891459 PMCID: PMC6390245 DOI: 10.1155/2019/4938285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
This study investigated the impact of immune-related pathway inhibition, among them indolamine 2,3-dioxygenase (IDO), alone and together with immune cells on growth and viability of colorectal cancer (CRC) cells. A panel of patient-derived CRC cell lines with different molecular characteristics (CpG island methylator phenotype, chromosomal, and microsatellite instability) was included. Initial phenotyping of CRC cell lines (n=17) revealed high abundance of immunosuppressive checkpoint-molecules in general, but an individual profile for IDO. Presence of immune-related molecules was independent of the molecular subtype. Selective treatment of CRC cell lines showing high or low IDO expression (n=2 cell lines each) was performed with single agents and combinations of Indoximod, Curcumin, and Gemcitabine with and without the addition of peripheral blood lymphocytes (PBL) in an allogeneic setting. All substances affected CRC cell growth in a cell line specific manner. The combination of Curcumin and Gemcitabine proved to be most effective in tumor cell elimination. Functional read-out analyses identified cellular senescence, after both single and combined treatment. Curcumin alone exerted strong cytotoxic effects by inducing early and late apoptosis. Necrosis was not detectable at all. Addition of lymphocytes generally boosted antitumoral effects of all IDO-inhibitors, with up to 80 % cytotoxicity for the Curcumin treatment. Here, no obvious differences became apparent between individual cell lines. Combined application of Curcumin and low-dose chemotherapy is a promising strategy to kill tumor target cells and to stimulate antitumoral immune responses.
Collapse
|
18
|
Maletzki C, Wiegele L, Nassar I, Stenzel J, Junghanss C. Chemo-immunotherapy improves long-term survival in a preclinical model of MMR-D-related cancer. J Immunother Cancer 2019; 7:8. [PMID: 30630527 PMCID: PMC6329128 DOI: 10.1186/s40425-018-0476-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mismatch Repair Deficiency (MMR-D)-related tumors are highly immunogenic and constitute ideal vaccination targets. In a proof-of-concept study delayed tumorigenesis and prolonged survival has been shown in a clinically-relevant mouse model for MMR-D-related diseases (=MLH1 knock out mice). To refine this approach, vaccination was combined with immune modulatory low-dose chemotherapy to polarize immune regulatory subtypes. METHODS Mice (prophylactic: 8-10 weeks; therapeutic: > 36 weeks) received a single injection of cyclophosphamide (CPX, 120 mg/kg bw, i.p.) or gemcitabine (GEM, 100 mg/kg bw, i.p.) prior to vaccination (lysate of a gastrointestinal tumor allograft, 10 mg/kg bw, n = 9 mice/group). The vaccine was given repetitively (10 mg/kg bw, s.c., 4 x / once a week, followed by monthly boosts) until tumor formation or progression. Tumor growth ([18F] FDG PET/CT imaging) and immune responses were monitored (flow cytometry, IFNγ ELISpot). The microenvironment was analyzed by immunofluorescence. RESULTS Prophylactic application of GEM + lysate delayed tumorigenesis compared to lysate monotherapy and CPX-pre-treatment (median time of onset: 53 vs. 47 vs. 48 weeks). 33% of mice even remained tumor-free until the experimental endpoint (= 65 weeks). This was accompanied by long-term effect on cytokine plasma levels; splenic myeloid derived suppressor cells (MDSC) as well as regulatory T cell numbers. Assessment of tumor microenvironment from GEM + lysate treated mice revealed low numbers of MDSCs, but enhanced T cell infiltration, in some cases co-expressing PD-L1. Therapeutic chemo-immunotherapy (GEM + lysate) had minor impact on overall survival (median time: 12 (GEM + lysate) vs. 11.5 (lysate) vs. 3 weeks (control)), but induced complete remission in one case. Dendritic and T cell infiltrates increased in both treatment groups. Reactive T cells specifically recognized MLH1-/- tumor cells in IFNγ ELISpot, but lacked response towards NK cell targets YAC-1. CONCLUSIONS Combined chemo-immunotherapy impairs tumor onset and growth likely attributable to modulation of immune responses. Depleting or 're-educating' immunosuppressive cell types, such as MDSC, may help moving a step closer to combat cancer.
Collapse
Affiliation(s)
- Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| | - Leonie Wiegele
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Ingy Nassar
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Jan Stenzel
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
19
|
Gock M, Mullins CS, Bergner C, Prall F, Ramer R, Göder A, Krämer OH, Lange F, Krause BJ, Klar E, Linnebacher M. Establishment, functional and genetic characterization of three novel patient-derived rectal cancer cell lines. World J Gastroenterol 2018; 24:4880-4892. [PMID: 30487698 PMCID: PMC6250916 DOI: 10.3748/wjg.v24.i43.4880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish patient-individual tumor models of rectal cancer for analyses of novel biomarkers, individual response prediction and individual therapy regimens. METHODS Establishment of cell lines was conducted by direct in vitro culturing and in vivo xenografting with subsequent in vitro culturing. Cell lines were in-depth characterized concerning morphological features, invasive and migratory behavior, phenotype, molecular profile including mutational analysis, protein expression, and confirmation of origin by DNA fingerprint. Assessment of chemosensitivity towards an extensive range of current chemotherapeutic drugs and of radiosensitivity was performed including analysis of a combined radio- and chemotherapeutic treatment. In addition, glucose metabolism was assessed with 18F-fluorodeoxyglucose (FDG) and proliferation with 18F-fluorothymidine. RESULTS We describe the establishment of ultra-low passage rectal cancer cell lines of three patients suffering from rectal cancer. Two cell lines (HROC126, HROC284Met) were established directly from tumor specimens while HROC239 T0 M1 was established subsequent to xenografting of the tumor. Molecular analysis classified all three cell lines as CIMP-0/ non-MSI-H (sporadic standard) type. Mutational analysis revealed following mutational profiles: HROC126: APCwt , TP53wt , KRASwt , BRAFwt , PTENwt ; HROC239 T0 M1: APCmut , P53wt , KRASmut , BRAFwt , PTENmut and HROC284Met: APCwt , P53mut , KRASmut , BRAFwt , PTENmut . All cell lines could be characterized as epithelial (EpCAM+) tumor cells with equivalent morphologic features and comparable growth kinetics. The cell lines displayed a heterogeneous response toward chemotherapy, radiotherapy and their combined application. HROC126 showed a highly radio-resistant phenotype and HROC284Met was more susceptible to a combined radiochemotherapy than HROC126 and HROC239 T0 M1. Analysis of 18F-FDG uptake displayed a markedly reduced FDG uptake of all three cell lines after combined radiochemotherapy. CONCLUSION These newly established and in-depth characterized ultra-low passage rectal cancer cell lines provide a useful instrument for analysis of biological characteristics of rectal cancer.
