1
|
Nelke A, García-López S, Caso JR, Pereira MP. The therapeutic use of clonal neural stem cells in experimental Parkinson´s disease. Stem Cell Res Ther 2024; 15:356. [PMID: 39385216 PMCID: PMC11465761 DOI: 10.1186/s13287-024-03965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Parkinson´s disease (PD), the second most common neurodegenerative disease in the world, is characterized by the death or impairment of dopaminergic neurons (DAn) in the substantia nigra pars compacta and dopamine depletion in the striatum. Currently, there is no cure for PD, and treatments only help to reduce the symptoms of the disease, and do not repair or replace the DAn damaged or lost in PD. Cell replacement therapy (CRT) seeks to relieve both pathological and symptomatic PD manifestations and has been shown to have beneficial effects in experimental PD models as well as in PD patients, but an apt cell line to be used in the treatment of PD has yet to be established. The purpose of this study was to examine the effects of the transplantation of hVM1 clone 32 cells, a bankable line of human neural stem cells (hNSCs), in a PD mouse model at four months post-transplant. METHODS Adult (five month-old) C57BL/6JRccHsd male mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and subsequently transplanted with hVM1 clone 32 cells, or buffer, in the left striatum. Four months post-transplant, behavioral effects were explored using the open field and paw print tests, and histological analyses were performed. RESULTS Transplantation of hVM1 clone 32 cells rescued dopaminergic nigrostriatal populations in adult Parkinsonian mice. Motor and neurological deterioration were observed in buffer-treated mice, the latter of which had a tendency to improve in hNSC-transplanted mice. Detection of mast cell migration to the superficial cervical lymph nodes in cell-transplanted mice denoted a peripheral effect. Transplantation of hNSCs also rescued neuroblast neurogenesis in the subgranular zone, which was correlated with dopaminergic recovery and is indicative of local recovery mechanisms. CONCLUSIONS In this proof-of-concept study, the transplantation of hVM1 clone 32 cells provided neuroprotection in adult Parkinsonian mice by restoring the dopaminergic nigrostriatal pathway and hippocampal neurogenesis, demonstrating the efficacy of cell replacement therapy as a treatment for PD.
Collapse
Affiliation(s)
- Anna Nelke
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain.
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain.
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| | - Silvia García-López
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Avda. Complutense s/n, Madrid, 28040, Spain
| | - Marta P Pereira
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain.
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain.
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
2
|
Eleftheriadou D, Evans RE, Atkinson E, Abdalla A, Gavins FKH, Boyd AS, Williams GR, Knowles JC, Roberton VH, Phillips JB. An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Adv 2022; 12:4005-4015. [PMID: 35425456 PMCID: PMC8981497 DOI: 10.1039/d1ra08563h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Treatment options for neurodegenerative conditions such as Parkinson's disease have included the delivery of cells which release dopamine or neurotrophic factors to the brain. Here, we report the development of a novel approach for protecting cells after implantation into the central nervous system (CNS), by developing dual-layer alginate beads that encapsulate therapeutic cells and release an immunomodulatory compound in a sustained manner. An optimal alginate formulation was selected with a view to providing a sustained physical barrier between engrafted cells and host tissue, enabling exchange of small molecules while blocking components of the host immune response. In addition, a potent immunosuppressant, FK506, was incorporated into the outer layer of alginate beads using electrosprayed poly-ε-caprolactone core–shell nanoparticles with prolonged release profiles. The stiffness, porosity, stability and ability of the alginate beads to support and protect encapsulated SH-SY5Y cells was demonstrated, and the release profile of FK506 and its effect on T-cell proliferation in vitro was characterized. Collectively, our results indicate this multi-layer encapsulation technology has the potential to be suitable for use in CNS cell delivery, to protect implanted cells from host immune responses whilst providing permeability to nutrients and released therapeutic molecules. Novel composite cell encapsulation system: dual-layer, micro-scale beads maintain cell survival while releasing immunomodulatory FK506 in a sustained manner. This biotechnology platform could be applicable for treatment of CNS and other disorders.![]()
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Rachael E Evans
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Emily Atkinson
