1
|
Yeganeh Markid T, Pourahmadiyan A, Hamzeh S, Sharifi-Bonab M, Asadi MR, Jalaiei A, Rezazadeh M, Ghafouri-Fard S. A special focus on polyadenylation and alternative polyadenylation in neurodegenerative diseases: A systematic review. J Neurochem 2025; 169:e16255. [PMID: 39556113 DOI: 10.1111/jnc.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Neurodegenerative diseases (NDDs) are one of the prevailing conditions characterized by progressive neuronal loss. Polyadenylation (PA) and alternative polyadenylation (APA) are the two main post-transcriptional events that regulate neuronal gene expression and protein production. This systematic review analyzed the available literature on the role of PA and APA in NDDs, with an emphasis on their contributions to disease development. A comprehensive literature search was performed using the PubMed, Scopus, Cochrane, Google Scholar, Embase, Web of Science, and ProQuest databases. The search strategy was developed based on the framework introduced by Arksey and O'Malley and supplemented by the inclusion and exclusion criteria. The study selection was performed by two independent reviewers. Extraction and data organization were performed in accordance with the predefined variables. Subsequently, quantitative and qualitative analyses were performed. Forty-seven studies were included, related to a variety of NDDs, namely Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Disease induction was performed using different models, including human tissues, animal models, and cultured cells. Most investigations were related to PA, although some were related to APA or both. Amyloid precursor protein (APP), Tau, SNCA, and STMN2 were the major genes identified; most of the altered PA patterns were related to mRNA stability and translation efficiency. This review particularly underscores the key roles of PA and APA in the pathogenesis of NDDs through their mechanisms that contribute to gene expression dysregulation, protein aggregation, and neuronal dysfunction. Insights into these mechanisms may lead to new therapeutic strategies focused on the modulation of PA and APA activities. Further research is required to investigate the translational potential of targeting these pathways for NDD treatment.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Pourahmadiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soroosh Hamzeh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Rizzuti M, Sali L, Melzi V, Scarcella S, Costamagna G, Ottoboni L, Quetti L, Brambilla L, Papadimitriou D, Verde F, Ratti A, Ticozzi N, Comi GP, Corti S, Gagliardi D. Genomic and transcriptomic advances in amyotrophic lateral sclerosis. Ageing Res Rev 2023; 92:102126. [PMID: 37972860 DOI: 10.1016/j.arr.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Costamagna
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Lebœuf M, Vargas-Abonce SE, Pezé-Hedsieck E, Dupont E, Jimenez-Alonso L, Moya KL, Prochiantz A. ENGRAILED-1 transcription factor has a paracrine neurotrophic activity on adult spinal α-motoneurons. EMBO Rep 2023; 24:e56525. [PMID: 37534581 PMCID: PMC10398658 DOI: 10.15252/embr.202256525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Several homeoprotein transcription factors transfer between cells and regulate gene expression, protein translation, and chromatin organization in recipient cells. ENGRAILED-1 is one such homeoprotein expressed in spinal V1 interneurons that synapse on α-motoneurons. Neutralizing extracellular ENGRAILED-1 by expressing a secreted single-chain antibody blocks its capture by spinal motoneurons resulting in α-motoneuron loss and limb weakness. A similar but stronger phenotype is observed in the Engrailed-1 heterozygote mouse, confirming that ENGRAILED-1 exerts a paracrine neurotrophic activity on spinal cord α-motoneurons. Intrathecal injection of ENGRAILED-1 leads to its specific internalization by spinal motoneurons and has long-lasting protective effects against neurodegeneration and weakness. Midbrain dopaminergic neurons express Engrailed-1 and, similarly to spinal cord α-motoneurons, degenerate in the heterozygote. We identify genes expressed in spinal cord motoneurons whose expression changes in mouse Engrailed-1 heterozygote midbrain neurons. Among these, p62/SQSTM1 shows increased expression during aging in spinal cord motoneurons in the Engrailed-1 heterozygote and upon extracellular ENGRAILED-1 neutralization. We conclude that ENGRAILED-1 might regulate motoneuron aging and has non-cell-autonomous neurotrophic activity.
Collapse
Affiliation(s)
- Mélanie Lebœuf
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Stephanie E Vargas-Abonce
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Eugénie Pezé-Hedsieck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Kenneth L Moya
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| |
Collapse
|
5
|
Liang X, Taylor M, Napier-Jameson R, Calovich-Benne C, Norris A. A Conserved Role for Stomatin Domain Genes in Olfactory Behavior. eNeuro 2023; 10:ENEURO.0457-22.2023. [PMID: 36858824 PMCID: PMC10035767 DOI: 10.1523/eneuro.0457-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The highly-conserved stomatin domain has been identified in genes throughout all classes of life. In animals, different stomatin domain-encoding genes have been implicated in the function of the kidney, red blood cells, and specific neuron types, although the underlying mechanisms remain unresolved. In one well-studied example of stomatin domain gene function, the Caenorhabditis elegans gene mec-2 and its mouse homolog Stoml3 are required for the function of mechanosensory neurons, where they modulate the activity of mechanosensory ion channels on the plasma membrane. Here, we identify an additional shared function for mec-2 and Stoml3 in a very different sensory context, that of olfaction. In worms, we find that a subset of stomatin domain genes are expressed in olfactory neurons, but only mec-2 is strongly required for olfactory behavior. mec-2 acts cell-autonomously and multiple alternatively-spliced isoforms of mec-2 can be substituted for each other. We generate a Stoml3 knock-out (KO) mouse and demonstrate that, like its worm homolog mec-2, it is required for olfactory behavior. In mice, Stoml3 is not required for odor detection, but is required for odor discrimination. Therefore, in addition to their shared roles in mechanosensory behavior, mec-2 and Stoml3 also have a shared role in olfactory behavior.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| | - Morgan Taylor
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| | | | - Canyon Calovich-Benne
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| | - Adam Norris
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| |
Collapse
|
6
|
Venugopal S, Ghulam-Jhelani Z, Ahn IS, Yang X, Wiedau M, Simmons D, Chandler SH. Early deficits in GABA inhibition parallels an increase in L-type Ca 2+ currents in the jaw motor neurons of SOD1 G93A mouse model for ALS. Neurobiol Dis 2023; 177:105992. [PMID: 36623607 DOI: 10.1016/j.nbd.2023.105992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) involves protracted pre-symptomatic periods of abnormal motor neuron (MN) excitability occurring in parallel with central and peripheral synaptic perturbations. Focusing on inhibitory control of MNs, we first compared longitudinal changes in pre-synaptic terminal proteins for GABA and glycine neurotransmitters around the soma of retrogradely identified trigeminal jaw closer (JC) MNs and ChAT-labeled midbrain extraocular (EO) MNs in the SOD1G93A mouse model for ALS. Fluorescence immunocytochemistry and confocal imaging were used to quantify GAD67 and GlyT2 synaptic bouton density (SBD) around MN soma at pre-symptomatic ages ∼P12 (postnatal), ∼P50 (adult) and near disease end-stage (∼P135) in SOD1G93A mice and age-matched wild-type (WT) controls. We noted reduced GAD67 innervation in the SOD1G93A trigeminal jaw closer MNs around P12, relative to age-matched WT and no significant difference around P50 and P135. In contrast, both GAD67 and GlyT2 innervation were elevated in the SOD1G93A EO MNs at the pre-symptomatic time points. Considering trigeminal MNs are vulnerable in ALS while EO MNs are spared, we suggest that upregulation of inhibition in the latter might be compensatory. Notable contrast also existed in the innate co-expression patterns of GAD67 and GlyT2 with higher mutual information (co-dependency) in EO MNs compared to JC in both SOD1G93A and WT mice, especially at adult stages (P50 and P135). Around P12 when GAD67 terminals expression was low in the mutant, we further tested for persistent GABA inhibition in those MNs using in vitro patch-clamp electrophysiology. Our results show that SOD1G93A JC MNs have reduced persistent GABA inhibition, relative to WT. Pharmacological blocking of an underlying tonically active GABA conductance using the GABA-α5 subunit inverse agonist, L-655-708, disinhibited WT JC MNs and lowered their recruitment threshold, suggesting its role in the control of intrinsic MN excitability. Quantitative RT-PCR in laser dissected JC MNs further supported a reduction in GABA-α5 subunit mRNA expression in the mutant. In light of our previous report that JC MNs forming putative fast motor units have lower input threshold in the SOD1G93A mice, we suggest that our present result on reduced GABA-α5 tonic inhibition provides for a mechanism contributing to such imbalance. In parallel with reduced GABA inhibition, we noted an increase in voltage-gated L-type Ca2+ currents in the mutant JC MNs around P12. Together these results support that, early modifications in intrinsic properties of vulnerable MNs could be an adaptive response to counter synaptic deficits.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Zohal Ghulam-Jhelani
- Undergraduate Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Martina Wiedau
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dwayne Simmons
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Scott H Chandler
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Udine E, Jain A, van Blitterswijk M. Advances in sequencing technologies for amyotrophic lateral sclerosis research. Mol Neurodegener 2023; 18:4. [PMID: 36635726 PMCID: PMC9838075 DOI: 10.1186/s13024-022-00593-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by upper and lower motor neuron loss and has a fairly rapid disease progression, leading to fatality in an average of 2-5 years after symptom onset. Numerous genes have been implicated in this disease; however, many cases remain unexplained. Several technologies are being used to identify regions of interest and investigate candidate genes. Initial approaches to detect ALS genes include, among others, linkage analysis, Sanger sequencing, and genome-wide association studies. More recently, next-generation sequencing methods, such as whole-exome and whole-genome sequencing, have been introduced. While those methods have been particularly useful in discovering new ALS-linked genes, methodological advances are becoming increasingly important, especially given the complex genetics of ALS. Novel sequencing technologies, like long-read sequencing, are beginning to be used to uncover the contribution of repeat expansions and other types of structural variation, which may help explain missing heritability in ALS. In this review, we discuss how popular and/or upcoming methods are being used to discover ALS genes, highlighting emerging long-read sequencing platforms and their role in aiding our understanding of this challenging disease.