Collapse
Affiliation(s)
- Michael Gock
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Christina S Mullins
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center, Rostock 18055, Germany
| | - Robert Ramer
- Institute of Pharmacology, University Medical Center, Rostock 18055, Germany
| | - Anja Göder
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center, Rostock 18055, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Ernst Klar
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| |
Collapse
|
20
|
Gock M, Mullins CS, Harnack C, Prall F, Ramer R, Göder A, Krämer OH, Klar E, Linnebacher M. Establishment, functional and genetic characterization of a colon derived large cell neuroendocrine carcinoma cell line. World J Gastroenterol 2018; 24:3749-3759. [PMID: 30197480 PMCID: PMC6127660 DOI: 10.3748/wjg.v24.i33.3749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish cell line and patient-derived xenograft (PDX) models for neuroendocrine carcinomas (NEC) which is highly desirable for gaining insight into tumor development as well as preclinical research including biomarker testing and drug response prediction. METHODS Cell line establishment was conducted from direct in vitro culturing of colonic NEC tissue (HROC57). A PDX could also successfully be established from vitally frozen tumor samples. Morphological features, invasive and migratory behavior of the HROC57 cells as well as expression of neuroendocrine markers were vastly analyzed. Phenotypic analysis was done by microscopy and multicolor flow cytometry. The extensive molecular-pathological profiling included mutation analysis, assessment of chromosomal and microsatellite instability; and in addition, fingerprinting (i.e., STR analysis) was performed from the cell line in direct comparison to primary patient-derived tissues and the PDX model established. Drug responsiveness was examined for a panel of chemotherapeutics in clinical use for the treatment of solid cancers. RESULTS The established cell line HROC57 showed distinct morphological and molecular features of a poorly differentiated large-cell NEC with KI-67 > 50%. Molecular-pathological analysis revealed a CpG island promoter methylation positive cell line with microsatellite instability being absent. The following mutation profile was observed: KRAS (wt), BRAF (mut). A high sensitivity to etoposide, cisplatin and 5-FU could be demonstrated while it was more resistant towards rapamycin. CONCLUSION We successfully established and characterized a novel patient-derived NEC cell line in parallel to a PDX model as a useful tool for further analysis of the biological characteristics and for development of novel diagnostic and therapeutic options for NEC.
Collapse
MESH Headings
- Adult
- Animals
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Large Cell/surgery
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/surgery
- Cell Culture Techniques/methods
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/pathology
- Cell Movement/genetics
- Colon/pathology
- Colon/surgery
- CpG Islands/genetics
- DNA Fingerprinting
- DNA Methylation/genetics
- DNA Mutational Analysis
- Drug Resistance, Neoplasm/genetics
- Female
- Flow Cytometry
- Humans
- Mice
- Mice, Nude
- Mutation
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/pathology
- Primary Cell Culture
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Michael Gock
- Department of General Surgery, University of Rostock, Rostock 18055, Germany
| | - Christina S Mullins
- Department of General Surgery, Section of Molecular Oncology and Immunotherapy, University of Rostock, Rostock 18055, Germany
| | - Christine Harnack
- Department of General Surgery, Section of Molecular Oncology and Immunotherapy, University of Rostock, Rostock 18055, Germany
| | - Friedrich Prall
- Institute of Pathology, University of Rostock, Rostock 18055, Germany
| | - Robert Ramer
- Institute of Pharmacology, University of Rostock, Rostock 18055, Germany
| | - Anja Göder
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Ernst Klar
- Department of General Surgery, University of Rostock, Rostock 18055, Germany
| | - Michael Linnebacher
- Department of General Surgery, Section of Molecular Oncology and Immunotherapy, University of Rostock, Rostock 18055, Germany
| |
Collapse
|
21
|
Bock S, Mullins CS, Klar E, Pérot P, Maletzki C, Linnebacher M. Murine Endogenous Retroviruses Are Detectable in Patient-Derived Xenografts but Not in Patient-Individual Cell Lines of Human Colorectal Cancer. Front Microbiol 2018; 9:789. [PMID: 29755432 PMCID: PMC5932414 DOI: 10.3389/fmicb.2018.00789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Endogenous retroviruses are remnants of retroviral infections. In contrast to their human counterparts, murine endogenous retroviruses (mERV) still can synthesize infectious particles and retrotranspose. Xenotransplanted human cells have occasionally been described to be mERV infected. With genetic engineered mice and patient-derived xenografts (PDXs) on the rise as eminent research tools, we here systematically investigated, if different tumor models harbor mERV infections. Relevant mERV candidates were first preselected by next generation sequencing (NGS) analysis of spontaneous lymphomas triggered by colorectal cancer (CRC) PDX tissue. Two primer systems were designed for each of these candidates (AblMLV, EcoMLV, EndoPP, MLV, and preXMRV) and implemented in an quantitative real-time (RT-qPCR) screen using murine tissues (n = 11), PDX-tissues (n = 22), PDX-derived cell lines (n = 13), and patient-derived tumor cell lines (n = 14). The expression levels of mERV varied largely both in the PDX samples and in the mouse tissues. No mERV signal was, however, obtained from cDNA or genomic DNA of CRC cell lines. Expression of EcoMLV was higher in PDX than in murine tissues; for EndoPP it was the opposite. These two were thus further investigated in 40 additional PDX. In addition, four patient-derived cell lines free of any mERV expression were subcutaneously injected into immunodeficient mice. Outgrowing cell-derived xenografts barely expressed EndoPP. In contrast, the expression of EcoMLV was even higher than in surrounding mouse tissues. This expression gradually vanished within few passages of re-cultivated cells. In summary, these results strongly imply that: (i) PDX and murine tissues in general are likely to be contaminated by mERV, (ii) mERV are expressed transiently and at low level in fresh PDX-derived cell cultures, and (iii) mERV integration into the genome of human cells is unlikely or at least a very rare event. Thus, mERVs are stowaways present in murine cells, in PDX tissues and early thereof-derived cell cultures. We conclude that further analysis is needed concerning their impact on results obtained from studies performed with PDX but also with murine tumor models.