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ahmed Abdalla
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Francesca K H Gavins
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ashleigh S Boyd
- UCL Institute of Immunity and Transplantation, Royal Free Hospital London UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Jonathan C Knowles
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute London UK
| | - Victoria H Roberton
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - James B Phillips
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| |
Collapse
|
3
|
Nelke A, García-López S, Martínez-Serrano A, Pereira MP. Multifactoriality of Parkinson's Disease as Explored Through Human Neural Stem Cells and Their Transplantation in Middle-Aged Parkinsonian Mice. Front Pharmacol 2022; 12:773925. [PMID: 35126116 PMCID: PMC8807563 DOI: 10.3389/fphar.2021.773925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder for which there is currently no cure. Cell replacement therapy is a potential treatment for PD; however, this therapy has more clinically beneficial outcomes in younger patients with less advanced PD. In this study, hVM1 clone 32 cells, a line of human neural stem cells, were characterized and subsequently transplanted in middle-aged Parkinsonian mice in order to examine cell replacement therapy as a treatment for PD. In vitro analyses revealed that these cells express standard dopamine-centered markers as well as others associated with mitochondrial and peroxisome function, as well as glucose and lipid metabolism. Four months after the transplantation of the hVM1 clone 32 cells, striatal expression of tyrosine hydroxylase was minimally reduced in all Parkinsonian mice but that of dopamine transporter was decreased to a greater extent in buffer compared to cell-treated mice. Behavioral tests showed marked differences between experimental groups, and cell transplant improved hyperactivity and gait alterations, while in the striatum, astroglial populations were increased in all groups due to age and a higher amount of microglia were found in Parkinsonian mice. In the motor cortex, nonphosphorylated neurofilament heavy was increased in all Parkinsonian mice. Overall, these findings demonstrate that hVM1 clone 32 cell transplant prevented motor and non-motor impairments and that PD is a complex disorder with many influencing factors, thus reinforcing the idea of novel targets for PD treatment that tend to be focused on dopamine and nigrostriatal damage.
Collapse
Affiliation(s)
- Anna Nelke
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia García-López
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Martínez-Serrano
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta P. Pereira
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Shah FJ, Caviglia C, Zór K, Carminati M, Ferrari G, Sampietro M, Martínez-Serrano A, Emnéus JK, Heiskanen AR. Impedance-based Real-time Monitoring of Neural Stem Cell Differentiation. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:34-49. [PMID: 34966467 PMCID: PMC8667812 DOI: 10.2478/joeb-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 06/14/2023]
Abstract
We present here the first impedance-based characterization of the differentiation process of two human mesencephalic fetal neural stem lines. The two dopaminergic neural stem cell lines used in this study, Lund human mesencephalic (LUHMES) and human ventral mesencephalic (hVM1 Bcl-XL), have been developed for the study of Parkinsonian pathogenesis and its treatment using cell replacement therapy. We show that if only relying on impedance magnitude analysis, which is by far the most usual approach in, e.g., cytotoxicity evaluation and drug screening applications, one may not be able to distinguish whether the neural stem cells in a population are proliferating or differentiating. However, the presented results highlight that equivalent circuit analysis can provide detailed information on cellular behavior, e.g. simultaneous changes in cell morphology, cell-cell contacts, and cell adhesion during formation of neural projections, which are the fundamental behavioral differences between proliferating and differentiating neural stem cells. Moreover, our work also demonstrates the sensitivity of impedance-based monitoring with capability to provide information on changes in cellular behavior in relation to proliferation and differentiation. For both of the studied cell lines, in already two days (one day after induction of differentiation) equivalent circuit analysis was able to show distinction between proliferation and differentiation conditions, which is significantly earlier than by microscopic imaging. This study demonstrates the potential of impedance-based monitoring as a technique of choice in the study of stem cell behavior, laying the foundation for screening assays to characterize stem cell lines and testing the efficacy epigenetic control.