Collapse
Affiliation(s)
- Evan Udine
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Angita Jain
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Center for Clinical and Translational Sciences, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
8
|
Dash BP, Freischmidt A, Weishaupt JH, Hermann A. Downstream Effects of Mutations in SOD1 and TARDBP Converge on Gene Expression Impairment in Patient-Derived Motor Neurons. Int J Mol Sci 2022; 23:ijms23179652. [PMID: 36077049 PMCID: PMC9456253 DOI: 10.3390/ijms23179652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Despite extensive research, the reason for neurodegeneration is still not understood. To generate novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs) and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found dysregulation of transcripts encoding components of the transcriptional machinery and transcripts involved in splicing regulation were particularly affected. In contrast, less is known about the role of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional signatures and expression patterns can vary significantly depending on the causal gene that is mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism and gene expression as a common pathomechanism in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | | | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)381-494-9541; Fax: +49-(0)381-494-9542
| |
Collapse
|
9
|
Xu X, Zhang J, Li S, Al-Nusaif M, Zhou Q, Chen S, Le W. Bone Marrow Stromal Cell Antigen 2: Is a Potential Neuroinflammation Biomarker of SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis in Pre-symptomatic Stage. Front Neurosci 2022; 15:788730. [PMID: 35197819 PMCID: PMC8858987 DOI: 10.3389/fnins.2021.788730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation has long been thought to be associated with amyotrophic lateral sclerosis (ALS) development and progression. However, the exact molecular mechanisms of neuroinflammation underlying ALS remain largely unknown. In the present study, we attempted to elucidate the genetic basis of neuroinflammation in ALS by comparing the transcriptomic profile of the anterior horns of the lumbar spinal cord (AHLSC) between SOD1G93A mice and their wild-type (WT) littermates. Our results revealed that immune-related genes were selectively up-regulated in the AHLSC of pre-symptomatic ALS mice (40 days of age) compared to age-matched WT control mice. Notably, the differential expression level of these immune-related genes became more significant at the symptomatic stage of disease (90 days of age) in the ALS mice. Subsequently, eight genes involved in innate immune response in the AHLSC of ALS mice were further validated by qRT-PCR analysis. Of these genes, bone marrow stromal cell antigen 2 (BST2) was found for the first time to be significantly higher in the AHLSC of pre-symptomatic ALS mice when compared with WT mice. The increasing trend of BST2 expression became more obvious in the symptomatic stage. Immunofluorescent staining further confirmed that BST2 is mainly expressed on microglia in the AHLSC of ALS mice. These findings support the view that immune-related neuroinflammation is involved in the early pathogenesis of ALS, and BST2 may serve as a potential target for ameliorating microglia-mediated neuroinflammation pathologies in ALS.
Collapse
Affiliation(s)
- Xiaojiao Xu
- Institute of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingjing Zhang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Weidong Le,
| |
Collapse
|
10
|
Garone MG, Birsa N, Rosito M, Salaris F, Mochi M, de Turris V, Nair RR, Cunningham TJ, Fisher EMC, Morlando M, Fratta P, Rosa A. ALS-related FUS mutations alter axon growth in motoneurons and affect HuD/ELAVL4 and FMRP activity. Commun Biol 2021; 4:1025. [PMID: 34471224 PMCID: PMC8410767 DOI: 10.1038/s42003-021-02538-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicol Birsa
- UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Maria Rosito
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Federico Salaris
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Michela Mochi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | | | | | - Mariangela Morlando
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Perugia, Italy
| | - Pietro Fratta
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy.
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Scoles DR, Dansithong W, Pflieger LT, Paul S, Gandelman M, Figueroa KP, Rigo F, Bennett CF, Pulst SM. ALS-associated genes in SCA2 mouse spinal cord transcriptomes. Hum Mol Genet 2021; 29:1658-1672. [PMID: 32307524 PMCID: PMC7322574 DOI: 10.1093/hmg/ddaa072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA
| | - Lance T Pflieger
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA.,Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Salt Lake City, UT 84108, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - C Frank Bennett
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Chaprov K, Rezvykh A, Funikov S, Ivanova TA, Lysikova EA, Deykin AV, Kukharsky MS, Yu Aksinenko A, Bachurin SO, Ninkina N, Buchman VL. A bioisostere of Dimebon/Latrepirdine delays the onset and slows the progression of pathology in FUS transgenic mice. CNS Neurosci Ther 2021; 27:765-775. [PMID: 33754495 PMCID: PMC8193697 DOI: 10.1111/cns.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aims To assess effects of DF402, a bioisostere of Dimebon/Latrepirdine, on the disease progression in the transgenic model of amyotrophic lateral sclerosis (ALS) caused by expression of pathogenic truncated form of human FUS protein. Methods Mice received DF402 from the age of 42 days and the onset of clinical signs, the disease duration and animal lifespan were monitored for experimental and control animals, and multiple parameters of their gait were assessed throughout the pre‐symptomatic stage using CatWalk system followed by a bioinformatic analysis. RNA‐seq was used to compare the spinal cord transcriptomes of wild‐type, untreated, and DF402‐treated FUS transgenic mice. Results DF402 delays the onset and slows the progression of pathology. We developed a CatWalk analysis protocol that allows detection of gait changes in FUS transgenic mice and the effect of DF402 on their gait already at early pre‐symptomatic stage. At this stage, a limited number of genes significantly change expression in transgenic mice and for 60% of these genes, DF402 treatment causes the reversion of the expression pattern. Conclusion DF402 slows down the disease progression in the mouse model of ALS, which is consistent with previously reported neuroprotective properties of Dimebon and its other bioisosteres. These results suggest that these structures can be considered as lead compounds for further optimization to obtain novel medicines that might be used as components of complex ALS therapy.