Collapse
Affiliation(s)
- Stephanie Bock
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Christina S. Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Ernst Klar
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Philippe Pérot
- INSERM U1117, Biology of Infection Unit, Laboratory of Pathogen Discovery, Institut Pasteur, Paris, France
| | - Claudia Maletzki
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
22
|
Maletzki C, Beyrich F, Hühns M, Klar E, Linnebacher M. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis. Oncotarget 2018; 7:53583-53598. [PMID: 27447752 PMCID: PMC5288207 DOI: 10.18632/oncotarget.10677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022] Open
Abstract
Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT). All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors’ natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line. Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases.
Collapse
Affiliation(s)
- Claudia Maletzki
- Molecular Oncology and Immunotherapy, Department of General Surgery, University of Rostock, 18057 Rostock, Germany
| | - Franziska Beyrich
- Molecular Oncology and Immunotherapy, Department of General Surgery, University of Rostock, 18057 Rostock, Germany
| | - Maja Hühns
- Institute of Pathology, University of Rostock, 18057 Rostock, Germany
| | - Ernst Klar
- Department of General Surgery, University of Rostock, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
23
|
Boot A, van Eendenburg J, Crobach S, Ruano D, Speetjens F, Calame J, Oosting J, Morreau H, van Wezel T. Characterization of novel low passage primary and metastatic colorectal cancer cell lines. Oncotarget 2018; 7:14499-509. [PMID: 26894854 PMCID: PMC4924731 DOI: 10.18632/oncotarget.7391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/02/2016] [Indexed: 12/27/2022] Open
Abstract
In vitro models are essential to understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. Many efforts to establish and characterize primary CRC cell lines have been published, most describing a small number of novel cell lines. However, there remains a lack of a large panel of uniformly established and characterized cell lines. To this end we established 20 novel CRC cell lines, of which six were derived from liver metastases. Genetic, genomic and transcriptomic profiling was performed in order to characterize these new cell lines. All data are made publically available upon publication. By combining mutation profiles with CNA and gene expression profiles, we generated an overall profile of the alterations in the major CRC-related signaling pathways. The combination of mutation profiles with genome, transcriptome and methylome data means that these low passage cell lines are among the best characterized of all CRC cell lines. This will allow researchers to select model cell lines appropriate to specific experiments, facilitating the optimal use of these cell lines as in vitro models for CRC. All cell lines are available for further research.
Collapse
Affiliation(s)
- Arnoud Boot
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap van Eendenburg
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Speetjens
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Calame
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Rohde S, Lindner T, Polei S, Stenzel J, Borufka L, Achilles S, Hartmann E, Lange F, Maletzki C, Linnebacher M, Glass Ä, Schwarzenböck SM, Kurth J, Hohn A, Vollmar B, Krause BJ, Jaster R. Application of in vivo imaging techniques to monitor therapeutic efficiency of PLX4720 in an experimental model of microsatellite instable colorectal cancer. Oncotarget 2017; 8:69756-69767. [PMID: 29050239 PMCID: PMC5642514 DOI: 10.18632/oncotarget.19263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Patient-derived tumor cell lines are a powerful tool to analyze the sensitivity of individual tumors to specific therapies in mice. An essential prerequisite for such an approach are reliable quantitative techniques to monitor tumor progression in vivo. METHODS We have employed HROC24 cells, grown heterotopically in NMRI Foxn1nu mice, as a model of microsatellite instable colorectal cancer to investigate the therapeutic efficiencies of 5'-fluorouracil (5'-FU) and the mutant BRAF inhibitor PLX4720, a vemurafenib analogue, by three independent methods: external measurement by caliper, magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG). RESULTS Repeated measure ANOVA by a general linear model revealed that time-dependent changes of anatomic tumor volumes measured by MRI differed significantly from those of anatomic volumes assessed by caliper and metabolic volumes determined by PET/CT. Over the investigation period of three weeks, neither 5'-FU, PLX4720 nor a combination of both drugs affected the tumor volumes. Also, there was no drug effect on the apparent diffusion constant (ADC) value as detected by MRI. Interestingly, however, PET/CT imaging showed that PLX4720-containing therapies transiently reduced the standardized uptake value (SUV), indicating a temporary response to treatment. CONCLUSIONS 5'-FU and PLX4720 were largely ineffective with respect to HROC24 tumor growth. Tumoral uptake of 18F-FDG, as expressed by the SUV, proved as a sensitive indicator of small therapeutic effects. Metabolic imaging by 18F-FDG PET/CT is a suitable approach to detect effects of tumor-directed therapies early and even in the absence of morphological changes.
Collapse
Affiliation(s)
- Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Stefan Polei
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Jan Stenzel
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | - Luise Borufka
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Sophie Achilles
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Eric Hartmann
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Molecular Oncology and Immunotherapy, Department of General Surgery, Rostock University Medical Center, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, Rostock University Medical Center, Rostock, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Alexander Hohn
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
25
|
Wiegering A, Matthes N, Mühling B, Koospal M, Quenzer A, Peter S, Germer CT, Linnebacher M, Otto C. Reactivating p53 and Inducing Tumor Apoptosis (RITA) Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin. Neoplasia 2017; 19:301-309. [PMID: 28284059 PMCID: PMC5345961 DOI: 10.1016/j.neo.2017.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n=9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n=5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC50<3.0 μmol/l) were identified within established (4/9) and primary patient-derived (2/5) CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC cells within both panels of established CRC cell lines and primary patient-derived CRC cell lines (6/14) that provide a rationale for combining RITA with 5FU or oxaliplatin to enhance the antiproliferative response to both chemotherapeutic agents.
Collapse
Affiliation(s)
- Armin Wiegering
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany; Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97070 Würzburg, Germany.
| | - Niels Matthes
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany.
| | - Bettina Mühling
- Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany.
| | - Monika Koospal
- Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany.
| | - Anne Quenzer
- Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany.
| | - Stephanie Peter
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97070 Würzburg, Germany.
| | - Christoph-Thomas Germer
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany.
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Thoracic, Vascular and Transplantation Surgery, University of Rostock, Schillingallee 35, D-18055 Rostock, Germany.
| | - Christoph Otto
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany; Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany.
| |
Collapse
|
26
|
Maletzki C, Huehns M, Bauer I, Ripperger T, Mork MM, Vilar E, Klöcking S, Zettl H, Prall F, Linnebacher M. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome. Mol Carcinog 2017; 56:1753-1764. [PMID: 28218421 DOI: 10.1002/mc.22632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 01/23/2023]
Abstract
Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis.