Collapse
Affiliation(s)
- F. J. Shah
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, Building 423, 2800Kongens Lyngby, Denmark
- Particle Analytical ApS, Agern Allé 3, 2970 Hørsholm, Denmark
| | - C. Caviglia
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, Building 423, 2800Kongens Lyngby, Denmark
- Radiometer Medical ApS, Åkandevej 21, 2700 Brønshøj, Denmark
| | - K. Zór
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, Building 423, 2800Kongens Lyngby, Denmark
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800Kongens Lyngby, Denmark
| | - M. Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano, P.za L. da Vinci 32, 20133Milano, Italy
| | - G. Ferrari
- Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano, P.za L. da Vinci 32, 20133Milano, Italy
| | - M. Sampietro
- Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano, P.za L. da Vinci 32, 20133Milano, Italy
| | - A. Martínez-Serrano
- Department of Molecular Neuropathology, Center of Molecular Biology Severo Ochoa, Universidad Autónoma de Madrid, Calle Nicolás Cabrera 1, Cantoblanco, 28049Madrid, Spain
| | - J. K. Emnéus
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, Building 423, 2800Kongens Lyngby, Denmark
- Present affiliation: Department of Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, Building 423, 2800Kongens Lyngby, Denmark
| | - A. R. Heiskanen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, Building 423, 2800Kongens Lyngby, Denmark
- Present affiliation: Department of Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, Building 423, 2800Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson's disease. NPJ Regen Med 2020; 5:20. [PMID: 33298940 PMCID: PMC7641157 DOI: 10.1038/s41536-020-00106-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies, which gives rise to motor and non-motor symptoms. Unfortunately, current therapeutic strategies for PD merely treat the symptoms of the disease, only temporarily improve the patients' quality of life, and are not sufficient for completely alleviating the symptoms. Therefore, cell-based therapies have emerged as a novel promising therapeutic approach in PD treatment. Mesenchymal stem/stromal cells (MSCs) have arisen as a leading contender for cell sources due to their regenerative and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Although several studies have shown that MSCs have the potential to mitigate the neurodegenerative pathology of PD, variabilities in preclinical and clinical trials have resulted in inconsistent therapeutic outcomes. In this review, we strive to highlight the sources of variability in studies using MSCs in PD therapy, including MSC sources, the use of autologous or allogenic MSCs, dose, delivery methods, patient factors, and measures of clinical outcome. Available evidence indicates that while the use of MSCs in PD has largely been promising, conditions need to be standardized so that studies can be effectively compared with one another and experimental designs can be improved upon, such that this body of science can continue to move forward.
Collapse
Affiliation(s)
- Dominika Fričová
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jennifer A Korchak
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Zhao Y, Haney MJ, Jin YS, Uvarov O, Vinod N, Lee YZ, Langworthy B, Fine JP, Rodriguez M, El-Hage N, Kabanov AV, Batrakova EV. GDNF-expressing macrophages restore motor functions at a severe late-stage, and produce long-term neuroprotective effects at an early-stage of Parkinson's disease in transgenic Parkin Q311X(A) mice. J Control Release 2019; 315:139-149. [PMID: 31678095 DOI: 10.1016/j.jconrel.2019.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
There is an unmet medical need in the area of Parkinson's disease (PD) to develop novel therapeutic approaches that can stop and reverse the underlying mechanisms responsible for the neuronal death. We previously demonstrated that systemically administered autologous macrophages transfected ex vivo to produce glial cell line-derived neurotrophic factor (GDNF) readily migrate to the mouse brain with acute toxin-induced neuroinflammation and ameliorate neurodegeneration in PD mouse models. We hypothesized that the high level of cytokines due to inflammatory process attracted GDNF-expressing macrophages and ensured targeted drug delivery to the PD brain. Herein, we validated a therapeutic potential of GDNF-transfected macrophages in a transgenic Parkin Q311X(A) mice with slow progression and mild brain inflammation. Systemic administration of GDNF-macrophages at a severe late stage of the disease leaded to a near complete restoration of motor functions in Parkin Q311X(A) mice and improved brain tissue integrity with healthy neuronal morphology. Furthermore, intravenous injections of GDNF-macrophages at an early stage of disease resulted in potent sustained therapeutic effects in PD mice for more than a year after the treatment. Importantly, multiple lines of evidence for therapeutic efficacy were observed including: diminished neuroinflammation and α-synuclein aggregation, increased survival of dopaminergic neurons, and improved locomotor functions. In summary, GDNF-transfected macrophages represent a promising therapeutic strategy for PD at both late- and early-stages of the disease.
