1
|
Shi Y, Liu J, Zhou H, Wu Z, Qiu Y, Ye C. Dihydromyricetin alleviates ETEC K88-induced intestinal inflammatory injury by inhibiting quorum sensing-related virulence factors. BMC Microbiol 2025; 25:201. [PMID: 40205366 PMCID: PMC11980137 DOI: 10.1186/s12866-025-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is responsible for piglet diarrhea and causes substantial economic loss in the pig industry. Along with the restriction of antibiotics, natural compounds targeting bacterial virulence factors are supposed to be efficacious and attractive alternatives for controlling ETEC infection. This study aimed to investigate the influence of dihydromyricetin (DMY), a natural flavonoid compound, on the expression of virulence factors of ETEC and intestinal inflammatory injury. RESULTS DMY interfered with the quorum sensing (QS) of ETEC K88 since it decreased AI-2 secretion and downregulated the expression of LuxS and Pfs, which dominate AI-2 production, and decreased the expression mRNA level of genes (lsrA, lsrB, lsrC, lsrD, lsrK, and lsrR) that are involved in AI-2 internalization and signal transduction. Additionally, DMY markedly dampened the expression of QS-related virulence genes (elt-1, estB, fliC, faeG), biofilm formation, cell adhesion, and stress tolerance of ETEC K88. Furthermore, DMY treatment applied to the ETEC K88 infection in mice model resulted in decreased amount of heat-labile (LT) and heat-stable (ST) enterotoxins, reduced production of cAMP and cGMP, downregulated protein level of CFTR and upregulated expression of NHE3 in the ileum. In addition, the mRNA expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and histological damage in the ileum were significantly decreased by DMY treatment. CONCLUSIONS DMY can inhibit the AI-2 QS and virulence factor expression, thereby attenuating the virulence of ETEC and alleviating intestinal inflammatory damage in ETEC K88-challenged mice. This study indicated that DMY has the potential to be a promising antivirulence agent for combating ETEC infection.
Collapse
Affiliation(s)
- Yaqian Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jin Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Zhou
- Agricultural College, Xiangyang Polytechnic, Xiangyang, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
- Wuhan Engineering and Technology Research Center of Animal Disease-resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Bogale AT, Braun M, Bernhardt J, Zühlke D, Schiefelbein U, Bog M, Scheidegger C, Zengerer V, Becher D, Grube M, Riedel K, Bengtsson MM. The microbiome of the lichen Lobaria pulmonaria varies according to climate on a subcontinental scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13289. [PMID: 38923181 PMCID: PMC11194104 DOI: 10.1111/1758-2229.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
The Lobaria pulmonaria holobiont comprises algal, fungal, cyanobacterial and bacterial components. We investigated L. pulmonaria's bacterial microbiome in the adaptation of this ecologically sensitive lichen species to diverse climatic conditions. Our central hypothesis posited that microbiome composition and functionality aligns with subcontinental-scale (a stretch of ~1100 km) climatic parameters related to temperature and precipitation. We also tested the impact of short-term weather dynamics, sampling season and algal/fungal genotypes on microbiome variation. Metaproteomics provided insights into compositional and functional changes within the microbiome. Climatic variables explained 41.64% of microbiome variation, surpassing the combined influence of local weather and sampling season at 31.63%. Notably, annual mean temperature and temperature seasonality emerged as significant climatic drivers. Microbiome composition correlated with algal, not fungal genotype, suggesting similar environmental recruitment for the algal partner and microbiome. Differential abundance analyses revealed distinct protein compositions in Sub-Atlantic Lowland and Alpine regions, indicating differential microbiome responses to contrasting environmental/climatic conditions. Proteins involved in oxidative and cellular stress were notably different. Our findings highlight microbiome plasticity in adapting to stable climates, with limited responsiveness to short-term fluctuations, offering new insights into climate adaptation in lichen symbiosis.
Collapse
Affiliation(s)
| | - Maria Braun
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Jörg Bernhardt
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Daniela Zühlke
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Ulf Schiefelbein
- Landscape EcologyUniversity of Rostock, Botanical GardenRostockGermany
| | - Manuela Bog
- Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
| | - Christoph Scheidegger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Veronika Zengerer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Dörte Becher
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Martin Grube
- Karl‐Franzens‐Universität Graz, Institut für BiologieGrazAustria
| | - Katharina Riedel
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
3
|
Guo F, Quan R, Cui Y, Cao X, Wen T, Xu F. Effects of OxyR regulator on oxidative stress, Apx toxin secretion and virulence of Actinobacillus pleuropneumoniae. Front Cell Infect Microbiol 2024; 13:1324760. [PMID: 38268788 PMCID: PMC10806198 DOI: 10.3389/fcimb.2023.1324760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, poses a significant threat to global swine populations due to its high prevalence, mortality rates, and substantial economic ramifications. Understanding the pathogen's defense mechanisms against host-produced reactive oxygen species is crucial for its survival, with OxyR, a conserved bacterial transcription factor, being pivotal in oxidative stress response. Methods This study investigated the presence and role of OxyR in A. pleuropneumoniae serovar 1-12 reference strains. Transcriptomic analysis was conducted on an oxyR disruption mutant to delineate the biological activities influenced by OxyR. Additionally, specific assays were employed to assess urease activity, catalase expression, ApxI toxin secretion, as well as adhesion and invasion abilities of the oxyR disruption mutant on porcine 3D4/21 and PT cells. A mice challenge experiment was also conducted to evaluate the impact of oxyR inactivation on A. pleuropneumoniae virulence. Results OxyR was identified as a conserved regulator present in A. pleuropneumoniae serovar 1-12 reference strains. Transcriptomic analysis revealed the involvement of OxyR in multiple biological activities. The oxyR disruption resulted in decreased urease activity, elevated catalase expression, enhanced ApxI toxin secretion-attributed to OxyR binding to the apxIBD promoter-and reduced adhesion and invasion abilities on porcine cells. Furthermore, inactivation of oxyR reduced the virulence of A. pleuropneumoniae in a mice challenge experiment. Discussion The findings highlight the pivotal role of OxyR in influencing the virulence mechanisms of A. pleuropneumoniae. The observed effects on various biological activities underscore OxyR as an essential factor contributing to the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tong Wen
- Department of Biology Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Bhardwaj S, Roy KK. ClpP Peptidase as a Plausible Target for the Discovery of Novel Antibiotics. Curr Drug Targets 2024; 25:108-120. [PMID: 38151841 DOI: 10.2174/0113894501274958231220053714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Antimicrobial resistance (AMR) to currently available antibiotics/drugs is a global threat. It is desirable to develop new drugs that work through a novel target(s) to avoid drug resistance. This review discusses the potential of the caseinolytic protease P (ClpP) peptidase complex as a novel target for finding novel antibiotics, emphasising the ClpP's structure and function. ClpP contributes to the survival of bacteria via its ability to destroy misfolded or aggregated proteins. In consequence, its inhibition may lead to microbial death. Drugs inhibiting ClpP activity are currently being tested, but no drug against this target has been approved yet. It was demonstrated that Nblocked dipeptides are essential for activating ClpP's proteolytic activity. Hence, compounds mimicking these dipeptides could act as inhibitors of the formation of an active ClpP complex. Drugs, including Bortezomib, Cisplatin, Cefmetazole, and Ixazomib, inhibit ClpP activation. However, they were not approved as drugs against the target because of their high toxicity, likely due to the presence of strong electrophiles in their warheads. The modifications of these warheads could be a good strategy to reduce the toxicity of these molecules. For instance, a boronate warhead was replaced by a chloromethyl ketone, and this new molecule was shown to exhibit selectivity for prokaryotic ClpP. A better understanding of the structure and function of the ClpP complex would benefit the search for compounds mimicking N-blocked dipeptides that would inhibit ClpP complex activity and cause bacterial death.