Collapse
Affiliation(s)
- Kirill Chaprov
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia
| | - Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tamara A Ivanova
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia
| | - Ekaterina A Lysikova
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia
| | - Alexei V Deykin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genome Editing for Veterinary and Biomedicine, Belgorod State National Research University, Belgorod region, Russia
| | - Michail S Kukharsky
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Alexey Yu Aksinenko
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia
| | - Natalia Ninkina
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Vladimir L Buchman
- Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russia.,School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Beaver M, Bhatnagar A, Panikker P, Zhang H, Snook R, Parmar V, Vijayakumar G, Betini N, Akhter S, Elefant F. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci Rep 2020; 10:18265. [PMID: 33106538 PMCID: PMC7588445 DOI: 10.1038/s41598-020-75035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Haolin Zhang
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Renee Snook
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Visha Parmar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Gayathri Vijayakumar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Niteesha Betini
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Sunya Akhter
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Felice Elefant
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Da Ros M, Deol HK, Savard A, Guo H, Meiering EM, Gibbings D. Wild-type and mutant SOD1 localizes to RNA-rich structures in cells and mice but does not bind RNA. J Neurochem 2020; 156:524-538. [PMID: 32683701 DOI: 10.1111/jnc.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Many of the genes whose mutation causes Amyotrophic Lateral Sclerosis (ALS) are RNA-binding proteins which localize to stress granules, while others impact the assembly, stability, and elimination of stress granules. This has led to the hypothesis that alterations in the dynamics of stress granules and RNA biology cause ALS. Genetic mutations in Superoxide Dismutase 1 (SOD1) also cause ALS. Evidence demonstrates that SOD1 harboring ALS-linked mutations is recruited to stress granules, induces changes in alternative splicing, and could be an RNA-binding protein. Whether SOD1 inclusions contain RNA in disease models and whether SOD1 directly binds RNA remains uncertain. We applied methods including cross-linking immunoprecipitation and in vitro gel shift assays to detect binding of SOD1 to RNA in vitro, in cells with and without stress granules, and in mice expressing human SOD1 G93A. We find that SOD1 localizes to RNA-rich structures including stress granules, and SOD1 inclusions in mice contain mRNA. However, we find no evidence that SOD1 directly binds RNA. This suggests that SOD1 may impact stress granules, alternative splicing and RNA biology without binding directly to RNA.
Collapse
Affiliation(s)
- Matteo Da Ros
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | - Harmeen K Deol
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Alexandre Savard
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | - Huishan Guo
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | | | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON, Canada
| |
Collapse
|
15
|
Liu W, Venugopal S, Majid S, Ahn IS, Diamante G, Hong J, Yang X, Chandler SH. Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis. Neurobiol Dis 2020; 141:104877. [PMID: 32360664 PMCID: PMC7519882 DOI: 10.1016/j.nbd.2020.104877] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons throughout the brain and spinal cord progressively degenerate resulting in muscle atrophy, paralysis and death. Recent studies using animal models of ALS implicate multiple cell-types (e.g., astrocytes and microglia) in ALS pathogenesis in the spinal motor systems. To ascertain cellular vulnerability and cell-type specific mechanisms of ALS in the brainstem that orchestrates oral-motor functions, we conducted parallel single cell RNA sequencing (scRNA-seq) analysis using the high-throughput Drop-seq method. We isolated 1894 and 3199 cells from the brainstem of wildtype and mutant SOD1 symptomatic mice respectively, at postnatal day 100. We recovered major known cell types and neuronal subpopulations, such as interneurons and motor neurons, and trigeminal ganglion (TG) peripheral sensory neurons, as well as, previously uncharacterized interneuron subtypes. We found that the majority of the cell types displayed transcriptomic alterations in ALS mice. Differentially expressed genes (DEGs) of individual cell populations revealed cell-type specific alterations in numerous pathways, including previously known ALS pathways such as inflammation (in microglia), stress response (ependymal and an uncharacterized cell population), neurogenesis (astrocytes, oligodendrocytes, neurons), synapse organization and transmission (microglia, oligodendrocyte precursor cells, and neuronal subtypes), and mitochondrial function (uncharacterized cell populations). Other cell-type specific processes altered in SOD1 mutant brainstem include those from motor neurons (axon regeneration, voltage-gated sodium and potassium channels underlying excitability, potassium ion transport), trigeminal sensory neurons (detection of temperature stimulus involved in sensory perception), and cellular response to toxic substances (uncharacterized cell populations). DEGs consistently altered across cell types (e.g., Malat1), as well as cell-type specific DEGs, were identified. Importantly, DEGs from various cell types overlapped with known ALS genes from the literature and with top hits from an existing human ALS genome-wide association study (GWAS), implicating the potential cell types in which the ALS genes function with ALS pathogenesis. Our molecular investigation at single cell resolution provides comprehensive insights into the cell types, genes and pathways altered in the brainstem in a widely used ALS mouse model.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA
| | - Sharmila Venugopal
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA
| | - Sana Majid
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA
| | - In Sook Ahn
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA
| | - Graciel Diamante
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA
| | - Jason Hong
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA; Brain Research Institute, University of California, Los Angeles, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, USA.
| | - Scott H Chandler
- Department of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA; Brain Research Institute, University of California, Los Angeles, USA.
| |
Collapse
|
16
|
Low Level of Expression of C-Terminally Truncated Human FUS Causes Extensive Changes in the Spinal Cord Transcriptome of Asymptomatic Transgenic Mice. Neurochem Res 2020; 45:1168-1179. [PMID: 32157564 DOI: 10.1007/s11064-020-02999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
A number of mutations in a gene encoding RNA-binding protein FUS have been linked to the development of a familial form of amyotrophic lateral sclerosis known as FUS-ALS. C-terminal truncations of FUS by either nonsense or frameshift mutations lead to the development of FUS-ALS with a particularly early onset and fast progression. However, even in patients bearing these highly pathogenic mutations the function of motor neurons is not noticeably compromised for at least a couple of decades, suggesting that until cytoplasmic levels of FUS lacking its C-terminal nuclear localisation signal reaches a critical threshold, motor neurons are able to tolerate its permanent production. In order to identify how the nervous system responds to low levels of pathogenic variants of FUS we produced and characterised a mouse line, L-FUS[1-359], with a low neuronal expression level of a highly aggregation-prone and pathogenic form of C-terminally truncated FUS. In contrast to mice that express substantially higher level of the same FUS variant and develop severe early onset motor neuron pathology, L-FUS[1-359] mice do not develop any clinical or histopathological signs of motor neuron deficiency even at old age. Nevertheless, we detected substantial changes in the spinal cord transcriptome of these mice compared to their wild type littermates. We suggest that at least some of these changes reflect activation of cellular mechanisms compensating for the potentially damaging effect of pathogenic FUS production. Further studies of these mechanism might reveal effective targets for therapy of FUS-ALS and possibly, other forms of ALS.