Collapse
Affiliation(s)
- Claudia Maletzki
- Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Maja Huehns
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Ingrid Bauer
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
| | - Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maureen M Mork
- Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston,, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston,, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabine Klöcking
- Rostock Cancer Registry, University of Rostock, Rostock, Germany
| | - Heike Zettl
- Rostock Cancer Registry, University of Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
27
|
Feng F, Cheng Q, Yang L, Zhang D, Ji S, Zhang Q, Lin Y, Li F, Xiong L, Liu C, Jiang X. Guidance to rational use of pharmaceuticals in gallbladder sarcomatoid carcinoma using patient-derived cancer cells and whole exome sequencing. Oncotarget 2017; 8:5349-5360. [PMID: 28029662 PMCID: PMC5354913 DOI: 10.18632/oncotarget.14146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Gallbladder sarcomatoid carcinoma is a rare cancer with no clinical standard treatment. With the rapid development of next generation sequencing, it has been able to provide reasonable treatment options for patients based on genetic variations. However, most cancer drugs are not approval for gallbladder sarcomatoid carcinoma indications. The correlation between drug response and a genetic variation needs to be further elucidated. EXPERIMENTAL DESIGN Three patient-derived cells-JXQ-3D-001, JXQ-3D-002, and JXQ-3D-003, were derived from biopsy samples of one gallbladder sarcomatoid carcinoma patient with progression and have been characterized. In order to study the relationship between drug sensitivity and gene alteration, genetic mutations of three patient-derived cells were discovered by whole exome sequencing, and drug screening has been performed based on the gene alterations and related signaling pathways that are associated with drug targets. RESULTS It has been found that there are differences in biological characteristics such as morphology, cell proliferation, cell migration and colony formation activity among these three patient-derived cells although they are derived from the same patient. Their sensitivities to the chemotherapy drugs-Fluorouracil, Doxorubicin, and Cisplatin are distinct. Moreover, none of common chemotherapy drugs could inhibit the proliferations of all three patient-derived cells. Comprehensive analysis of their whole exome sequencing demonstrated that tumor-associated genes TP53, AKT2, FGFR3, FGF10, SDHA, and PI3KCA were mutated or amplified. Part of these alterations are actionable. By screening a set of compounds that are associated with the genetic alteration, it has been found that GDC-0941 and PF-04691502 for PI3K-AKT-mTOR pathway inhibitors could dramatically decrease the proliferation of three patient-derived cells. Importantly, expression of phosphorylated AKT and phosphorylated S6 were markedly decreased after treatments with PI3K-AKT-mTOR pathway inhibitors GDC-0941 (0.5 μM) and PF-04691502 (0.1 μM) in all three patient-derived cells. These data suggested that inhibition of the PI3K-AKT-mTOR pathway that was activated by PIK3CA amplification in all three patient-derived cells could reduce the cell proliferation. CONCLUSIONS A patient-derived cell model combined with whole exome sequencing is a powerful tool to elucidate relationship between drug sensitivities and genetic alternations. In these gallbladder sarcomatoid carcinoma patient-derived cells, it is found that PIK3CA amplification could be used as a biomarker to indicate PI3K-AKT-mTOR pathway activation. Block of the pathway may benefit the gallbladder sarcomatoid carcinoma patient with this alternation in hypothesis. The real efficacy needs to be confirmed in vivo or in a clinical trial.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Qingbao Cheng
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Liang Yang
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Dadong Zhang
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Shunlong Ji
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Qiangzu Zhang
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Yihui Lin
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Fugen Li
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Lei Xiong
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Chen Liu
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Wilms D, Andrä J. Comparison of patient-derived high and low phosphatidylserine-exposing colorectal carcinoma cells in their interaction with anti-cancer peptides. J Pept Sci 2017; 23:56-67. [PMID: 28066958 DOI: 10.1002/psc.2963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023]
Abstract
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi-)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti-cancer therapeutics. Peptide NK-2, derived from porcine NK-lysin, was originally discovered due to its broad-spectrum antimicrobial activities. Today, also potent anti-cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non-abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK-2 and structurally improved anti-cancer variants thereof against two patient-derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle-based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface-exposed phosphatidylserine is of crucial importance for the activity of peptide NK-2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dominik Wilms
- Faculty of Life Sciences, Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033, Hamburg, Germany
| | - Jörg Andrä
- Faculty of Life Sciences, Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033, Hamburg, Germany
| |
Collapse
|
29
|
HRG/HER2/HER3 signaling promotes AhR-mediated Memo-1 expression and migration in colorectal cancer. Oncogene 2016; 36:2394-2404. [DOI: 10.1038/onc.2016.390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
|
30
|
Liang JH, Zhang W, Guo Q, Tang H. Application of improved tissue piece enzyme digestion method in primary culture of human colorectal cancer cells in vitro. Shijie Huaren Xiaohua Zazhi 2016; 24:4562-4567. [DOI: 10.11569/wcjd.v24.i34.4562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate methods of primary culture of human colorectal cancer cells in vitro by application of improved tissue piece enzyme digestion method.
METHODS Human colorectal cancer cells were cultured by improved tissue piece enzyme digestion method, which combines the tissue explant method with Ⅳ collagenase digestion method. Colorectal cancer cells were obtained by optimizing culture conditions, promoting adherence, controlling pollution, and purifying the cells. Wright Giemsa staining and immunocytochemistry were used to identify the cells.
RESULTS Wright Giemsa staining of the cells showed karyomegaly and purple red-stained colorectal cancer cells. Immunocytochemistry staining showed that the cells were carbohydrate antigen 19-9 (CA19-9) positive and the cytoplasm was brown.
CONCLUSION We have improved the tissue piece enzyme digestion method, which allows to obtain free cells quickly and make full use of the tissue pieces which have not been digested completely. The improved tissue piece enzyme digestion method has a high success rate, and cultured cells have been identified as colorectal cancer cells.
Collapse
|
31
|
Gock M, Kühn F, Mullins CS, Krohn M, Prall F, Klar E, Linnebacher M. Tumor Take Rate Optimization for Colorectal Carcinoma Patient-Derived Xenograft Models. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1715053. [PMID: 27999790 PMCID: PMC5141319 DOI: 10.1155/2016/1715053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/23/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Background. For development of individualized treatment on a routine basis, transfer of patients' tumor tissue in a xenograft model (i.e., generation of patient-derived xenografts (PDX)) is desirable for molecular, biochemical, or functional analyses. Drawbacks are dissatisfactory tumor take rates, the necessity of fast tumor tissue processing, and extensive logistics demanding teamwork of surgeons, pathologists, and laboratory researchers. Methods. The take rates of ten colorectal cancer (CRC) tissue samples in immunodeficient mice were compared after direct cryopreservation and after a 24 h cooling period at 4°C prior to cryopreservation. Additionally, the effect of simultaneous Matrigel application on the take rates was investigated. Beside take rates, tumor growth characteristics and cell culture success were analyzed. Results. Tumor takes of CRC tissue samples were significantly improved after Matrigel application (8 versus 15 takes, p = 0.04). As expected, they diminished furthermore after 24 h cooling. Application of Matrigel could counteract this decrease significantly (2 versus 7 takes, p = 0.03). Cumulative take rate after cryopreservation was satisfactory (70%). Conclusion. Matrigel application after 24 h delay in tissue processing facilitates CRC PDX model development. These data help developing strategies for individualized tumor therapies in the context of multicenter clinical studies and for basic research on primary patient tumors.