Collapse
Affiliation(s)
- Smriti Bhardwaj
- School of Health Sciences and Technology, UPES, Dehradun - 248007, Uttarakhand, India
| | - Kuldeep K Roy
- School of Health Sciences and Technology, UPES, Dehradun - 248007, Uttarakhand, India
| |
Collapse
|
5
|
Soto Perezchica MM, Guerrero Barrera AL, Avelar Gonzalez FJ, Quezada Tristan T, Macias Marin O. Actinobacillus pleuropneumoniae, surface proteins and virulence: a review. Front Vet Sci 2023; 10:1276712. [PMID: 38098987 PMCID: PMC10720984 DOI: 10.3389/fvets.2023.1276712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023] Open
Abstract
Actinobacillus pleuropneumoniae (App) is a globally distributed Gram-negative bacterium that produces porcine pleuropneumonia. This highly contagious disease produces high morbidity and mortality in the swine industry. However, no effective vaccine exists to prevent it. The infection caused by App provokes characteristic lesions, such as edema, inflammation, hemorrhage, and necrosis, that involve different virulence factors. The colonization and invasion of host surfaces involved structures and proteins such as outer membrane vesicles (OMVs), pili, flagella, adhesins, outer membrane proteins (OMPs), also participates proteases, autotransporters, and lipoproteins. The recent findings on surface structures and proteins described in this review highlight them as potential immunogens for vaccine development.
Collapse
Affiliation(s)
- María M. Soto Perezchica
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L. Guerrero Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J. Avelar Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Teodulo Quezada Tristan
- Departamento de Ciencias Veterinaria, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Osvaldo Macias Marin
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
6
|
Kumar A, Saha SK, Banerjee P, Prasad K, Sengupta TK. Antibiotic-Induced Biofilm Formations in Pseudomonas aeruginosa Strains KPW.1-S1 and HRW.1-S3 are Associated with Increased Production of eDNA and Exoproteins, Increased ROS Generation, and Increased Cell Surface Hydrophobicity. Curr Microbiol 2023; 81:11. [PMID: 37978089 DOI: 10.1007/s00284-023-03495-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
Pseudomonas aeruginosa is a medically important opportunistic pathogen due to its intrinsic ability to form biofilms on different surfaces as one of the defense mechanisms for survival. The fact that it can form biofilms on various medical implants makes it more harmful clinically. Although various antibiotics are used to treat Pseudomonas aeruginosa infections, studies have shown that sub-MIC levels of antibiotics could induce Pseudomonas biofilm formation. The present study thus explored the effect of the aminoglycoside antibiotic gentamicin on the biofilm dynamics of two Pseudomonas aeruginosa strains KPW.1-S1 and HRW.1-S3. Biofilm formation was found to be increased in the presence of increased concentrations of gentamicin. Confocal, scanning electron microscopy, and other biochemical tests deduced that biofilm-forming components exoproteins, eDNA, and exolipids as exopolymeric substances in Pseudomonas aeruginosa biofilms were increased in the presence of gentamicin. An increase in reactive oxygen species generation along with increased cell surface hydrophobicity was also seen for both strains when treated with gentamicin. The observed increase in the adherence of the cells accompanied by the increase in the components of exopolymeric substances may have largely contributed to the increased biofilm production by the Pseudomonas aeruginosa strains under the stress of the antibiotic treatment.
Collapse
Affiliation(s)
- Abhinash Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Saurav K Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Paromita Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
- Kalinga University, Naya Raipur, CG, 492101, India
| | - Kritika Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Tapas K Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India.
| |
Collapse
|
7
|
Sun D, Liu Y, Peng X, Dong H, Jiang H, Fan X, Feng Y, Sun J, Han K, Gao Q, Niu J, Ding J. ClpP protease modulates bacterial growth, stress response, and bacterial virulence in Brucella abortus. Vet Res 2023; 54:68. [PMID: 37612737 PMCID: PMC10464072 DOI: 10.1186/s13567-023-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/25/2023] Open
Abstract
The process of intracellular proteolysis through ATP-dependent proteases is a biologically conserved phenomenon. The stress responses and bacterial virulence of various pathogenic bacteria are associated with the ATP-dependent Clp protease. In this study, a Brucella abortus 2308 strain, ΔclpP, was constructed to characterize the function of ClpP peptidase. The growth of the ΔclpP mutant strain was significantly impaired in the TSB medium. The results showed that the ΔclpP mutant was sensitive to acidic pH stress, oxidative stress, high temperature, detergents, high osmotic environment, and iron deficient environment. Additionally, the deletion of clpP significantly affected Brucella virulence in macrophage and mouse infection models. Integrated transcriptomic and proteomic analyses of the ΔclpP strain showed that 1965 genes were significantly affected at the mRNA and/or protein levels. The RNA-seq analysis indicated that the ΔclpP strain exhibited distinct gene expression patterns related to energy production and conversion, cell wall/membrane/envelope biogenesis, carbohydrate transport, and metabolism. The iTRAQ analysis revealed that the differentially expressed proteins primarily participated in amino acid transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis, transport and catabolism. This study provided insights into the preliminary molecular mechanism between Clp protease to bacterial growth, stress response, and bacterial virulence in Brucella strains.
Collapse
Affiliation(s)
- Dongjie Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufu Liu
- Zhaoqing Institute Biotechnology Co., Ltd., Zhaoqing, China
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaowei Peng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Hao Dong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Hui Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuezheng Fan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Feng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiali Sun
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Kun Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Gao
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | | | - Jiabo Ding
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Hartman TW, Radichev E, Ali HM, Alaba MO, Hoffman M, Kassa G, Sani R, Gadhamshetty V, Ragi S, Messerli SM, de la Puente P, Sandhurst ES, Do T, Lushbough C, Gnimpieba EZ. BASIN: A Semi-automatic Workflow, with Machine Learning Segmentation, for Objective Statistical Analysis of Biomedical and Biofilm Image Datasets. J Mol Biol 2023; 435:167895. [PMID: 36463932 PMCID: PMC10280363 DOI: 10.1016/j.jmb.2022.167895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Micrograph comparison remains useful in bioscience. This technology provides researchers with a quick snapshot of experimental conditions. But sometimes a two- condition comparison relies on researchers' eyes to draw conclusions. Our Bioimage Analysis, Statistic, and Comparison (BASIN) software provides an objective and reproducible comparison leveraging inferential statistics to bridge image data with other modalities. Users have access to machine learning-based object segmentation. BASIN provides several data points such as images' object counts, intensities, and areas. Hypothesis testing may also be performed. To improve BASIN's accessibility, we implemented it using R Shiny and provided both an online and offline version. We used BASIN to process 498 image pairs involving five bioscience topics. Our framework supported either direct claims or extrapolations 57% of the time. Analysis results were manually curated to determine BASIN's accuracy which was shown to be 78%. Additionally, each BASIN version's initial release shows an average 82% FAIR compliance score.