Collapse
|
17
|
Wong CO, Venkatachalam K. Motor neurons from ALS patients with mutations in C9ORF72 and SOD1 exhibit distinct transcriptional landscapes. Hum Mol Genet 2020; 28:2799-2810. [PMID: 31107959 DOI: 10.1093/hmg/ddz104] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that culminates in paralysis and death. Here, we present our analyses of publicly available multiOMIC data sets generated using motor neurons from ALS patients and control cohorts. Functional annotation of differentially expressed genes in induced pluripotent stem cell (iPSC)-derived motor neurons generated from patients with mutations in C9ORF72 (C9-ALS) suggests elevated expression of genes that pertain to extracellular matrix (ECM) and cell adhesion, inflammation and TGFβ targets. On the other end of the continuum, we detected diminished expression of genes repressed by quiescence-promoting E2F4/DREAM complex. Proteins whose abundance was significantly altered in C9-ALS neurons faithfully recapitulated the transcriptional aberrations. Importantly, patterns of gene expression in spinal motor neurons dissected from C9-ALS or sporadic ALS patients were highly concordant with each other and with the C9-ALS iPSC neurons. In contrast, motor neurons from patients with mutations in SOD1 exhibited dramatically different signatures. Elevated expression of gene sets such as ECM and cell adhesion genes occurs in C9 and sporadic ALS but not SOD1-ALS. These analyses indicate that despite the similarities in outward manifestations, transcriptional and proteomic signatures in ALS motor neurons can vary significantly depending on the identity of the causal mutations.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
18
|
Reynolds RH, Hardy J, Ryten M, Gagliano Taliun SA. Informing disease modelling with brain-relevant functional genomic annotations. Brain 2019; 142:3694-3712. [PMID: 31603214 PMCID: PMC6885670 DOI: 10.1093/brain/awz295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
The past decade has seen a surge in the number of disease/trait-associated variants, largely because of the union of studies to share genetic data and the availability of electronic health records from large cohorts for research use. Variant discovery for neurological and neuropsychiatric genome-wide association studies, including schizophrenia, Parkinson's disease and Alzheimer's disease, has greatly benefitted; however, the translation of these genetic association results to interpretable biological mechanisms and models is lagging. Interpreting disease-associated variants requires knowledge of gene regulatory mechanisms and computational tools that permit integration of this knowledge with genome-wide association study results. Here, we summarize key conceptual advances in the generation of brain-relevant functional genomic annotations and amongst tools that allow integration of these annotations with association summary statistics, which together provide a new and exciting opportunity to identify disease-relevant genes, pathways and cell types in silico. We discuss the opportunities and challenges associated with these developments and conclude with our perspective on future advances in annotation generation, tool development and the union of the two.
Collapse
Affiliation(s)
- Regina H Reynolds
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London (UCL), London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - Sarah A Gagliano Taliun
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Abstract
Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein and its deposition into pathologic Lewy bodies. While extensive research has been carried out on mediators of α-synuclein aggregation, molecular facilitators of α-synuclein disaggregation are still generally unknown. We investigated the role of molecular chaperones in both preventing and disaggregating α-synuclein oligomers and fibrils, with a focus on the mammalian disaggregase complex. Here, we show that overexpression of the chaperone Hsp110 is sufficient to reduce α-synuclein aggregation in a mammalian cell culture model. Additionally, we demonstrate that Hsp110 effectively mitigates α-synuclein pathology in vivo through the characterization of transgenic Hsp110 and double-transgenic α-synuclein/Hsp110 mouse models. Unbiased analysis of the synaptic proteome of these mice revealed that overexpression of Hsp110 can override the protein changes driven by the α-synuclein transgene. Furthermore, overexpression of Hsp110 is sufficient to prevent endogenous α-synuclein templating and spread following injection of aggregated α-synuclein seeds into brain, supporting a role for Hsp110 in the prevention and/or disaggregation of α-synuclein pathology.
Collapse
|
20
|
|
21
|
Tung YT, Peng KC, Chen YC, Yen YP, Chang M, Thams S, Chen JA. Mir-17∼92 Confers Motor Neuron Subtype Differential Resistance to ALS-Associated Degeneration. Cell Stem Cell 2019; 25:193-209.e7. [PMID: 31155482 DOI: 10.1016/j.stem.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/14/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Progressive degeneration of motor neurons (MNs) is the hallmark of amyotrophic lateral sclerosis (ALS). Limb-innervating lateral motor column MNs (LMC-MNs) seem to be particularly vulnerable and are among the first MNs affected in ALS. Here, we report association of this differential susceptibility with reduced expression of the mir-17∼92 cluster in LMC-MNs prior to disease onset. Reduced mir-17∼92 is accompanied by elevated nuclear PTEN in spinal MNs of presymptomatic SOD1G93A mice. Selective dysregulation of the mir-17∼92/nuclear PTEN axis in degenerating SOD1G93A LMC-MNs was confirmed in a double-transgenic embryonic stem cell system and recapitulated in human SOD1+/L144F-induced pluripotent stem cell (iPSC)-derived MNs. We further show that overexpression of mir-17∼92 significantly rescues human SOD1+/L144F MNs, and intrathecal delivery of adeno-associated virus (AAV)9-mir-17∼92 improves motor deficits and survival in SOD1G93A mice. Thus, mir-17∼92 may have value as a prognostic marker of MN degeneration and is a candidate therapeutic target in SOD1-linked ALS. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ying-Tsen Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Chih Peng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
22
|
Maguire G, Paler L, Green L, Mella R, Valcarcel M, Villace P. Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy. Physiol Rep 2019; 7:e14072. [PMID: 31050222 PMCID: PMC6497969 DOI: 10.14814/phy2.14072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Lee Paler
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Linda Green
- BioRegenerative Sciences, Inc.San DiegoCalifornia
| | | | | | | |
Collapse
|
23
|
Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet 2019; 9:712. [PMID: 30723494 PMCID: PMC6349704 DOI: 10.3389/fgene.2018.00712] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized by the degeneration of upper and lower motor neurons. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. The major ALS genes SOD1, TARDBP, FUS, and C9orf72 are involved in aspects of RNA metabolism processes such as mRNA transcription, alternative splicing, RNA transport, mRNA stabilization, and miRNA biogenesis. In this review, we highlight the current understanding of RNA dysregulation in ALS pathogenesis involving these major ALS genes and discuss the potential of therapeutic strategies targeting disease RNAs for treating ALS.
Collapse
Affiliation(s)
- Zoe Butti
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| | - Shunmoogum A Patten
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| |
Collapse
|
24
|
Immuno-Laser-Capture Microdissection for the Isolation of Enriched Glial Populations from Frozen Post-Mortem Human Brain. Methods Mol Biol 2019; 1723:273-284. [PMID: 29344867 DOI: 10.1007/978-1-4939-7558-7_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Laser-capture microdissection (LCM) has revolutionized the isolation of defined regions and specific cell populations from human tissue. This approach used in combination with immunohistochemistry (immuno-LCM) has become a valuable method for isolating individual cell-types from a complex heterogeneous population. Here, we describe the detailed methodology required for the isolation of enriched populations of GFAP+ astrocytes, OSP+ oligodendrocytes, and CD68+ microglia from frozen post-mortem human central nervous system tissue using immuno-LCM.