Collapse
Affiliation(s)
- Michael Gock
- Department of General, Vascular, Thoracic and Transplantation Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| | - Florian Kühn
- Department of General, Vascular, Thoracic and Transplantation Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| | - Christina Susanne Mullins
- Department of General, Vascular, Thoracic and Transplantation Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| | - Mathias Krohn
- Department of General, Vascular, Thoracic and Transplantation Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University of Rostock, Strempelstraße 14, 18055 Rostock, Germany
| | - Ernst Klar
- Department of General, Vascular, Thoracic and Transplantation Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| | - Michael Linnebacher
- Department of General, Vascular, Thoracic and Transplantation Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| |
Collapse
|
32
|
Picco G, Petti C, Sassi F, Grillone K, Migliardi G, Rossi T, Isella C, Di Nicolantonio F, Sarotto I, Sapino A, Bardelli A, Trusolino L, Bertotti A, Medico E. Efficacy of NEDD8 Pathway Inhibition in Preclinical Models of Poorly Differentiated, Clinically Aggressive Colorectal Cancer. J Natl Cancer Inst 2016; 109:djw209. [PMID: 27771609 DOI: 10.1093/jnci/djw209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
Background The NEDD8 conjugation pathway modulates the ubiquitination and activity of a wide range of intracellular proteins, and its blockade by pevonedistat is emerging as a promising therapeutic approach in various cancer settings. However, systematic characterization of pevonedistat efficacy in specific tumor types and definition of response predictors are still missing. Methods We investigated in vitro sensitivity to pevonedistat in 122 colorectal cancer (CRC) cell lines by an ATP-based proliferation assay and evaluated apoptosis and DNA content by flow cytometry. Associations between pevonedistat sensitivity and CRC molecular features were assessed by Student's t test. A 184-gene transcriptional predictor was generated in cell lines and applied to 87 metastatic CRC samples for which patient-derived xenografts (PDXs) were available. In vivo reponse to pevonedistat was assessed in PDX models (≥5 mice per group). All statistical tests were two-sided. Results Sixteen (13.1%) cell lines displayed a marked response to pevonedistat, featuring DNA re-replication, proliferative block, and increased apoptosis. Pevonedistat sensitivity did not statistically significantly correlate with microsatellite instability or mutations in KRAS or BRAF and was functionally associated with low EGFR pathway activity. While ineffective on predicted resistant PDXs, in vivo administration of pevonedistat statistically significantly impaired growth of five out of six predicted sensitive models (P < .01). In samples from CRC patients, transcriptional prediction of pevonedistat sensitivity was associated with poor prognosis after surgery (hazard ratio [HR] = 2.49, 95% confidence interval [CI] = 1.34 to 4.62, P = .003) and early progression under cetuximab treatment (HR = 3.59, 95% CI = 1.60 to 8.04, P < .001). Histological and immunohistochemical analyses revealed that the pevonedistat sensitivity signature captures transcriptional traits of poor differentiation and high-grade mucinous adenocarcinoma. Conclusions These results highlight NEDD8-pathway inhibition by pevonedistat as a potentially effective treatment for poorly differentiated, clinically aggressive CRC.
Collapse
Affiliation(s)
- Gabriele Picco
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Consalvo Petti
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | | | - Katia Grillone
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Teresa Rossi
- Department of Oncology, University of Torino, Torino, Italy
| | - Claudio Isella
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Ivana Sarotto
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy
| | - Anna Sapino
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Enzo Medico
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
33
|
Mullins CS, Hühns M, Krohn M, Peters S, Cheynet V, Oriol G, Guillotte M, Ducrot S, Mallet F, Linnebacher M. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples. PLoS One 2016; 11:e0153349. [PMID: 27119520 PMCID: PMC4847760 DOI: 10.1371/journal.pone.0153349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). RESULTS The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. CONCLUSION Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.
Collapse
Affiliation(s)
- Christina S. Mullins
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Maja Hühns
- University Medicine Rostock, Institute of Pathology, Strempelstraße 14, 18055 Rostock, Germany
| | - Mathias Krohn
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Sven Peters
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| | - Valérie Cheynet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
| | - Guy Oriol
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
| | | | - Sandrine Ducrot
- R&D Immunoassay, bioMérieux, Raw Material Department, Marcy l’Etoile, France
| | - François Mallet
- Joint Unit Hospices Civils de Lyon, bioMérieux, Cancer Biomarkers Research Group, Centre Hospitalier Lyon Sud, Bâtiment 3F, 69495, Pierre Bénite cedex, Lyon, France
- EA Pathophysiology of injury-induced immunosuppression, University of Lyon1–Hospices Civils de Lyon–bioMérieux,Hôpital Edouard Herriot, 5, Place d’Arsonval, 69437 LYON Cedex 3, Lyon, France
| | - Michael Linnebacher
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
34
|
Reiner J, Hsieh CJ, Straarup C, Bodammer P, Schäffler H, Graepler F, Stüker D, Kratt T, Linnebacher M, Nadalin S, Witte M, Königsrainer A, Lamprecht G. After Intestinal Transplantation Kidney Function Is Impaired by Downregulation of Epithelial Ion Transporters in the Ileum. Transplant Proc 2016; 48:499-506. [DOI: 10.1016/j.transproceed.2015.12.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
|
35
|
Maletzki C, Huehns M, Knapp P, Waukosin N, Klar E, Prall F, Linnebacher M. Functional Characterization and Drug Response of Freshly Established Patient-Derived Tumor Models with CpG Island Methylator Phenotype. PLoS One 2015; 10:e0143194. [PMID: 26618628 PMCID: PMC4664421 DOI: 10.1371/journal.pone.0143194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022] Open
Abstract
Patient-individual tumor models constitute a powerful platform for basic and translational analyses both in vitro and in vivo. However, due to the labor-intensive and highly time-consuming process, only few well-characterized patient-derived cell lines and/or corresponding xenografts exist. In this study, we describe successful generation and functional analysis of novel tumor models from patients with sporadic primary colorectal carcinomas (CRC) showing CpG island methylator phenotype (CIMP). Initial DNA fingerprint analysis confirmed identity with the patient in all four cases. These freshly established cells showed characteristic features associated with the CIMP-phenotype (HROC40: APCwt, TP53 mut, KRAS mut; 3/8 marker methylated; HROC43: APC mut, TP53 mut, KRAS mut; 4/8 marker methylated; HROC60: APCwt, TP53 mut, KRASwt; 4/8 marker methylated; HROC183: APC mut, TP53 mut, KRAS mut; 6/8 marker methylated). Cell lines were of epithelial origin (EpCAM+) with distinct morphology and growth kinetics. Response to chemotherapeutics was quite individual between cells, with stage I-derived cell line HROC60 being most susceptible towards standard clinically approved chemotherapeutics (e.g. 5-FU, Irinotecan). Of note, most cell lines were sensitive towards "non-classical" CRC standard drugs (sensitivity: Gemcitabin > Rapamycin > Nilotinib). This comprehensive analysis of tumor biology, genetic alterations and assessment of chemosensitivity towards a broad range of (chemo-) therapeutics helps bringing forward the concept of personalized tumor therapy.