Collapse
Affiliation(s)
- Timothy W Hartman
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Evgeni Radichev
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Hafiz Munsub Ali
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Mathew Olakunle Alaba
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Mariah Hoffman
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Gideon Kassa
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Rajesh Sani
- Chemical and Biological Engineering Department, South Dakota School of Mines and Technology, 501 E St. Joseph Street, Rapid City, SD 57701, United States
| | - Venkata Gadhamshetty
- Civil and Environmental Engineering Department, South Dakota School of Mines and Technology, 501 E St. Joseph Street, Rapid City, SD 57701, United States
| | - Shankarachary Ragi
- Electrical Engineering Department, South Dakota School of Mines and Technology, 501 E St. Joseph Street, Rapid City, SD 57701, United States
| | - Shanta M Messerli
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States; Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60(th) Street North, Sioux Falls, SD 57104, United States; Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, United States
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60(th) Street North, Sioux Falls, SD 57104, United States
| | - Eric S Sandhurst
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Tuyen Do
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Carol Lushbough
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States
| | - Etienne Z Gnimpieba
- Biomedical Engineering Department, University of South Dakota Sioux Falls, 4800 N Career Avenue, Sioux Falls, SD 57107, United States.
| |
Collapse
|
9
|
Biswas S, Dhaked HPS, Keightley A, Biswas I. Involvement of ClpE ATPase in Physiology of Streptococcus mutans. Microbiol Spectr 2021; 9:e0163021. [PMID: 34851151 PMCID: PMC8635124 DOI: 10.1128/spectrum.01630-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcus mutans, a dental pathogen, harbors at least three Clp ATPases (ClpC, ClpE, and ClpX) that form complexes with ClpP protease and participate in regulated proteolysis. Among these, the function of ClpE ATPase is poorly understood. We have utilized an isogenic clpE-deficient strain derived from S. mutans UA159 and evaluated the role of ClpE in cellular physiology. We found that loss of ClpE leads to increased susceptibility against thiol stress but not to oxidative and thermal stress. Furthermore, we found that the mutant displays altered tolerance against some antibiotics and altered biofilm formation. We performed a label-free proteomic analysis by comparing the mutant with the wild-type UA159 strain under nonstressed conditions and found that ClpE modulates a relatively limited proteome in the cell compared to the proteomes modulated by ClpX and ClpP. Nevertheless, we found that ClpE deficiency leads to an overabundance of some cell wall synthesis enzymes, ribosomal proteins, and an unknown protease encoded by SMU.2153. Our proteomic data strongly support some of the stress-related phenotypes that we observed. Our study emphasizes the significance of ClpE in the physiology of S. mutans. IMPORTANCE When bacteria encounter environmental stresses, the expression of various proteins collectively known as heat shock proteins is induced. These heat shock proteins are necessary for cell survival specifically under conditions that induce protein denaturation. A subset of heat shock proteins known as the Clp proteolytic complex is required for the degradation of the misfolded proteins in the cell. The Clp proteolytic complex contains an ATPase and a protease. A specific Clp ATPase, ClpE, is uniquely present in Gram-positive bacteria, including streptococci. Here, we have studied the functional role of the ClpE protein in Streptococcus mutans, a dental pathogen. Our results suggest that ClpE is required for survival under certain antibiotic exposure and stress conditions but not others. Our results demonstrate that loss of ClpE leads to a significantly altered cellular proteome, and the analysis of those changes suggests that ClpE's functions in S. mutans are different from its functions in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hemendra Pal Singh Dhaked
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Andrew Keightley
- Department of Ophthalmology, University of Missouri School of Medicine, Kansas City, Missouri, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
10
|
Ma X, Zheng B, Wang J, Li G, Cao S, Wen Y, Huang X, Zuo Z, Zhong Z, Gu Y. Quinolone Resistance of Actinobacillus pleuropneumoniae Revealed through Genome and Transcriptome Analyses. Int J Mol Sci 2021; 22:ijms221810036. [PMID: 34576206 PMCID: PMC8472844 DOI: 10.3390/ijms221810036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a pathogen that infects pigs and poses a serious threat to the pig industry. The emergence of quinolone-resistant strains of A.pleuropneumoniae further limits the choice of treatment. However, the mechanisms behind quinolone resistance in A.pleuropneumoniae remain unclear. The genomes of a ciprofloxacin-resistant strain, A. pleuropneumoniae SC1810 and its isogenic drug-sensitive counterpart were sequenced and analyzed using various bioinformatics tools, revealing 559 differentially expressed genes. The biological membrane, plasmid-mediated quinolone resistance genes and quinolone resistance-determining region were detected. Upregulated expression of efflux pump genes led to ciprofloxacin resistance. The expression of two porins, OmpP2B and LamB, was significantly downregulated in the mutant. Three nonsynonymous mutations in the mutant strain disrupted the water–metal ion bridge, subsequently reducing the affinity of the quinolone–enzyme complex for metal ions and leading to cross-resistance to multiple quinolones. The mechanism of quinolone resistance in A. pleuropneumoniae may involve inhibition of expression of the outer membrane protein genes ompP2B and lamB to decrease drug influx, overexpression of AcrB in the efflux pump to enhance its drug-pumping ability, and mutation in the quinolone resistance-determining region to weaken the binding of the remaining drugs. These findings will provide new potential targets for treatment.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Bowen Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Jiafan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Gen Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
- Bioengineering Department, Sichuan Water Conservancy Vocational College, Chengdu 611231, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
- Correspondence: (S.C.); (Y.G.)
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.C.); (Y.G.)
| |
Collapse
|
11
|
Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: an exemplar of a veterinary pathogen. Anim Health Res Rev 2021; 22:120-135. [PMID: 34275511 DOI: 10.1017/s1466252321000074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, the MISTEACHING (microbiome, immunity, sex, temperature, environment, age, chance, history, inoculum, nutrition, genetics) framework to describe the outcome of host-pathogen interaction, has been applied to human pathogens. Here, we show, using Actinobacillus pleuropneumoniae as an exemplar, that the MISTEACHING framework can be applied to a strict veterinary pathogen, enabling the identification of major research gaps, the formulation of hypotheses whose study will lead to a greater understanding of pathogenic mechanisms, and/or improved prevention/therapeutic measures. We also suggest that the MISTEACHING framework should be extended with the inclusion of a 'strain' category, to become MISTEACHINGS. We conclude that the MISTEACHINGS framework can be applied to veterinary pathogens, whether they be bacteria, fungi, viruses, or parasites, and hope to stimulate others to use it to identify research gaps and to formulate hypotheses worthy of study with their own pathogens.
Collapse
|
12
|
Feng Y, Wang H, Lu HE, Yi L, Hong LI. Effects of ClpP protease on biofilm formation of Enterococcus faecalis. J Appl Oral Sci 2021; 29:e20200733. [PMID: 33656065 PMCID: PMC7934281 DOI: 10.1590/1678-7757-2020-0733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Enterococcus faecalis (E. faecalis), one of the main pathogens responsible for refractory periapical periodontitis and nosocomial infections, exhibits markedly higher pathogenicity in biofilms. Studies have shown that caseinolytic protease P (ClpP) is involved in biofilm formation. However, to date, few studies have investigated the role of ClpP in the survival of E. faecalis, and in enhancing biofilm formation. Therefore, we investigated the role of ClpP in the formation of E. faecalis biofilms. METHODOLOGY In our study, we used homologous recombination to construct clpP deleted and clpP complement strains of E. faecalis ATCC 29212. A viable colony counting method was used to analyze the growth patterns of E. faecalis. Crystal violet staining (CV) and confocal scanning laser microscopy (CLSM) were used to characterize biofilm mass formation and scanning electron microscopy (SEM) was used to observe the biofilm microstructure. Data was statistically analyzed via Student's t-test or one-way analysis of variance (ANOVA). RESULTS The results exhibited altered growth patterns for the clpP deletion strains and depleted polysaccharide matrix, resulting in reduced biofilm formation capacity compared to the standard strains. Moreover, ClpP was observed to increase biofilm formation in E. faecalis. CONCLUSION Our study shows that ClpP can increase biofilm formation in E. faecalis and emphasizes the importance of ClpP as a potential target against E. faecalis.