Collapse
Affiliation(s)
- Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew J Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yeon S Jin
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olga Uvarov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natasha Vinod
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin Langworthy
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason P Fine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nano-medicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology and Nano-medicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell Therapy for Parkinson's Disease. Cell Transplant 2017; 26:1551-1559. [PMID: 29113472 PMCID: PMC5680961 DOI: 10.1177/0963689717735411] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Cell therapy for Parkinson's disease (PD) began in 1979 with the transplantation of fetal rat dopamine-containing neurons that improved motor abnormalities in the PD rat model with good survival of grafts and axonal outgrowth. Thirty years have passed since the 2 clinical trials using cell transplantation for PD patients were first reported. Recently, cell therapy is expected to develop as a realistic treatment option for PD patients owing to the advancement of biotechnology represented by pluripotent stem cells. Medication using levodopa, surgery including deep brain stimulation, and rehabilitation have all been established as current therapeutic strategies. Strong therapeutic effects have been demonstrated by these treatment methods, but they have been unable to stop the progression of the disease. Fortunately, cell therapy might be a key for true neurorestoration. This review article describes the historical development of cell therapy for PD, the current status of cell therapy, and the future direction of this treatment method.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
- Department of Psychology, Graduate School of Psychology, Kibi International University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Martínez-Serrano A, Pereira MP, Avaliani N, Nelke A, Kokaia M, Ramos-Moreno T. Short-Term Grafting of Human Neural Stem Cells: Electrophysiological Properties and Motor Behavioral Amelioration in Experimental Parkinson's Disease. Cell Transplant 2016; 25:2083-2097. [DOI: 10.3727/096368916x692069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell replacement therapy in Parkinson's disease (PD) still lacks a study addressing the acquisition of electrophysiological properties of human grafted neural stem cells and their relation with the emergence of behavioral recovery after transplantation in the short term. Here we study the electrophysiological and biochemical profiles of two ventral mesencephalic human neural stem cell (NSC) clonal lines (C30-Bcl-XL and C32-Bcl-XL) that express high levels of Bcl-XL to enhance their neurogenic capacity, after grafting in an in vitro parkinsonian model. Electrophysiological recordings show that the majority of the cells derived from the transplants are not mature at 6 weeks after grafting, but 6.7% of the studied cells showed mature electrophysiological profiles. Nevertheless, parallel in vivo behavioral studies showed a significant motor improvement at 7 weeks postgrafting in the animals receiving C30-Bcl-XL, the cell line producing the highest amount of TH+ cells. Present results show that, at this postgrafting time point, behavioral amelioration highly correlates with the spatial dispersion of the TH+ grafted cells in the caudate putamen. The spatial dispersion, along with a high number of dopaminergic-derived cells, is crucial for behavioral improvements. Our findings have implications for long-term standardization of stem cell-based approaches in Parkinson's disease.