Collapse
|
25
|
ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. iScience 2018; 11:294-304. [PMID: 30639851 PMCID: PMC6327879 DOI: 10.1016/j.isci.2018.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by motor neuron cell death. However, not all motor neurons are equally susceptible. Most of what we know about the surviving motor neurons comes from gene expression profiling; less is known about their functional traits. We found that resistant motor neurons cultured from SOD1 ALS mouse models have enhanced axonal outgrowth and dendritic branching. They also have an increase in the number and size of actin-based structures like growth cones and filopodia. These phenotypes occur in cells cultured from presymptomatic mice and mutant SOD1 models that do not develop ALS but not in embryonic motor neurons. Enhanced outgrowth and upregulation of filopodia can be induced in wild-type adult cells by expressing mutant SOD1. These results demonstrate that mutant SOD1 can enhance the regenerative capability of ALS-resistant motor neurons. Capitalizing on this mechanism could lead to new therapeutic strategies. Motor neurons from end-stage SOD1 ALS mice have enhanced neurite outgrowth/branching Increased outgrowth occurs only in adult neurons and is independent of ALS symptoms SOD1G93A adult motor neurons have larger growth cones and more axonal filopodia Acute SOD1G93A expression upregulates outgrowth in wild-type adult motor neurons
Collapse
|
26
|
Barham C, Fil D, Byrum SD, Rahmatallah Y, Glazko G, Kiaei M. RNA-Seq Analysis of Spinal Cord Tissues from hPFN1 G118V Transgenic Mouse Model of ALS at Pre-symptomatic and End-Stages of Disease. Sci Rep 2018; 8:13737. [PMID: 30213953 PMCID: PMC6137178 DOI: 10.1038/s41598-018-31132-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the loss of motor neurons. The molecular mechanisms of motor neuron degeneration are largely unknown and there are currently no effective therapies to treat this disease. In this work, we report whole transcriptome profiling of spinal cords of mutant transgenic hPFN1G118V mice and their wildtype transgenic hPFN1WT controls at a pre-symptomatic stage and at the end-stage of disease. Analyses revealed that end-stage hPFN1G118V mice had 890 differentially expressed genes (747 up-regulated, 143 down-regulated) when compared to pre-symptomatic hPFN1G118V mice, and they had 836 differentially expressed genes (742 up-regulated, 94 down-regulated) when compared to age-matched hPFN1WT controls. Pre-symptomatic hPFN1G118V mice were not significantly different from age-matched hPFN1WT controls. Ingenuity Pathway Analysis identified inflammatory pathways significantly activated in end-stage hPFN1G118V samples, suggesting an excess of glial activation at end-stage disease, possibly due to an increase in glial composition within the spinal cord during disease progression. In conclusion, our RNA-Seq data identified molecules and pathways involved in the mechanisms of neurodegeneration that could potentially serve as therapeutic targets for ALS.
Collapse
Affiliation(s)
- Caroline Barham
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Fil
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mahmoud Kiaei
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
27
|
Yuan Y, Xie S, Darnell JC, Darnell AJ, Saito Y, Phatnani H, Murphy EA, Zhang C, Maniatis T, Darnell RB. Cell type-specific CLIP reveals that NOVA regulates cytoskeleton interactions in motoneurons. Genome Biol 2018; 19:117. [PMID: 30111345 PMCID: PMC6092797 DOI: 10.1186/s13059-018-1493-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
Background Alternative RNA processing plays an essential role in shaping cell identity and connectivity in the central nervous system. This is believed to involve differential regulation of RNA processing in various cell types. However, in vivo study of cell type-specific post-transcriptional regulation has been a challenge. Here, we describe a sensitive and stringent method combining genetics and CLIP (crosslinking and immunoprecipitation) to globally identify regulatory interactions between NOVA and RNA in the mouse spinal cord motoneurons. Results We developed a means of undertaking motoneuron-specific CLIP to explore motoneuron-specific protein–RNA interactions relative to studies of the whole spinal cord in mouse. This allowed us to pinpoint differential RNA regulation specific to motoneurons, revealing a major role for NOVA in regulating cytoskeleton interactions in motoneurons. In particular, NOVA specifically promotes the palmitoylated isoform of the cytoskeleton protein Septin 8 in motoneurons, which enhances dendritic arborization. Conclusions Our study demonstrates that cell type-specific RNA regulation is important for fine tuning motoneuron physiology and highlights the value of defining RNA processing regulation at single cell type resolution. Electronic supplementary material The online version of this article (10.1186/s13059-018-1493-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Yuan
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Shirley Xie
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Jennifer C Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Andrew J Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Hemali Phatnani
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Elisabeth A Murphy
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA. .,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
28
|
Funikov SY, Rezvykh AP, Mazin PV, Morozov AV, Maltsev AV, Chicheva MM, Vikhareva EA, Evgen’ev MB, Ustyugov AA. FUS(1-359) transgenic mice as a model of ALS: pathophysiological and molecular aspects of the proteinopathy. Neurogenetics 2018; 19:189-204. [DOI: 10.1007/s10048-018-0553-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
|
29
|
Weyn-Vanhentenryck SM, Feng H, Ustianenko D, Duffié R, Yan Q, Jacko M, Martinez JC, Goodwin M, Zhang X, Hengst U, Lomvardas S, Swanson MS, Zhang C. Precise temporal regulation of alternative splicing during neural development. Nat Commun 2018; 9:2189. [PMID: 29875359 PMCID: PMC5989265 DOI: 10.1038/s41467-018-04559-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is one crucial step of gene expression that must be tightly regulated during neurodevelopment. However, the precise timing of developmental splicing switches and the underlying regulatory mechanisms are poorly understood. Here we systematically analyze the temporal regulation of AS in a large number of transcriptome profiles of developing mouse cortices, in vivo purified neuronal subtypes, and neurons differentiated in vitro. Our analysis reveals early-switch and late-switch exons in genes with distinct functions, and these switches accurately define neuronal maturation stages. Integrative modeling suggests that these switches are under direct and combinatorial regulation by distinct sets of neuronal RNA-binding proteins including Nova, Rbfox, Mbnl, and Ptbp. Surprisingly, various neuronal subtypes in the sensory systems lack Nova and/or Rbfox expression. These neurons retain the "immature" splicing program in early-switch exons, affecting numerous synaptic genes. These results provide new insights into the organization and regulation of the neurodevelopmental transcriptome.
Collapse
Affiliation(s)
- Sebastien M Weyn-Vanhentenryck
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Huijuan Feng
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Automation, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, 100084, China
| | - Dmytro Ustianenko
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Qinghong Yan
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Cambridge, MA, 02141, USA
| | - Martin Jacko
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Jose C Martinez
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
| | - Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Xuegong Zhang
- Department of Automation, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, 100084, China
| | - Ulrich Hengst
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, 10032, USA
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
30
|
Collinson JM, Lindström NO, Neves C, Wallace K, Meharg C, Charles RH, Ross ZK, Fraser AM, Mbogo I, Oras K, Nakamoto M, Barker S, Duce S, Miedzybrodzka Z, Vargesson N. The developmental and genetic basis of 'clubfoot' in the peroneal muscular atrophy mutant mouse. Development 2018; 145:145/3/dev160093. [PMID: 29439133 DOI: 10.1242/dev.160093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
Genetic factors underlying the human limb abnormality congenital talipes equinovarus ('clubfoot') remain incompletely understood. The spontaneous autosomal recessive mouse 'peroneal muscular atrophy' mutant (PMA) is a faithful morphological model of human clubfoot. In PMA mice, the dorsal (peroneal) branches of the sciatic nerves are absent. In this study, the primary developmental defect was identified as a reduced growth of sciatic nerve lateral motor column (LMC) neurons leading to failure to project to dorsal (peroneal) lower limb muscle blocks. The pma mutation was mapped and a candidate gene encoding LIM-domain kinase 1 (Limk1) identified, which is upregulated in mutant lateral LMC motor neurons. Genetic and molecular analyses showed that the mutation acts in the EphA4-Limk1-Cfl1/cofilin-actin pathway to modulate growth cone extension/collapse. In the chicken, both experimental upregulation of Limk1 by electroporation and pharmacological inhibition of actin turnover led to defects in hindlimb spinal motor neuron growth and pathfinding, and mimicked the clubfoot phenotype. The data support a neuromuscular aetiology for clubfoot and provide a mechanistic framework to understand clubfoot in humans.