Collapse
Affiliation(s)
- Ying Feng
- Department of Endodontics, School of Stomatology, Capital Medical University
| | - Hongyuan Wang
- Department of Endodontics, School of Stomatology, Capital Medical University
| | - H E Lu
- Affiliated Stomatology Hospital of Guangzhou Medical University
| | - Liu Yi
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University
| | - L I Hong
- Department of Endodontics, School of Stomatology, Capital Medical University
| |
Collapse
|
13
|
Phenotypic and Transcriptomic Analyses of Seven Clinical Stenotrophomonas maltophilia Isolates Identify a Small Set of Shared and Commonly Regulated Genes Involved in the Biofilm Lifestyle. Appl Environ Microbiol 2020; 86:AEM.02038-20. [PMID: 33097507 DOI: 10.1128/aem.02038-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings.IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms.
Collapse
|
14
|
Li CE, Liao CT, Lo HH, Hsiao YM. Functional Characterization and Transcriptional Analysis of clpP of Xanthomonas campestris pv. campestris. Curr Microbiol 2020; 77:2876-2885. [PMID: 32623486 DOI: 10.1007/s00284-020-02093-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/15/2020] [Indexed: 01/24/2023]
Abstract
The caseinolytic protease (Clp) system is essential for survival under stress conditions and for virulence in several pathogenic bacteria. Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen which causes black rot disease in crucifers. In this study, the Xcc clpP gene which is annotated to encode the proteolytic core of Clp was characterized. Mutation of clpP resulted in susceptibility to high temperature and puromycin stresses. Site-directed mutagenesis revealed that S105, H130, and D179 are critical amino acid residues for ClpP function in puromycin tolerance. Inactivation of clpP also revealed an attenuation of virulence on the host plant and a reduction in the production of extracellular cellulase, mannanase, pectinase, and protease. The affected phenotypes of the clpP mutant could be complemented to wild-type levels by the intact clpP gene. Transcriptional analysis revealed that expression of clpP is induced under heat shock condition.
Collapse
Affiliation(s)
- Chih-En Li
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
15
|
Protective Roles of Cytosolic and Plastidal Proteasomes on Abiotic Stress and Pathogen Invasion. PLANTS 2020; 9:plants9070832. [PMID: 32630761 PMCID: PMC7412383 DOI: 10.3390/plants9070832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023]
Abstract
Protein malfunction is typically caused by abiotic stressors. To ensure cell survival during conditions of stress, it is important for plant cells to maintain proteins in their respective functional conformation. Self-compartmentalizing proteases, such as ATP-dependent Clp proteases and proteasomes are designed to act in the crowded cellular environment, and they are responsible for degradation of misfolded or damaged proteins within the cell. During different types of stress conditions, the levels of misfolded or orphaned proteins that are degraded by the 26S proteasome in the cytosol and nucleus and by the Clp proteases in the mitochondria and chloroplasts increase. This allows cells to uphold feedback regulations to cellular-level signals and adjust to altered environmental conditions. In this review, we summarize recent findings on plant proteolytic complexes with respect to their protective functions against abiotic and biotic stressors.
Collapse
|
16
|
Basal-Level Effects of (p)ppGpp in the Absence of Branched-Chain Amino Acids in Actinobacillus pleuropneumoniae. J Bacteriol 2020; 202:JB.00640-19. [PMID: 32015147 DOI: 10.1128/jb.00640-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
The (p)ppGpp-mediated stringent response (SR) is a highly conserved regulatory mechanism in bacterial pathogens, enabling adaptation to adverse environments, and is linked to pathogenesis. Actinobacillus pleuropneumoniae can cause damage to the lungs of pigs, its only known natural host. Pig lungs are known to have a low concentration of free branched-chain amino acids (BCAAs) compared to the level in plasma. We had investigated the role for (p)ppGpp in viability and biofilm formation of A. pleuropneumoniae Now, we sought to determine whether (p)ppGpp was a trigger signal for the SR in A. pleuropneumoniae in the absence of BCAAs. Combining transcriptome and phenotypic analyses of the wild type (WT) and an relA spoT double mutant [which does not produce (p)ppGpp], we found that (p)ppGpp could repress de novo purine biosynthesis and activate antioxidant pathways. There was a positive correlation between GTP and endogenous hydrogen peroxide content. Furthermore, the growth, viability, morphology, and virulence were altered by the inability to produce (p)ppGpp. Genes involved in the biosynthesis of BCAAs were constitutively upregulated, regardless of the existence of BCAAs, without accumulation of (p)ppGpp beyond a basal level. Collectively, our study shows that the absence of BCAAs was not a sufficient signal to trigger the SR in A. pleuropneumoniae (p)ppGpp-mediated regulation in A. pleuropneumoniae is different from that described for the model organism Escherichia coli Further work will establish whether the (p)ppGpp-dependent SR mechanism in A. pleuropneumoniae is conserved among other veterinary pathogens, especially those in the Pasteurellaceae family.IMPORTANCE (p)ppGpp is a key player in reprogramming transcriptomes to respond to nutritional challenges. Here, we present transcriptional and phenotypic differences of A. pleuropneumoniae grown in different chemically defined media in the absence of (p)ppGpp. We show that the deprivation of branched-chain amino acids (BCAAs) does not elicit a change in the basal-level (p)ppGpp, but this level is sufficient to regulate the expression of BCAA biosynthesis. The mechanism found in A. pleuropneumoniae is different from that of the model organism Escherichia coli but similar to that found in some Gram-positive bacteria. This study not only broadens the research scope of (p)ppGpp but also further validates the complexity and multiplicity of (p)ppGpp regulation in microorganisms that occupy different biological niches.
Collapse
|
17
|
Zheng J, Wu Y, Lin Z, Wang G, Jiang S, Sun X, Tu H, Yu Z, Qu D. ClpP participates in stress tolerance, biofilm formation, antimicrobial tolerance, and virulence of Enterococcus faecalis. BMC Microbiol 2020; 20:30. [PMID: 32033530 PMCID: PMC7006429 DOI: 10.1186/s12866-020-1719-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background ClpP is important for bacterial growth and plays an indispensable role in cellular protein quality control systems by refolding or degrading damaged proteins, but the physiological significance of ClpP in Enterococcus faecalis remains obscure. A clpP deletion mutant (△clpP) was constructed using the E. faecalis OG1RF strain to clarify the effect of ClpP on E. faecalis. The global abundance of proteins was determined by a mass spectrometer with tandem mass tag labeling. Results The ΔclpP mutant strain showed impaired growth at 20 °C or 45 °C at 5% NaCl or 2 mM H2O2. The number of surviving ΔclpP mutants decreased after exposure to the high concentration (50× minimal inhibitory concentration) of linezolid or minocycline for 96 h. The ΔclpP mutant strain also demonstrated decreased biofilm formation but increased virulence in a Galleria mellonella model. The mass spectrometry proteomics data indicated that the abundances of 135 proteins changed (111 increased, 24 decreased) in the ΔclpP mutant strain. Among those, the abundances of stress response or virulence relating proteins: FsrA response regulator, gelatinase GelE, regulatory protein Spx (spxA), heat-inducible transcription repressor HrcA, transcriptional regulator CtsR, ATPase/chaperone ClpC, acetyl esterase/lipase, and chaperonin GroEL increased in the ΔclpP mutant strain; however, the abundances of ribosomal protein L4/L1 family protein (rplD), ribosomal protein L7/L12 (rplL2), 50S ribosomal protein L13 (rplM), L18 (rplR), L20 (rplT), 30S ribosomal protein S14 (rpsN2) and S18 (rpsR) all decreased. The abundances of biofilm formation-related adapter protein MecA increased, while the abundances of dihydroorotase (pyrC), orotate phosphoribosyltransferase (pyrE), and orotidine-5′-phosphate decarboxylase (pyrF) all decreased in the ΔclpP mutant strain. Conclusion The present study demonstrates that ClpP participates in stress tolerance, biofilm formation, antimicrobial tolerance, and virulence of E. faecalis.