Collapse
Affiliation(s)
- Alberto Martínez-Serrano
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Marta P. Pereira
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Natalia Avaliani
- Epilepsy Center/Stem Cell Center, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden
| | - Anna Nelke
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Merab Kokaia
- Epilepsy Center/Stem Cell Center, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden
| | - Tania Ramos-Moreno
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Neurobiology, Center of Molecular Biology Severo Ochoa (UAM-CSIC), Madrid, Spain
- Epilepsy Center/Stem Cell Center, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Yasuhara T, Kameda M, Agari T, Date I. Regenerative medicine for Parkinson's disease. Neurol Med Chir (Tokyo) 2015; 55:113-23. [PMID: 25746305 PMCID: PMC4533405 DOI: 10.2176/nmc.ra.2014-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regenerative medicine for Parkinson’s disease (PD) is expected to develop dramatically with the advancement of biotechnology as represented by induced pluripotent stem cells. Existing therapeutic strategy for PD consists of medication using L-DOPA, surgery such as deep brain stimulation and rehabilitation. Current treatment cannot stop the progression of the disease, although there is definite therapeutic effect. True neurorestoration is strongly desired by regenerative medicine. This review article describes the historical development of regenerative medicine for PD, with a focus on fetal nigral cell transplantation and glial cell line-derived neurotrophic factor infusion. Subsequently, the current status of regenerative medicine for PD in terms of cell therapy and gene therapy are reviewed. In the end, the future direction to realize regenerative medicine for PD is discussed.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine
| | | | | | | |
Collapse
|
10
|
Ramos-Gómez M, Seiz EG, Martínez-Serrano A. Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain. J Nanobiotechnology 2015; 13:20. [PMID: 25890124 PMCID: PMC4416262 DOI: 10.1186/s12951-015-0078-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging is the ideal modality for non-invasive in vivo cell tracking allowing for longitudinal studies over time. Cells labeled with superparamagnetic iron oxide nanoparticles have been shown to induce sufficient contrast for in vivo magnetic resonance imaging enabling the in vivo analysis of the final location of the transplanted cells. For magnetic nanoparticles to be useful, a high internalization efficiency of the particles is required without compromising cell function, as well as validation of the magnetic nanoparticles behaviour inside the cells. RESULTS In this work, we report the development, optimization and validation of an efficient procedure to label human neural stem cells with commercial nanoparticles in the absence of transfection agents. Magnetic nanoparticles used here do not affect cell viability, cell morphology, cell differentiation or cell cycle dynamics. Moreover, human neural stem cells progeny labeled with magnetic nanoparticles are easily and non-invasively detected long time after transplantation in a rat model of Parkinson's disease (up to 5 months post-grafting) by magnetic resonance imaging. CONCLUSIONS These findings support the use of commercial MNPs to track cells for short- and mid-term periods after transplantation for studies of brain cell replacement therapy. Nevertheless, long-term MR images should be interpreted with caution due to the possibility that some MNPs may be expelled from the transplanted cells and internalized by host microglial cells.
Collapse
Affiliation(s)
- Milagros Ramos-Gómez
- Centre for Biomedical Technology, Polytechnic University of Madrid, 28223, Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Emma G Seiz
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa", Autonomous University of Madrid-C.S.I.C, 28049, Madrid, Spain.
| | - Alberto Martínez-Serrano
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa", Autonomous University of Madrid-C.S.I.C, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Ilieva M, Della Vedova P, Hansen O, Dufva M. Tracking neuronal marker expression inside living differentiating cells using molecular beacons. Front Cell Neurosci 2013; 7:266. [PMID: 24431988 PMCID: PMC3883158 DOI: 10.3389/fncel.2013.00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized as 2'-O-methyl RNA backbone oligonucleotides. MBs were transfected into human mesencephalic cells (LUHMES) using streptolysin-O-based membrane permeabilization. Mathematical modeling, simulations and experiments indicated that MB concentration was equal to the MB in the transfection medium after 10 min transfection. The cells will then each contain about 60,000 MBs. Gene expression was detected at different time points using fluorescence microscopy. Nestin and NeuN mRNA were expressed in approximately 35% of the LUHMES cells grown in growth medium, and in 80–90% of cells after differentiation. MAP2 and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Paolo Della Vedova
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Ole Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark ; Center for Individual Nanoparticle Functionality, Technical University of Denmark Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark Kgs. Lyngby, Denmark
| |
Collapse
|