Collapse
Affiliation(s)
- J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Nils O Lindström
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carlos Neves
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Karen Wallace
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Rebecca H Charles
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zoe K Ross
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amy M Fraser
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivan Mbogo
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kadri Oras
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Masaru Nakamoto
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Simon Barker
- Royal Aberdeen Children's Hospital, Foresterhill, Aberdeen AB25 2ZN, UK
| | - Suzanne Duce
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
31
|
Maguire G. Amyotrophic lateral sclerosis as a protein level, non-genomic disease: Therapy with S2RM exosome released molecules. World J Stem Cells 2017; 9:187-202. [PMID: 29312526 PMCID: PMC5745587 DOI: 10.4252/wjsc.v9.i11.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that leads to death. No effective treatments are currently available. Based on data from epidemiological, etiological, laboratory, and clinical studies, I offer a new way of thinking about ALS and its treatment. This paper describes a host of extrinsic factors, including the exposome, that disrupt the extracellular matrix and protein function such that a spreading, prion-like disease leads to neurodegeneration in the motor tracts. A treatment regimen is described using the stem cell released molecules from a number of types of adult stem cells to provide tissue dependent molecules that restore homeostasis, including proteostasis, in the ALS patient. Because stem cells themselves as a therapeutic are cumbersome and expensive, and when implanted in a host cause aging of the host tissue and often fail to engraft or remain viable, only the S2RM molecules are used. Rebuilding of the extracellular matrix and repair of the dysfunctional proteins in the ALS patient ensues.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc., La Jolla, CA 92037, United States
| |
Collapse
|
32
|
Distinct roles for motor neuron autophagy early and late in the SOD1 G93A mouse model of ALS. Proc Natl Acad Sci U S A 2017; 114:E8294-E8303. [PMID: 28904095 DOI: 10.1073/pnas.1704294114] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in autophagy genes can cause familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of autophagy in ALS pathogenesis is poorly understood, in part due to the lack of cell type-specific manipulations of this pathway in animal models. Using a mouse model of ALS expressing mutant superoxide dismutase 1 (SOD1G93A), we show that motor neurons form large autophagosomes containing ubiquitinated aggregates early in disease progression. To investigate whether this response is protective or detrimental, we generated mice in which the critical autophagy gene Atg7 was specifically disrupted in motor neurons (Atg7 cKO). Atg7 cKO mice were viable but exhibited structural and functional defects at a subset of vulnerable neuromuscular junctions. By crossing Atg7 cKO mice to the SOD1G93A mouse model, we found that autophagy inhibition accelerated early neuromuscular denervation of the tibialis anterior muscle and the onset of hindlimb tremor. Surprisingly, however, lifespan was extended in Atg7 cKO; SOD1G93A double-mutant mice. Autophagy inhibition did not prevent motor neuron cell death, but it reduced glial inflammation and blocked activation of the stress-related transcription factor c-Jun in spinal interneurons. We conclude that motor neuron autophagy is required to maintain neuromuscular innervation early in disease but eventually acts in a non-cell-autonomous manner to promote disease progression.
Collapse
|
33
|
Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener 2017; 6:20. [PMID: 28702179 PMCID: PMC5504572 DOI: 10.1186/s40035-017-0088-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.
Collapse
Affiliation(s)
- Marcela Cruz-Haces
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Glen Acosta
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| | - Joseph Fernandez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
34
|
Zhu S, Qing T, Zheng Y, Jin L, Shi L. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 2017; 8:53763-53779. [PMID: 28881849 PMCID: PMC5581148 DOI: 10.18632/oncotarget.17893] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
Unlike population-level approaches, single-cell RNA sequencing enables transcriptomic analysis of an individual cell. Through the combination of high-throughput sequencing and bioinformatic tools, single-cell RNA-seq can detect more than 10,000 transcripts in one cell to distinguish cell subsets and dynamic cellular changes. After several years’ development, single-cell RNA-seq can now achieve massively parallel, full-length mRNA sequencing as well as in situ sequencing and even has potential for multi-omic detection. One appealing area of single-cell RNA-seq is cancer research, and it is regarded as a promising way to enhance prognosis and provide more precise target therapy by identifying druggable subclones. Indeed, progresses have been made regarding solid tumor analysis to reveal intratumoral heterogeneity, correlations between signaling pathways, stemness, drug resistance, and tumor architecture shaping the microenvironment. Furthermore, through investigation into circulating tumor cells, many genes have been shown to promote a propensity toward stemness and the epithelial-mesenchymal transition, to enhance anchoring and adhesion, and to be involved in mechanisms of anoikis resistance and drug resistance. This review focuses on advances and progresses of single-cell RNA-seq with regard to the following aspects: 1. Methodologies of single-cell RNA-seq 2. Single-cell isolation techniques 3. Single-cell RNA-seq in solid tumor research 4. Single-cell RNA-seq in circulating tumor cell research 5. Perspectives
Collapse
Affiliation(s)
- Sibo Zhu
- Center for Pharmacogenomics, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Tao Qing
- Center for Pharmacogenomics, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Yuanting Zheng
- Center for Pharmacogenomics, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Li Jin
- Center for Pharmacogenomics, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Leming Shi
- Center for Pharmacogenomics, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| |
Collapse
|
35
|
Rossi S, Cozzolino M, Carrì MT. Old versus New Mechanisms in the Pathogenesis of ALS. Brain Pathol 2016; 26:276-86. [PMID: 26779612 DOI: 10.1111/bpa.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is recognized as a very complex disease. As we have learned in the past 20 years from studies in patients and in models based on the expression of mutant SOD1, ALS is not a purely motor neuron disease as previously thought. While undoubtedly motor neurons are lost in patients, a number of alterations in those cell-types that interact functionally with motor neurons (astrocytes, microglia, muscle fibers, oligodendrocytes) take place even long before onset of symptoms. At the same time, disturbance of several, only partly inter-related physiological functions play some role in the onset and progression of the disease. Traditionally, mitochondrial damage and oxidative stress, excitotoxicity, neuroinflammation, altered axonal transport, ER stress, protein aggregation and defective removal of toxic proteins have been considered as key factors in the pathogenesis of ALS, with the relatively recent addition of disturbances in RNA metabolism. This complexity makes the search for an effective treatment extremely difficult and prompts further studies to reveal other possible, previously unappreciated aspects of the pathogenesis of ALS. In this review, we focus on previous knowledge on ALS mechanisms as well as new facets emerging from studies on genetic ALS patients and models that may both provide precious information for a novel therapeutic approach.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.,Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Carrì
- Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata
| |
Collapse
|
36
|
Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat Commun 2016; 7:12139. [PMID: 27387371 PMCID: PMC4941116 DOI: 10.1038/ncomms12139] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/05/2016] [Indexed: 01/05/2023] Open
Abstract
Laser capture microscopy (LCM) coupled with global transcriptome profiling could enable precise analyses of cell populations without the need for tissue dissociation, but has so far required relatively large numbers of cells. Here we report a robust and highly efficient strategy for LCM coupled with full-length mRNA-sequencing (LCM-seq) developed for single-cell transcriptomics. Fixed cells are subjected to direct lysis without RNA extraction, which both simplifies the experimental procedures as well as lowers technical noise. We apply LCM-seq on neurons isolated from mouse tissues, human post-mortem tissues, and illustrate its utility down to single captured cells. Importantly, we demonstrate that LCM-seq can provide biological insight on highly similar neuronal populations, including motor neurons isolated from different levels of the mouse spinal cord, as well as human midbrain dopamine neurons of the substantia nigra compacta and the ventral tegmental area. Laser capture microscopy (LCM) coupled with global transcriptome profiling requires relatively large numbers of cells. Here, the authors show that LCM coupled with full-length mRNA-sequencing (LCM-seq) can sequence single cells, and that LCM-seq can provide biological insight on highly similar neuronal populations.
Collapse
|
37
|
LoVerso PR, Cui F. Cell type-specific transcriptome profiling in mammalian brains. Front Biosci (Landmark Ed) 2016; 21:973-85. [PMID: 27100485 DOI: 10.2741/4434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed.