Collapse
Affiliation(s)
- Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zhiwei Lin
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Guangfu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Sibo Jiang
- Department of Pharmaceutics, University of Florida, Orlando, 32827, USA
| | - Xiang Sun
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Haopeng Tu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Zhang B, Ku X, Zhang X, Zhang Y, Chen G, Chen F, Zeng W, Li J, Zhu L, He Q. The AI-2/ luxS Quorum Sensing System Affects the Growth Characteristics, Biofilm Formation, and Virulence of Haemophilus parasuis. Front Cell Infect Microbiol 2019; 9:62. [PMID: 30941317 PMCID: PMC6434701 DOI: 10.3389/fcimb.2019.00062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Haemophilus parasuis (H. parasuis) is a kind of opportunistic pathogen of the upper respiratory tract of piglets. Under certain circumstances, virulent strains can breach the mucosal barrier and enter the bloodstream, causing severe Glässer's disease. Many virulence factors are found to be related to the pathogenicity of H. parasuis strain, but the pathogenic mechanism remains unclear. LuxS/AI-2, as a kind of very important quorum sensing system, affects the growth characteristics, biofilm formation, antibiotic production, virulence, and metabolism of different strains. In order to investigate the effect of luxS/AI-2 quorum sensing system on the virulence of H. parasuis, a deletion mutant strain (ΔluxS) and complemented strain (C-luxS) were constructed and characterized. The results showed that the luxS gene participated in regulating and controlling stress resistance, biofilm formation and virulence. Compared with wild-type strain, ΔluxS strain decreased the production of AI-2 molecules and the tolerance toward oxidative stress and heat shock, and it reduced the abilities of autoagglutination, hemagglutination, and adherence, whereas it increased the abilities to form biofilm in vitro. In vivo experiments showed that ΔluxS strain attenuated its virulence about 10-folds and significantly decreased its tissue burden of bacteria in mice, compared with the wild-type strain. Taken together, the luxS/AI-2 quorum sensing system in H. parasuis not only plays an important role in growth and biofilm formation, but also affects the pathogenicity of H. parasuis.
Collapse
Affiliation(s)
- Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xugang Ku
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqian Zhang
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- College of Animal Sciences and Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Guo Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhu
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
He L, Wang H, Zhang R, Li H. The regulation of Porphyromonas gingivalis biofilm formation by ClpP. Biochem Biophys Res Commun 2018; 509:335-340. [PMID: 30579592 DOI: 10.1016/j.bbrc.2018.12.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Porphyromonas gingivalis is one of the most commonly detected pathogens in periodontal disease and root canal infections. Its viability and pathogenicity are greatly increased in plaque biofilms. Some caseinolytic proteases (Clp) reportedly regulate biofilm formation by various pathogenic bacteria, including P. gingivalis. However, the specific influence of ClpP and its mechanism of regulating biofilm formation by P. gingivalis remains unclear. Hence, in this study, a clpP deletion strain and complemented strain were constructed by homologous recombination, and an in vitro biofilm model was established. Biofilm architecture was observed by scanning electron microscopy. Bacterial cells within the biofilms were examined using confocal scanning laser microscopy. Crystal violet staining was used to determine the amount of formed biofilm. mRNA levels of related regulatory genes were assessed using real-time PCR. The clpP deletion and complemented strains of P. gingivalis were successfully constructed. The biofilm formation ability of the deletion strain was significantly reduced compared with that of the wild-type strain, while that of the complemented strain did not differ from that of the wild-type strain. The expression of fimA, mfa1, and luxS in the deletion strain was lower than in the wild-type and complemented strains at each timepoint. It can be concluded that ClpP increases the biofilm formation of P. gingivalis by regulating the expression levels of fimA, mfa1, and luxS.
Collapse
Affiliation(s)
- Lu He
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Hongyuan Wang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ru Zhang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Hong Li
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
20
|
He L, Dai K, Wen X, Ding L, Cao S, Huang X, Wu R, Zhao Q, Huang Y, Yan Q, Ma X, Han X, Wen Y. QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis. Front Microbiol 2018; 9:212. [PMID: 29487590 PMCID: PMC5816903 DOI: 10.3389/fmicb.2018.00212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Haemophilus parasuis is known as a commensal organism discovered in the upper respiratory tract of swine where the pathogenic bacteria survive in various adverse environmental stress. QseC, a histidine protein kinase of the two-component regulatory systems CheY/QseC, is involved in the environmental adaptation in bacteria. To investigate the role of QseC in coping with the adverse environment stresses and survive in the host, we constructed a qseC mutant of H. parasuis serovar 13 strain (ΔqseC), MY1902. In this study, we found that QseC was involved in stress tolerance of H. parasuis, by the ΔqseC exhibited a decreased resistance to osmotic pressure, oxidative stress, and heat shock. Moreover, the ΔqseC weakened the ability to take up iron and biofilm formation. We also found that the QseC participate in sensing the epinephrine in environment to regulate the density of H. parasuis.
Collapse
Affiliation(s)
- Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingqiang Ding
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development. Anim Health Res Rev 2017; 19:17-30. [DOI: 10.1017/s146625231700010x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractActinobacillus pleuropneumoniae is a Gram-negative bacterium that belongs to the family Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, a highly contagious respiratory disease that is responsible for major economic losses in the global pork industry. The disease may present itself as a chronic or an acute infection characterized by severe pathology, including hemorrhage, fibrinous and necrotic lung lesions, and, in the worst cases, rapid death. A. pleuropneumoniae is transmitted via aerosol route, direct contact with infected pigs, and by the farm environment. Many virulence factors associated with this bacterium are well characterized. However, much less is known about the role of biofilm, a sessile mode of growth that may have a critical impact on A. pleuropneumoniae pathogenicity. Here we review the current knowledge on A. pleuropneumoniae biofilm, factors associated with biofilm formation and dispersion, and the impact of biofilm on the pathogenesis A. pleuropneumoniae. We also provide an overview of current vaccination strategies against A. pleuropneumoniae and consider the possible role of biofilms vaccines for controlling the disease.