Collapse
Affiliation(s)
- Claudia Maletzki
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Maja Huehns
- Institute of Pathology, University of Rostock, Rostock, Germany
| | - Patrick Knapp
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Nancy Waukosin
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Ernst Klar
- Department of General Surgery, University of Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University of Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| |
Collapse
|
36
|
Mullins CS, Wegner T, Klar E, Classen CF, Linnebacher M. Optimizing the process of nucleofection for professional antigen presenting cells. BMC Res Notes 2015; 8:472. [PMID: 26404473 PMCID: PMC4581479 DOI: 10.1186/s13104-015-1446-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In times of rapidly increasing numbers of immunological approaches entering the clinics, antigen delivery becomes a pivotal process. The genuine way of rendering antigen presenting cells (APC) antigen specific, largely influences the outcome of the immune response. Short peptides bear the demerit of HLA restriction, whereas the proper way of delivery for long peptide sequences is currently a matter of debate. Electroporation is a reliable method for antigen delivery, especially using nucleic acids. The nucleofection process is based on this approach with the twist of further ensuring delivery also into the nucleus. Beside the form of antigen, the type of APC used for immune response induction may be crucial. Dendritic cells (DC) are by far the most commonly used APC; however B cells have entered this field as well and have gained wide acceptance. RESULTS In this study, we compared B cells to DC with regard to nucleofection efficiency and intensity of resulting antigen expression. APC were transfected either with plasmid DNA containing the reporter gene green fluorescent protein (GFP) or directly with in vitro-transcribed (IVT) GPF mRNA as a surrogate antigen. Out of nearly 100 different nucleofection programs tested, the top five for each cell type were identified and validated using cells from cancer patients. Flow cytometric analyses of transfected cells determining GFP expression and viability revealed a reverse correlation of efficiency and viability. Finally, donor dependant variances were analyzed. CONCLUSION In summary, nucleofection of both DC and B cells is feasible with plasmid DNA and IVT mRNA. And no differences with regard to nucleofectability were observed between the two cell types. Using IVT mRNA omits the danger of genomic integration and plasmid DNA constructs permit a more potent and longer lasting antigen expression.
Collapse
Affiliation(s)
- Christina Susanne Mullins
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany.
- University Children's Hospital Rostock, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany.
| | - Tabea Wegner
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Ernst Klar
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Carl-Friedrich Classen
- University Children's Hospital Rostock, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany.
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany.
| |
Collapse
|
37
|
Dual blockade of PI3K/AKT/mTOR (NVP-BEZ235) and Ras/Raf/MEK (AZD6244) pathways synergistically inhibit growth of primary endometrioid endometrial carcinoma cultures, whereas NVP-BEZ235 reduces tumor growth in the corresponding xenograft models. Gynecol Oncol 2015; 138:165-73. [PMID: 25933683 DOI: 10.1016/j.ygyno.2015.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Endometrial carcinoma (EC) is the most common gynecological cancer in the Western World. Treatment options are limited for advanced and recurrent disease. Therefore, new treatment options are necessary. Inhibition of the PI3K/AKT/mTOR and/or the Ras/Raf/MEK pathways is suggested to be clinically relevant. However, the knowledge about the effect of combination targeted therapy in EC is limited. The aim of this study was to investigate the effect of these therapies on primary endometrioid EC cell cultures in vitro and in vivo. METHODS Primary endometrioid EC cell cultures were incubated with Temsirolimus (mTORC1 inhibitor), NVP-BKM120 (pan-PI3K inhibitor), NVP-BEZ235 (pan-PI3K/mTOR inhibitor), or AZD6244 (MEK1/2 inhibitor) as single treatment. In vitro, the effect of NVP-BEZ235 with or without AZD6244 was determined for cell viability, cell cycle arrest, apoptosis induction, and cell signaling. In vivo, the effect of NVP-BEZ35 was investigated for 2 subcutaneous xenograft models of the corresponding primary cultures. RESULTS NVP-BEZ235 was the most potent PI3K/AKT/mTOR pathway inhibitor. NVP-BEZ235 and AZD6244 reduced cell viability and induced cell cycle arrest and apoptosis, by reduction of p-AKT, p-S6, and p-ERK levels. Combination treatment showed a synergistic effect. In vivo, NVP-BEZ235 reduced tumor growth and inhibited p-S6 expression. The effects of the compounds were independent of the mutation profile of the cell cultures used. CONCLUSIONS A synergistic antitumor effect was shown for NVP-BEZ235 and AZD6244 in primary endometrioid EC cells in vitro. In addition, NVP-BEZ235 induced reduction of tumor growth in vivo. Therefore, targeted therapies seem an interesting strategy to further evaluate in clinical trials.