Collapse
Affiliation(s)
- Peter R LoVerso
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623,
| |
Collapse
|
38
|
Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110. Proc Natl Acad Sci U S A 2016; 113:5424-8. [PMID: 27114530 DOI: 10.1073/pnas.1604885113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that mammalian cells contain a cytosolic protein disaggregation machinery comprised of Hsc70, DnaJ homologs, and Hsp110 proteins, the last of which acts to accelerate a rate-limiting step of nucleotide exchange of Hsc70. We tested the ability of transgenic overexpression of a Thy1 promoter-driven human Hsp110 protein, HspA4L (Apg1), in neuronal cells of a transgenic G85R SOD1YFP ALS mouse strain to improve survival. Notably, G85R is a mutant version of Cu/Zn superoxide dismutase 1 (SOD1) that is unable to reach native form and that is prone to aggregation, with prominent YFP-fluorescent aggregates observed in the motor neurons of the transgenic mice as early as 1 mo of age. The several-fold overexpression of Hsp110 in motor neurons of these mice was associated with an increased median survival from ∼5.5 to 7.5 mo and increased maximum survival from 6.5 to 12 mo. Improvement of survival was also observed for a G93A mutant SOD1 ALS strain. We conclude that neurodegeneration associated with cytosolic misfolding and aggregation can be ameliorated by overexpression of Hsp110, likely enhancing the function of a cytosolic disaggregation machinery.
Collapse
|
39
|
Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad Sci U S A 2015; 112:E6993-7002. [PMID: 26621731 DOI: 10.1073/pnas.1520639112] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitous expression of amyotrophic lateral sclerosis (ALS)-causing mutations in superoxide dismutase 1 (SOD1) provokes noncell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage is restricted to motor neurons and includes synapse and metabolic abnormalities, endoplasmic reticulum (ER) stress, and selective activation of the PRKR-like ER kinase (PERK) arm of the unfolded protein response. PERK activation correlates with what we identify as a naturally low level of ER chaperones in motor neurons. Early changes in astrocytes occur in genes that are involved in inflammation and metabolism and are targets of the peroxisome proliferator-activated receptor and liver X receptor transcription factors. Dysregulation of myelination and lipid signaling pathways and activation of ETS transcription factors occur in oligodendrocytes only after disease initiation. Thus, pathogenesis involves a temporal cascade of cell type-selective damage initiating in motor neurons, with subsequent damage within glia driving disease propagation.
Collapse
|
40
|
Henry FE, Sugino K, Tozer A, Branco T, Sternson SM. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. eLife 2015; 4. [PMID: 26329458 PMCID: PMC4595745 DOI: 10.7554/elife.09800] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders. DOI:http://dx.doi.org/10.7554/eLife.09800.001 Humans and other animals must get adequate nutrition in order to survive. As a result, the body has several systems that work side by side to maintain a healthy body weight and ensure that enough food gets eaten to provide the energy that the body needs. Problems with these systems can contribute towards obesity and other eating disorders. Certain types of cells in the brain play important roles in controlling weight and appetite, although the genes and cellular mechanisms that underlie these abilities are not well understood. When an animal is deprived of food, so-called AGRP neurons produce molecules that increase appetite and make it easier to gain weight. These neurons also go through structural changes and increase their electrical activity during weight loss. Another group of cells, called the POMC neurons, becomes less active when an animal is deprived of energy. Using a technique called cell type-specific transcriptomics, Henry, Sugino et al. have now revealed that the expression of hundreds of genes in AGRP and POMC neurons changes depending on whether mice are well fed or food deprived. Food deprivation also affects more genes in AGRP neurons than has been seen in other types of brain cell, and the AGRP neurons are also more sensitive to a change in food intake than POMC neurons. In the future, this gene expression data and knowledge of the pathways affected by the genes could help researchers to develop new treatments for obesity and other disorders that affect appetite. Henry, Sugino et al. then mapped how these changes in gene expression trigger molecular “pathways” in the neurons that alter how the cells work. These affect many parts of the cells, including ion channels, transcription factors, receptors, and secreted proteins. In addition, food deprivation activated pathways in AGRP neurons that protect the cells from damage and death caused by elevated neuron activity and also triggered signaling pathways that increase body weight. In the future, this gene expression data and knowledge of the pathways affected by the genes could help researchers to develop new treatments for obesity and other disorders that affect appetite. DOI:http://dx.doi.org/10.7554/eLife.09800.002
Collapse
Affiliation(s)
- Fredrick E Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Adam Tozer
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tiago Branco
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
41
|
Feng NY, Fergus DJ, Bass AH. Neural transcriptome reveals molecular mechanisms for temporal control of vocalization across multiple timescales. BMC Genomics 2015; 16:408. [PMID: 26014649 PMCID: PMC4446069 DOI: 10.1186/s12864-015-1577-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background Vocalization is a prominent social behavior among vertebrates, including in the midshipman fish, an established model for elucidating the neural basis of acoustic communication. Courtship vocalizations produced by territorial males are essential for reproductive success, vary over daily and seasonal cycles, and last up to hours per call. Vocalizations rely upon extreme synchrony and millisecond precision in the firing of a homogeneous population of motoneurons, the vocal motor nucleus (VMN). Although studies have identified neural mechanisms driving rapid, precise, and stable neuronal firing over long periods of calling, little is known about underlying genetic/molecular mechanisms. Results We used RNA sequencing-based transcriptome analyses to compare patterns of gene expression in VMN to the surrounding hindbrain across three daily and seasonal time points of high and low sound production to identify candidate genes that underlie VMN’s intrinsic and network neuronal properties. Results from gene ontology enrichment, enzyme pathway mapping, and gene category-wide expression levels highlighted the importance of cellular respiration in VMN function, consistent with the high energetic demands of sustained vocal behavior. Functionally important candidate genes upregulated in the VMN, including at time points corresponding to high natural vocal activity, encode ion channels and neurotransmitter receptors, hormone receptors and biosynthetic enzymes, neuromodulators, aerobic respiration enzymes, and antioxidants. Quantitative PCR and RNA-seq expression levels for 28 genes were significantly correlated. Many candidate gene products regulate mechanisms of neuronal excitability, including those previously identified in VMN motoneurons, as well as novel ones that remain to be investigated. Supporting evidence from previous studies in midshipman strongly validate the value of transcriptomic analyses for linking genes to neural characters that drive behavior. Conclusions Transcriptome analyses highlighted a suite of molecular mechanisms that regulate vocalization over behaviorally relevant timescales, spanning milliseconds to hours and seasons. To our knowledge, this is the first comprehensive characterization of gene expression in a dedicated vocal motor nucleus. Candidate genes identified here may belong to a conserved genetic toolkit for vocal motoneurons facing similar energetic and neurophysiological demands. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1577-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| | - Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA. .,Current Address: North Carolina Museum of Natural Sciences, Genomics and Microbiology, 27601, Raleigh, NC, USA.