Collapse
|
22
|
Li Y, Cao S, Zhang L, Yuan J, Yang Y, Zhu Z, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Huang Y, Ma X, Wen X. TolC2 is required for the resistance, colonization and virulence of Actinobacillus pleuropneumoniae. J Med Microbiol 2017; 66:1170-1176. [DOI: 10.1099/jmm.0.000544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ying Li
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Luhua Zhang
- College of Preclinical Medicine, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, PR China
| | - Jianlin Yuan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Yusheng Yang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Zhuang Zhu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Xiaoping Ma
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, PR China
| |
Collapse
|
23
|
Polyamine-binding protein PotD2 is required for stress tolerance and virulence in Actinobacillus pleuropneumoniae. Antonie van Leeuwenhoek 2017; 110:1647-1657. [DOI: 10.1007/s10482-017-0914-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|
24
|
Xie F, Li G, Wang Y, Zhang Y, Zhou L, Wang C, Liu S, Liu S, Wang C. Pyridoxal phosphate synthases PdxS/PdxT are required for Actinobacillus pleuropneumoniae viability, stress tolerance and virulence. PLoS One 2017; 12:e0176374. [PMID: 28448619 PMCID: PMC5407770 DOI: 10.1371/journal.pone.0176374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/10/2017] [Indexed: 11/29/2022] Open
Abstract
Pyridoxal 5’-phosphate (PLP) is an essential cofactor for numerous enzymes involved in a diversity of cellular processes in living organisms. Previous analysis of the Actinobacillus pleuropneumoniae S-8 genome sequence revealed the presence of pdxS and pdxT genes, which are implicated in deoxyxylulose 5-phosphate (DXP)-independent pathway of PLP biosynthesis; however, little is known about their roles in A. pleuropneumoniae pathogenicity. Our data demonstrated that A. pleuropneumoniae could synthesize PLP by PdxS and PdxT enzymes. Disruption of the pdxS and pdxT genes rendered the pathogen auxotrophic for PLP, and the defective growth as a result of these mutants was chemically compensated by the addition of PLP, suggesting the importance of PLP production for A. pleuropneumoniae growth and viability. Additionally, the pdxS and pdxT deletion mutants displayed morphological defects as indicated by irregular and aberrant shapes in the absence of PLP. The reduced growth of the pdxS and pdxT deletion mutants under osmotic and oxidative stress conditions suggests that the PLP synthases PdxS/PdxT are associated with the stress tolerance of A. pleuropneumoniae. Furthermore, disruption of the PLP biosynthesis pathway led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. The data presented in this study reveal the critical role of PLP synthases PdxS/PdxT in viability, stress tolerance, and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yalei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chengcheng Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Shuanghong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- * E-mail:
| |
Collapse
|
25
|
Wang Y, Lu T, Yin X, Zhou Z, Li S, Liu M, Hu S, Bi D, Li Z. A Novel RAYM_RS09735/RAYM_RS09740 Two-Component Signaling System Regulates Gene Expression and Virulence in Riemerella anatipestifer. Front Microbiol 2017; 8:688. [PMID: 28484437 PMCID: PMC5399024 DOI: 10.3389/fmicb.2017.00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/04/2017] [Indexed: 02/02/2023] Open
Abstract
The Gram-negative bacterium Riemerella anatipestifer is an important waterfowl pathogen, causing major economic losses to the duck-producing industry. However, little is known of the virulence factors that mediate pathogenesis during R. anatipestifer infection. In this study, RAYM_RS09735 and RAYM_RS09740 were predicted to form a two-component signaling system (TCS) through bioinformatics analysis. This TCS was highly conserved across the Flavobacteriaceae. A mutant YMΔRS09735/RS09740 strain was constructed to investigate the role of the RAYM_RS09735/RAYM_RS09740 TCS in R. anatipestifer virulence and gene regulation. The median lethal dose (LD50) of YMΔRS09735/RS09740 was found to be >1011 CFU, equivalent to that of avirulent bacterial strains. The bacterial abundances of the YMΔRS09735/RS09740 strain in the heart, brain, liver, blood, and spleen were significantly lower than that of the wild-type R. anatipestifer YM strain. Pathological analysis using hematoxylin and eosin staining showed that, compared to the wild-type, the mutant YMΔRS09735/RS09740 strain caused significantly less virulence in infected ducklings. RNAseq and real-time PCR analysis indicated that the RAYM_RS09735/RAYM_RS09740 TCS is a PhoP/PhoR system. This is a novel type of TCS for Gram-negative bacteria. The TCS was also found to be a global regulator of expression in R. anatipestifer, with 112 genes up-regulated and 693 genes down-regulated in the YMΔRS09735/RS09740 strain (~33% genes demonstrated differential expression). In summary, we have reported the first PhoP/PhoR TCS identified in a Gram-negative bacterium and demonstrated that it is involved in virulence and gene regulation in R. anatipestifer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Ti Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xuehuan Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zutao Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Shaowen Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Mei Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Sishun Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Dingren Bi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zili Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
26
|
Tekedar HC, Karsi A, Reddy JS, Nho SW, Kalindamar S, Lawrence ML. Comparative Genomics and Transcriptional Analysis of Flavobacterium columnare Strain ATCC 49512. Front Microbiol 2017; 8:588. [PMID: 28469601 PMCID: PMC5395568 DOI: 10.3389/fmicb.2017.00588] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Flavobacterium columnare is a Gram-negative fish pathogen causing columnaris disease in wild and cultured fish species. Although the pathogen is widespread in aquatic environments and fish worldwide, little is known about biology of F. columnare and mechanisms of columnaris disease pathogenesis. Previously we presented the complete genome sequence of F. columnare strain ATCC 49512. Here we present a comparison of the strain ATCC 49512 genome to four other Flavobacterium genomes. In this analysis, we identified predicted proteins whose functions indicate F. columnare is capable of denitrification, which would enable anaerobic growth in aquatic pond sediments. Anaerobic growth of F. columnare ATCC 49512 with nitrate supplementation was detected experimentally. F. columnare ATCC 49512 had a relatively high number of insertion sequences and genomic islands compared to the other Flavobacterium species, suggesting a larger degree of horizontal gene exchange and genome plasticity. A type VI subtype III secretion system was encoded in F. columnare along with F. johnsoniae and F. branchiophilum. RNA sequencing proved to be a valuable technique to improve annotation quality; 41 novel protein coding regions were identified, 16 of which had a non-traditional start site (TTG, GTG, and CTT). Candidate small noncoding RNAs were also identified. Our results improve our understanding of F. columnare ATCC 49512 biology, and our results support the use of RNA sequencing to improve annotation of bacterial genomes, particularly for type strains.
Collapse
Affiliation(s)
- Hasan C Tekedar
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Attila Karsi
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Joseph S Reddy
- Mayo Clinic, Department of Health Sciences ResearchJacksonville, FL, USA
| | - Seong W Nho
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Safak Kalindamar
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| |
Collapse
|
27
|
Wang L, Zhao X, Zhu C, Xia X, Qin W, Li M, Wang T, Chen S, Xu Y, Hang B, Sun Y, Jiang J, Richard LP, Lei L, Zhang G, Hu J. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Vet Microbiol 2017; 203:202-210. [PMID: 28619145 DOI: 10.1016/j.vetmic.2017.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of the highly contagious and deadly respiratory infection porcine pleuropneumonia, resulting in serious losses to the pig industry worldwide. Alternative to antibiotics are urgently needed due to the serious increase in antimicrobial resistance. Thymol is a monoterpene phenol and efficiently kills a variety of bacteria. This study found that thymol has strong bactericidal effects on the A. pleuropneumoniae 5b serotype strain, an epidemic strain in China. Sterilization occurred rapidly, and the minimum inhibitory concentration (MIC) is 31.25μg/mL; the A. pleuropneumoniae density was reduced 1000 times within 10min following treatment with 1 MIC. Transmission electron microscopy (TEM) analysis revealed that thymol could rapidly disrupt the cell walls and cell membranes of A. pleuropneumoniae, causing leakage of cell contents and cell death. In addition, treatment with thymol at 0.5 MIC significantly reduced the biofilm formation of A. pleuropneumoniae. Quantitative RT-PCR results indicated that thymol treatment significantly increased the expression of the virulence genes purC, tbpB1 and clpP and down-regulated ApxI, ApxII and Apa1 expression in A. pleuropneumoniae. Therapeutic analysis of a murine model showed that thymol (20mg/kg) protected mice from a lethal dose of A. pleuropneumoniae, attenuated lung pathological lesions. This study is the first to report the use of thymol to treat A. pleuropneumoniae infection, establishing a foundation for the development of new antimicrobials.