Collapse
|
38
|
Maletzki C, Klier U, Marinkovic S, Klar E, Andrä J, Linnebacher M. Host defense peptides for treatment of colorectal carcinoma - a comparative in vitro and in vivo analysis. Oncotarget 2015; 5:4467-79. [PMID: 24962950 PMCID: PMC4147338 DOI: 10.18632/oncotarget.2039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Host defense peptides (HDP) constitute effector molecules of the innate immune system. Besides acting against microbia and fungi, they exhibit broad and selective oncolytic activity. The underlying mechanism is at least partially attributable to elevated surface-exposed levels of phosphatidylserine (PS) on tumor targets. In this study, comprehensive analysis of NK-2-based derivatives (C7A, C7A-D21K, and C7A-Δ) was done on patient-derived ultra-low passage colorectal carcinoma (CRC) cell lines. Peptides were designed to improve antitumoral potential. Mellitin was used as positive control and a non-toxic peptide (NK11) served as negative control. Subsequently, effectiveness of local HDP application was determined in xenopatients. Generally, CRC lines displayed a heterogeneous pattern of surface-exposed PS, which was usually below standard CRC cells. Of note, five out of seven cell lines were susceptible towards HDP-mediated lysis (lytic activity of peptides: C7A-D21K > C7A-Δ= C7A). Oncolytic activity correlated mostly with surface-exposed PS levels. Apoptosis as well as necrosis were involved in killing. In an in vivo experiment, substantial growth inhibition of HROC24 xenografts was observed after HDP therapy and, surprisingly, also after NK11 treatment. These promising data underline the high potential of HDPs for oncolytic therapies and may provide a rationale for optimizing preclinical treatment schedules based on NK-2.
Collapse
|
39
|
Schrauwen S, Coenegrachts L, Depreeuw J, Luyten C, Verbist G, Debruyne D, Vergote I, Lambrechts D, Amant F. Microsatellite instable and microsatellite stable primary endometrial carcinoma cells and their subcutaneous and orthotopic xenografts recapitulate the characteristics of the corresponding primary tumor. Int J Gynecol Cancer 2015; 25:363-71. [PMID: 25695543 DOI: 10.1097/igc.0000000000000363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Well-characterized, low-passage, primary cell cultures established directly from patient tumors are an important tool for drug screening because these cultures faithfully recapitulate the genomic features of primary tumors. Here, we aimed to establish these cell cultures from primary endometrial carcinomas (ECs) and to develop subcutaneous and orthotopic xenograft models as a model to validate promising treatment options for EC in the in vivo setting. METHODS Primary cell cultures of EC tumors were established and validated by analysing histologic and genetic characteristics, telomerase activity, and in vitro and in vivo growth characteristics. Using these primary cell cultures, subcutaneous and orthotopic mouse models were subsequently established. RESULTS We established and characterized 7 primary EC cell cultures and corresponding xenograft models of different types of endometrioid tumors. Interestingly, we observed that the chance to successfully establish a primary cell culture seems higher for microsatellite instable than microsatellite stable tumors. For the first time, we also established an orthotopic murine model for EC derived from a primary cell culture. In contrast to EC cell lines, grafted tumor cultures preserved the original tumor structure and mimicked all histologic features. They also established abdominal and distant metastases, reflecting the tumorigenic behavior in the clinical setting. Remarkably, the established cell cultures and xenograft tumors also preserved the genetic characteristics of the primary tumor. CONCLUSIONS The established EC cultures reflect the epithelial genetic characteristics of the primary tumor. Therefore, they provide an appropriate model to investigate EC biology and apply high-throughput drug screening experiments. In addition, the established murine xenograft models, in particular the orthotopic model, will be useful to validate promising therapeutic strategies in vivo, as the grafted tumors closely resemble the primary tumors from which they were derived. Microsatellite instable status seems to determine the success rate of establishing primary cell cultures.
Collapse
Affiliation(s)
- Stefanie Schrauwen
- *Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University Hospitals Gasthuisberg; †Department of Oncology, Laboratory for Translational Genetics, KU Leuven; and ‡Vesalius Research Center (VRC), VIB, Leuven; and §Department of Gynecology, AZ Groeninge Hospital, Kortrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maletzki C, Gock M, Randow M, Klar E, Huehns M, Prall F, Linnebacher M. Establishment and characterization of cell lines from chromosomal instable colorectal cancer. World J Gastroenterol 2015; 21:164-176. [PMID: 25574089 PMCID: PMC4284332 DOI: 10.3748/wjg.v21.i1.164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/26/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To generate novel tumor models for preclinical validation of biomarkers that allow drug response prediction and individual therapeutic decisions. METHODS Cell line establishment was conducted by both direct in vitro culturing and in vivo xenografting followed by in vitro culturing procedure. A comprehensive characterization was subsequently performed. This included quality control, consisting of the confirmation of human and colorectal cancer (CRC) origin by DNA fingerprint and epithelial cell adhesion molecule (EpCAM) staining, as well as mycoplasma and human virus testing. Phenotypic analysis was done by light microscopy and multicolor flow cytometry. Histopathological examination (β-catenin and cytokeratin staining) was conducted in direct comparison to parental tumor tissues. Extensive molecular-pathological profiling included mutation analysis for CRC-associated driver mutations, assessment of chromosomal and microsatellite instability, and the grade of CpG island methylation. Additionally, an array-based comparative genomic hybridization analysis was performed. Drug responsiveness was assessed for a panel of classical and novel substances in clinical use for the treatment of solid cancers. Finally, tumorigenicity of the cell lines was tested by xenografting into immunocompromised nude mice. RESULTS Herein we describe the establishment of three ultra-low passage cell lines from two individual patients suffering from sporadic CRC. One cell line was derived directly from an early stage case (HROC18), whereas two cell lines could be established both direct from patient material and after xenografting from a late stage tumor (HROC32). All cell lines were free of contaminating mycoplasma and viruses. Molecular-pathological analysis allowed all cell lines to be classified as chromosomal instable (CIN(+)). They were aneuploid, with CpG island promoter methylation and microsatellite instability being absent. The following mutational profile was observed both in the cell lines and the parental tumor tissue: HROC18: APC(mut), p53(mut), K-ras(wt); HROC32: APC(wt), p53(mut), K-ras(mut). All cell lines were characterized as epithelial (EpCAM(+)) cells, showing distinct morphology and migration speed, but comparable growth kinetics. The cell lines showed different patterns of response towards clinically approved and novel drugs, with HROC18 being more resistant than HROC32 cells. Finally, in vivo tumorigenicity was demonstrated. CONCLUSION We successfully established and characterized novel ultra-low passage patient-derived CRC models as useful instruments for analyzing biological characteristics associated with the CIN(+) phenotype.