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
42
|
Satoh JI, Asahina N, Kitano S, Kino Y. A Comprehensive Profile of ChIP-Seq-Based Olig2 Target Genes in Motor Neuron Progenitor Cells Suggests the Possible Involvement of Olig2 in the Pathogenesis of Amyotrophic Lateral Sclerosis. J Cent Nerv Syst Dis 2015; 7:1-14. [PMID: 26023283 PMCID: PMC4437538 DOI: 10.4137/jcnsd.s23210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/26/2015] [Accepted: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is an intractable neurodegenerative disease that primarily affects motor neurons in the cerebral cortex and the spinal cord. Recent evidence indicates that dysfunction of oligodendrocytes is implicated in the pathogenesis of ALS. The basic helix–loop–helix (bHLH) transcription factor Olig2 plays a pivotal role in the development of both motor neurons and oligodendrocytes in the progenitor of motor neuron (pMN) domain of the spinal cord, supporting evidence for the shared motor neuron/oligodendrocyte lineage. However, a comprehensive profile of Olig2 target genes in pMNs and oligodendrocyte progenitor cells (OPCs) with relevance to the pathogenesis of ALS remains to be characterized. METHODS By analyzing the ChIP-Seq datasets numbered SRP007566 and SRP015333 with the Strand NGS program, we identified genome-wide Olig2 target genes in pMNs and OPCs, followed by molecular network analysis using three distinct bioinformatics tools. RESULTS We identified 5966 Olig2 target genes in pMNs, including Nkx2.2, Pax6, Irx3, Ngn2, Zep2 (Cip1), Trp3, Mnx1 (Hb9), and Cdkn1a, and 1553 genes in OPCs. The genes closely related to the keyword “alternative splicing” were enriched in the set of 740 targets overlapping between pMNs and OPCs. Furthermore, approximately one-third of downregulated genes in purified motor neurons of presymptomatic mutant SOD1 transgenic mice and in lumbar spinal cord tissues of ALS patients corresponded to Olig2 target genes in pMNs. Molecular networks of Olig2 target genes indicate that Olig2 regulates a wide range of genes essential for diverse neuronal and glial functions. CONCLUSIONS These observations lead to a hypothesis that aberrant regulation of Olig2 function, by affecting biology of both motor neurons and oligodendrocytes, might be involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Naohiro Asahina
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Shouta Kitano
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
43
|
Chong J, McMillin M, Shively K, Beck A, Marvin C, Armenteros J, Buckingham K, Nkinsi N, Boyle E, Berry M, Bocian M, Foulds N, Uzielli M, Haldeman-Englert C, Hennekam R, Kaplan P, Kline A, Mercer C, Nowaczyk M, Klein Wassink-Ruiter J, McPherson E, Moreno R, Scheuerle A, Shashi V, Stevens C, Carey J, Monteil A, Lory P, Tabor H, Smith J, Shendure J, Nickerson D, Bamshad MJ, Bamshad M, Shendure J, Nickerson D, Abecasis G, Anderson P, Blue E, Annable M, Browning B, Buckingham K, Chen C, Chin J, Chong J, Cooper G, Davis C, Frazar C, Harrell T, He Z, Jain P, Jarvik G, Jimenez G, Johanson E, Jun G, Kircher M, Kolar T, Krauter S, Krumm N, Leal S, Luksic D, Marvin C, McMillin M, McGee S, O’Reilly P, Paeper B, Patterson K, Perez M, Phillips S, Pijoan J, Poel C, Reinier F, Robertson P, Santos-Cortez R, Shaffer T, Shephard C, Shively K, Siegel D, Smith J, Staples J, Tabor H, Tackett M, Underwood J, Wegener M, Wang G, Wheeler M, Yi Q. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am J Hum Genet 2015; 96:462-73. [PMID: 25683120 DOI: 10.1016/j.ajhg.2015.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s).
Collapse
|
44
|
Henriques A, Kastner S, Chatzikonstantinou E, Pitzer C, Plaas C, Kirsch F, Wafzig O, Krüger C, Spoelgen R, Gonzalez De Aguilar JL, Gretz N, Schneider A. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF. Front Cell Neurosci 2015; 8:464. [PMID: 25653590 PMCID: PMC4299451 DOI: 10.3389/fncel.2014.00464] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.
Collapse
Affiliation(s)
- Alexandre Henriques
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | | | | | | | | | | | | | | | | | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | | |
Collapse
|
45
|
An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014; 34:11929-47. [PMID: 25186741 DOI: 10.1523/jneurosci.1860-14.2014] [Citation(s) in RCA: 3713] [Impact Index Per Article: 337.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain.
Collapse
|
46
|
Abstract
Lipofuscin, or aging pigment, is accreted as red autofluorescence in the lysosomes of motor neuron cell bodies in the ventral horn of WT mice by 3 mo of age. Strikingly, in two presymptomatic ALS mouse strains transgenic for mutant human Cu/Zn superoxide dismutase (SOD1), G85R SOD1YFP and G93A SOD1, little or no lipofuscin was detected in motor neuron cell bodies. Two markers of autophagy, sequestosome 1 (SQSTM1/p62) and microtubule-associated protein 1 light chain 3 (LC3), were examined in the motor neuron cell bodies of G85R SOD1YFP mice and found to be reduced relative to WT SOD1YFP transgenic mice. To elucidate whether the autophagy/lysosome pathway was either impaired or hyperactive in motor neurons, chloroquine was administered to 3-mo-old G85R SOD1YFP mice to block lysosomal hydrolysis. After 2 wk, lipofuscin was now observed in motor neurons, and SQSTM1 and LC3 levels approached those of WT SOD1YFP mice, suggesting that the autophagy/lysosome pathway is hyperactive in motor neurons of SOD1-linked ALS mice. This seems to be mediated at least in part through the mammalian target of rapamycin complex 1 (MTORC1) pathway, because levels of Ser757-phosphorylated Unc-51-like kinase 1 (ULK1), an MTORC1 target, were greatly reduced in the G85R SOD1YFP motor neurons, correspondent to an activated state of ULK1 that initiates autophagy.
Collapse
|
47
|
Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma 2014; 31:1129-1138. [PMID: 24499307 PMCID: PMC4089022 DOI: 10.1089/neu.2013.3303] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Significant attention has recently been drawn to the potential link between head trauma and the development of neurodegenerative disease, namely chronic traumatic encephalopathy (CTE). The acute neurotrauma associated with sports-related concussions in athletes and blast-induced traumatic brain injury in soldiers elevates the risk for future development of chronic neurodegenerative diseases such as CTE. CTE is a progressive disease distinguished by characteristic tau neurofibrillary tangles (NFTs) and, occasionally, transactive response DNA binding protein 43 (TDP43) oligomers, both of which have a predilection for perivascular and subcortical areas near reactive astrocytes and microglia. The disease is currently only diagnosed postmortem by neuropathological identification of NFTs. A recent workshop sponsored by National Institute of Neurological Disorders and Stroke emphasized the need for premortem diagnosis, to better understand disease pathophysiology and to develop targeted treatments. In order to accomplish this objective, it is necessary to discover the mechanistic link between acute neurotrauma and the development of chronic neurodegenerative and neuropsychiatric disorders such as CTE. In this review, we briefly summarize what is currently known about CTE development and pathophysiology, and subsequently discuss injury-induced pathways that warrant further investigation. Understanding the mechanistic link between acute brain injury and chronic neurodegeneration will facilitate the development of appropriate diagnostic and therapeutic options for CTE and other related disorders.
Collapse
Affiliation(s)
- Brandon Peter Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ryan Coddington Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Aric Flint Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Julian Edwin Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Jason Delwyn Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Charles Lee Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
48
|
Bandyopadhyay U, Fenton WA, Horwich AL, Nagy M. Production of RNA for transcriptomic analysis from mouse spinal cord motor neuron cell bodies by laser capture microdissection. J Vis Exp 2014:e51168. [PMID: 24457537 PMCID: PMC4089401 DOI: 10.3791/51168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Preparation of high-quality RNA from cells of interest is critical to precise and meaningful analysis of transcriptional differences among cell types or between the same cell type in health and disease or following pharmacologic treatments. In the spinal cord, such preparation from motor neurons, the target of interest in many neurologic and neurodegenerative diseases, is complicated by the fact that motor neurons represent <10% of the total cell population. Laser capture microdissection (LMD) has been developed to address this problem. Here, we describe a protocol to quickly recover, freeze, and section mouse spinal cord to avoid RNA damage by endogenous and exogenous RNases, followed by staining with Azure B in 70% ethanol to identify the motor neurons while keeping endogenous RNase inhibited. LMD is then used to capture the stained neurons directly into guanidine thiocyanate lysis buffer, maintaining RNA integrity. Standard techniques are used to recover the total RNA and measure its integrity. This material can then be used for downstream analysis of the transcripts by RNA-seq and qRT-PCR.
Collapse
|
49
|
Quinn RW, McFall C. Methods for analyzing the density, distribution, origin, and phenotypes of restored cell populations in vivo and post-explant. PROGRESS IN PEDIATRIC CARDIOLOGY 2013. [DOI: 10.1016/j.ppedcard.2013.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|