Collapse
Affiliation(s)
- Lei Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R.China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaojing Xia
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanhai Qin
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongzhao Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanzhao Xu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | | | - Liancheng Lei
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R.China.
| | - Jianhe Hu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
28
|
Xie F, Li G, Zhou L, Zhang Y, Cui N, Liu S, Wang C. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge. BMC Vet Res 2017; 13:14. [PMID: 28061786 PMCID: PMC5219649 DOI: 10.1186/s12917-016-0928-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, which leads to large economic losses to the swine industry worldwide. In this study, S-8△clpP△apxIIC, a double-deletion mutant of A. pleuropneumoniae was constructed, and its safety and protective efficacy were evaluated in pigs. Results The S-8△clpP△apxIIC mutant exhibited attenuated virulence in a murine (BALB/c) model, and caused no detrimental effects on pigs even at a dose of up to 1.0 × 109 CFU. Furthermore, the S-8△clpP△apxIIC mutant was able to induce a strong immune response in pigs, which included high levels of IgG1 and IgG2, stimulated gamma interferon (IFN-γ), interleukin 12 (IL-12), and interleukin 4 (IL-4) production, and conferred effective protection against the lethal challenge with A. pleuropneumoniae serovars 7 or 5a. The pigs in the S-8△clpP△apxIIC immunized groups have no lesions and reduced bacterial loads in the lung tissue after challenge. Conclusions The data obtained in this study suggest that the S-8△clpP△apxIIC mutant can serve as a highly immunogenic and potential live attenuated vaccine candidate against A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Ning Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
29
|
Pang M, Lin X, Liu J, Guo C, Gao S, Du H, Lu C, Liu Y. Identification of Aeromonas hydrophila Genes Preferentially Expressed after Phagocytosis by Tetrahymena and Involvement of Methionine Sulfoxide Reductases. Front Cell Infect Microbiol 2016; 6:199. [PMID: 28083518 PMCID: PMC5183988 DOI: 10.3389/fcimb.2016.00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023] Open
Abstract
Free-living protozoa affect the survival and virulence evolution of pathogens in the environment. In this study, we explored the fate of Aeromonas hydrophila when co-cultured with the bacteriovorous ciliate Tetrahymena thermophila and investigated bacterial gene expression associated with the co-culture. Virulent A. hydrophila strains were found to have ability to evade digestion in the vacuoles of this protozoan. In A. hydrophila, a total of 116 genes were identified as up-regulated following co-culture with T. thermophila by selective capture of transcribed sequences (SCOTS) and comparative dot-blot analysis. A large proportion of these genes (42/116) play a role in metabolism, and some of the genes have previously been characterized as required for bacterial survival and replication within macrophages. Then, we inactivated the genes encoding methionine sulfoxide reductases, msrA, and msrB, in A. hydrophila. Compared to the wild-type, the mutants ΔmsrA and ΔmsrAB displayed significantly reduced resistance to predation by T. thermophila, and 50% lethal dose (LD50) determinations in zebrafish demonstrated that both mutants were highly attenuated. This study forms a solid foundation for the study of mechanisms and implications of bacterial defenses.
Collapse
Affiliation(s)
- Maoda Pang
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Xiaoqin Lin
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jin Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Changming Guo
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Shanshan Gao
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Hechao Du
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yongjie Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
30
|
Zhao L, Gao X, Liu C, Lv X, Jiang N, Zheng S. Deletion of the vacJ gene affects the biology and virulence in Haemophilus parasuis serovar 5. Gene 2016; 603:42-53. [PMID: 27988234 DOI: 10.1016/j.gene.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/28/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Haemophilus parasuis is an important pathogen causing severe infections in pigs. However, the specific bacterial factors that participate in pathogenic process are poorly understood. VacJ protein is a recently discovered outer membrane lipoprotein that relates to virulence in several pathogens. To characterize the function of the vacJ gene in H. parasuis virulent strain HS49, a vacJ gene-deletion mutant ΔvacJ and its complemented strain were constructed. Our findings supported that VacJ is essential for maintenance of cellular integrity and stress tolerance of H. parasuis, by the demonstrations that the ΔvacJ mutant showed morphological change, increased NPN fluorescence and, and decreased resistance to SDS-EDTA, osmotic and oxidation pressure. The increased susceptibility to several antibiotics in the ΔvacJ mutant further suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. Compared to the wild-type strain, the ΔvacJ mutant strain caused a decreased survival ratio from the serum and complement killing, and exhibited a significant decrease ability to adhere to and invade PK-15 cell. In addition, the ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. Furthermore, the ΔvacJ was attenuated in a murine (Balb/C) model of infection and its LD50 value was approximately fifteen-fold higher than that of the wild-type or complementation strain. The data obtained in this study indicate that vacJ plays an essential role in maintaining outer membrane integrity, stress tolerance, biofilm formation, serum resistance, and adherence to and invasion of host cells related to H. parasuis and further suggest a putative role of VacJ lipoprotein in virulence regulation.
Collapse
Affiliation(s)
- Liangyou Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China; Drug Safety Evaluation Center of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Xueli Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chaonan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Nan Jiang
- College of Life Science and Technology, Dalian University, Dalian 116622, People's Republic of China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
31
|
Li Y, Cao S, Zhang L, Lau GW, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Huang Y, Wen X. A TolC-Like Protein of Actinobacillus pleuropneumoniae Is Involved in Antibiotic Resistance and Biofilm Formation. Front Microbiol 2016; 7:1618. [PMID: 27822201 PMCID: PMC5075564 DOI: 10.3389/fmicb.2016.01618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a significant disease that causes serious economic losses to the swine industry worldwide. Persistent infections caused by bacterial biofilms are recalcitrant to treat because of the particular drug resistance of biofilm-dwelling cells. TolC, a key component of multidrug efflux pumps, are responsible for multidrug resistance (MDR) in many Gram-negative bacteria. In this study, we identified two TolC-like proteins, TolC1 and TolC2, in A. pleuropneumoniae. Deletion of tolC1, but not tolC2, caused a significant reduction in biofilm formation, as well as increased drug sensitivity of both planktonic and biofilm cells. The genetic-complementation of the tolC1 mutation restored the competent biofilm and drug resistance. Besides, biofilm formation was inhibited and drug sensitivity was increased by the addition of phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux pump inhibitor (EPI), suggesting a role for EPI in antibacterial strategies toward drug tolerance of A. pleuropneumoniae. Taken together, TolC1 is required for biofilm formation and is a part of the MDR machinery of both planktonic and biofilm cells, which could supplement therapeutic strategies for resistant bacteria and biofilm-related infections of A. pleuropneumoniae clinical isolate SC1516.
Collapse
Affiliation(s)
- Ying Li
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Luhua Zhang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Department of Pathobiology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| |
Collapse
|
32
|
Ding L, Wen X, He L, Yan X, Wen Y, Cao S, Huang X, Wu R, Wen Y. The arcA gene contributes to the serum resistance and virulence of Haemophilus parasuis serovar 13 clinical strain EP3. Vet Microbiol 2016; 196:67-71. [PMID: 27939158 DOI: 10.1016/j.vetmic.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/25/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
As a global transcriptional factor, ArcA regulates the expression of hundreds of genes involved in aerobic and anaerobic metabolism. Here we deleted arcA gene and investigated the biological characteristics of arcA deletion mutant (ΔarcA) in Haemophilus parasuis (H. parasuis) serovar 13 clinical strain EP3. Results indicated that deletion of arcA impaired growth of EP3 strain under anaerobic condition, and reduced virulence of EP3 strain in mice. Additionally, the ΔarcA strain showed greater sensitivity in porcine serum and produced less biofilm mass than the EP3 strain. Taken together, these findings suggested that the arcA gene may be involved in pathogenesis in Haemophilus parasuis.