Collapse
|
41
|
E7080 (lenvatinib), a multi-targeted tyrosine kinase inhibitor, demonstrates antitumor activities against colorectal cancer xenografts. Neoplasia 2014; 16:972-81. [PMID: 25425971 PMCID: PMC4240916 DOI: 10.1016/j.neo.2014.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022] Open
Abstract
Clinical prognosis of metastasized colorectal carcinoma (CRC) is still not at desired levels and novel drugs are needed. Here, we focused on the multi-tyrosine kinase inhibitor E7080 (Lenvatinib) and assessed its therapeutic efficacy against human CRC cell lines in vitro and human CRC xenografts in vivo. The effect of E7080 on cell viability was examined on 10 human CRC cell lines and human endothelial cells (HUVEC). The inhibitory effect of E7080 on VEGF-induced angiogenesis was studied in an ex vivo mouse aortic ring angiogenesis assay. In addition, the efficacy of E7080 against xenografts derived from CRC cell lines and CRC patient resection specimens with mutated KRAS was investigated in vivo. A relatively low cytotoxic effect of E7080 on CRC cell viability was observed in vitro. Endothelial cells (HUVEC) were more susceptible to the incubation with E7080. This is in line with the observation that E7080 demonstrated an anti-angiogenic effect in a three-dimensional ex vivo mouse aortic ring angiogenesis assay. E7080 effectively disrupted CRC cell-mediated VEGF-stimulated growth of HUVEC in vitro. Daily in vivo treatment with E7080 (5 mg/kg) significantly delayed the growth of KRAS mutated CRC xenografts with decreased density of tumor-associated vessel formations and without tumor regression. This observation is in line with results that E7080 did not significantly reduce the number of Ki67-positive cells in CRC xenografts. The results suggest antiangiogenic activity of E7080 at a dosage that was well tolerated by nude mice. E7080 may provide therapeutic benefits in the treatment of CRC with mutated KRAS.
Collapse
|
42
|
Wiegering A, Uthe FW, Hüttenrauch M, Mühling B, Linnebacher M, Krummenast F, Germer CT, Thalheimer A, Otto C. The impact of pyrvinium pamoate on colon cancer cell viability. Int J Colorectal Dis 2014; 29:1189-1198. [PMID: 25060218 DOI: 10.1007/s00384-014-1975-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 02/04/2023]
Abstract
PURPOSE The in vitro and in vivo effects of pyrvinium pamoate (PP), a newly identified WNT signaling inhibitor, were evaluated against colon cancer cell lines and primary colon cancer samples. EXPERIMENTAL DESIGN Antiproliferative activity of PP and its effects on protein and RNA levels of WNT targets were evaluated on adenomatous polyposis coli (APC (mut)) and β-catenin(mut) cell lines, one WNT(wt) colon cancer cell line, as well as six primary colon cancer samples with mutant APC in vitro. In addition, the effect of PP on the growth of liver metastasis was examined. RESULTS PP blocked colon cancer cell growth in vitro in a dose-dependent manner with great differences in the inhibitory concentration (IC(50)), ranging from 0.6 × 10(-6) to 65 × 10(-6) mol/L for colon cancer cells with mutations in WNT signaling. In addition, PP demonstrated a cytotoxic effect on primary colon cancer samples. A combined cytotoxic effect of PP with 5-fluorouracil (5-FU) was observed for two cell lines. PP decreased messenger RNA (mRNA) and protein levels of known WNT target genes as c-MYC and thereby led to the induction of p21. PP inhibited the migration of HCT116 colon cancer cells in vitro and decreased tumor growth in vivo after intraportal injection of HCT116 cells in nude mice. CONCLUSIONS PP displays promising anticancer activity against a broad panel of human colon cancer cell lines, as well as primary colon cancer samples. However, our findings do not demonstrate a predominant cytotoxic effect of PP on colon cancer cells with mutations in WNT signaling.
Collapse
Affiliation(s)
- Armin Wiegering
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ghavami S, Wolkenhauer O, Lahouti F, Ullah M, Linnebacher M. Accounting for randomness in measurement and sampling in studying cancer cell population dynamics. IET Syst Biol 2014; 8:230-41. [PMID: 25257023 DOI: 10.1049/iet-syb.2013.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowing the expected temporal evolution of the proportion of different cell types in sample tissues gives an indication about the progression of the disease and its possible response to drugs. Such systems have been modelled using Markov processes. We here consider an experimentally realistic scenario in which transition probabilities are estimated from noisy cell population size measurements. Using aggregated data of FACS measurements, we develop MMSE and ML estimators and formulate two problems to find the minimum number of required samples and measurements to guarantee the accuracy of predicted population sizes. Our numerical results show that the convergence mechanism of transition probabilities and steady states differ widely from the real values if one uses the standard deterministic approach for noisy measurements. This provides support for our argument that for the analysis of FACS data one should consider the observed state as a random variable. The second problem we address is about the consequences of estimating the probability of a cell being in a particular state from measurements of small population of cells. We show how the uncertainty arising from small sample sizes can be captured by a distribution for the state probability.
Collapse
Affiliation(s)
- Siavash Ghavami
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | - Olaf Wolkenhauer
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Farshad Lahouti
- Center for Wireless Multimedia Communications, Center of Excellence in Applied Electromagnetic Systems, School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mukhtar Ullah
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Michael Linnebacher
- Department of General, Thoracic, Vascular and Transplantation Surgery, University of Rostock, Rostock, Germany
| |
Collapse
|
44
|
Biological and molecular effects of small molecule kinase inhibitors on low-passage human colorectal cancer cell lines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:568693. [PMID: 25309914 PMCID: PMC4182691 DOI: 10.1155/2014/568693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
Abstract
Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC) patients, to evaluate effects of the small molecule kinase inhibitors (SMI) vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K) inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.
Collapse
|
45
|
Xin H, Wang K, Hu G, Xie F, Ouyang K, Tang X, Wang M, Wen D, Zhu Y, Qin X. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts. PLoS One 2014; 9:e85308. [PMID: 24416385 PMCID: PMC3887059 DOI: 10.1371/journal.pone.0085308] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.
Collapse
Affiliation(s)
- Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ke Wang
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Gang Hu
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Fubo Xie
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | | | - Xuzhen Tang
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Minjun Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Danyi Wen
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoran Qin
- Shanghai ChemPartner Co., LTD, Shanghai, China
| |
Collapse
|
46
|
Ni J, Cozzi P, Hao J, Beretov J, Chang L, Duan W, Shigdar S, Delprado W, Graham P, Bucci J, Kearsley J, Li Y. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int J Biochem Cell Biol 2013; 45:2736-48. [PMID: 24076216 DOI: 10.1016/j.biocel.2013.09.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/06/2013] [Accepted: 09/14/2013] [Indexed: 12/21/2022]
Abstract
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.
Collapse
Affiliation(s)
- Jie Ni
- Cancer Care Centre and Prostate Cancer Institute, St George Hospital, Kogarah, NSW 2217, Australia; St George Clinical School, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|