Collapse
Affiliation(s)
- Lingqiang Ding
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuefeng Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yongping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Li Y, Cao S, Zhang L, Yuan J, Lau GW, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Huang Y, Wen X. Absence of TolC Impairs Biofilm Formation in Actinobacillus pleuropneumoniae by Reducing Initial Attachment. PLoS One 2016; 11:e0163364. [PMID: 27681876 PMCID: PMC5040401 DOI: 10.1371/journal.pone.0163364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a major cause of economic loss in swine industry worldwide. TolC, the key component of multidrug efflux pumps and type I secretion systems, has been well-studied as an exit duct for numerous substances in many Gram-negative bacteria. By contrast, little is known on the role of TolC in biofilm formation. In this study, a ΔtolC mutant was used to examine the importance of TolC in biofilm formation of A. pleuropneumoniae. Surface attachment assays demonstrated the essential role of TolC in initial attachment of biofilm cells. The loss of TolC function altered surface hydrophobicity, and resulted in greatly reduced autoaggregation in ΔtolC. Using both enzymatic treatments and confocal microscopy, biofilm composition and architecture were characterized. When compared against the wild-type strain, the poly-β-1, 6-N-acetyl-D-glucosamine (PGA), an important biofilm matrix component of A. pleuropneumoniae, was significantly reduced at the initial attachment stage in ΔtolC. These results were confirmed by mRNA level using quantitative RT-PCR. Additionally, defective secretion systems in ΔtolC may also contribute to the deficiency in biofilm formation. Taken together, the current study demonstrated the importance of TolC in the initial biofilm formation stage in A. pleuropneumoniae. These findings could have important clinical implications in developing new treatments against biofilm-related infections by A. pleuropneumoniae.
Collapse
Affiliation(s)
- Ying Li
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Luhua Zhang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jianlin Yuan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- * E-mail:
| |
Collapse
|
34
|
Xie F, Li G, Zhang Y, Zhou L, Liu S, Liu S, Wang C. The Lon protease homologue LonA, not LonC, contributes to the stress tolerance and biofilm formation of Actinobacillus pleuropneumoniae. Microb Pathog 2016; 93:38-43. [PMID: 26796296 DOI: 10.1016/j.micpath.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 01/11/2016] [Indexed: 01/09/2023]
Abstract
Lon proteases are a family of ATP-dependent proteases that are involved in the degradation of abnormal proteins in bacteria exposed to adverse environmental stress. An analysis of the genome sequence of Actinobacillus pleuropneumoniae revealed the unusual presence of two putative ATP-dependent Lon homologues, LonA and LonC. Sequence comparisons indicated that LonA has the classical domain organization of the LonA subfamily, which includes the N-terminal domain, central ATPase (AAA) domain, and C-terminal proteolytic (P) domain. LonC belongs to the recently classified LonC subfamily, which includes Lon proteases that contain neither the N-terminal domain of LonA nor the transmembrane region that is present only in LonB subfamily members. To investigate the roles of LonA and LonC in A. pleuropneumoniae, mutants with deletions in the lonA and lonC genes were constructed. The impaired growth of the △lonA mutant exposed to low and high temperatures and osmotic and oxidative stress conditions indicates that the LonA protease is required for the stress tolerance of A. pleuropneumoniae. Furthermore, the △lonA mutant exhibited significantly reduced biofilm formation compared to the wild-type strain. However, no significant differences in stress responses or biofilm formation were observed between the △lonC mutant and the wild-type strain. The △lonA mutant exhibited reduced colonization ability and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model compared to the wild-type strain. Disruption of lonC gene did not significantly influence the colonization and virulence of A. pleuropneumoniae. The data presented in this study illustrate that the LonA protease, but not the LonC protease, is required for the stress tolerance, biofilm formation and pathogenicity of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Shuanghong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China.
| |
Collapse
|
35
|
ClpP participates in stress tolerance and negatively regulates biofilm formation in Haemophilus parasuis. Vet Microbiol 2016; 182:141-9. [DOI: 10.1016/j.vetmic.2015.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/22/2022]
|
36
|
Hu X, Yan H, Liu K, Hu J, Qi C, Yang J, Liu Y, Zhao J, Liu J. Identification and characterization of a novel stress-responsive outer membrane protein Lip40 from Actinobacillus pleuropneumoniae. BMC Biotechnol 2015; 15:106. [PMID: 26608465 PMCID: PMC4660844 DOI: 10.1186/s12896-015-0199-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 01/30/2023] Open
Abstract
Background Actinobacillus pleuropneumoniae, a Gram-negative bacterium, is the causative agent of porcine pleuropneumonia, a highly contagious and often fatal disease. Because current vaccines confer limited protection against A. pleuropneumoniae infection, the development of more effective vaccines is urgently required. The identification of immunogenic and protective antigens, such as an outer-membrane lipoprotein, will advance this purpose. Results Sixty putative lipoproteins were predicted from the genomic sequence of A. pleuropneumoniae using multiple algorithms. Here, we focused on the characteristics of the putative lipoprotein Lip40 from A. pleuropneumoniae strain SLW01 (serovar 1). Lip40 shares sequence similarity with many bacterial lipoproteins, and the structural prediction of Lip40 suggests that it is similar to A. pleuropneumoniae TbpB. The N-terminus of Lip40 contains an interesting tandemly repeated sequence, Q(E/D/P)QPK. Real-time RT–PCR indicated that the expression of lip40 was significantly upregulated at 42 °C, at 16 °C, and under anaerobic conditions. Recombinant Lip40 (rLip40) produced in Escherichia coli BL21(DE3) was specifically recognized by porcine convalescent serum directed against A. pleuropneumoniae. Lip40 was confirmed to localize at the bacterial outer membrane, and its expression was significantly stimulated when A. pleuropneumoniae was cultured under various stress conditions. Lip40 also protected 75 % of mice from fatal virulent A. pleuropneumoniae infection. Conclusions The immunogenic outer-membrane protein Lip40 is stress responsive, protects mice against infection, and might be a virulence determinant. Further investigation of Lip40 should expedite vaccine development and provide insight into the pathogenesis of A. pleuropneumoniae. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuehe Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Hao Yan
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Ke Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jiansheng Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Chao Qi
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jihong Yang
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Yanli Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jin Zhao
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jinlin Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
37
|
Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae. Vet Microbiol 2015; 183:1-8. [PMID: 26790928 DOI: 10.1016/j.vetmic.2015.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/21/2022]
Abstract
The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae.
Collapse
|
38
|
Li G, Xie F, Zhang Y, Bossé JT, Langford PR, Wang C. Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8. PLoS One 2015; 10:e0141501. [PMID: 26509499 PMCID: PMC4624843 DOI: 10.1371/journal.pone.0141501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/08/2015] [Indexed: 12/04/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5’-diphosphate 3’-diphosphate (ppGpp) and guanosine 5’-triphosphate 3’-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae.
Collapse
Affiliation(s)
- Gang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Janine T. Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Chunlai Wang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
39
|
The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity. Vet Microbiol 2015; 177:175-83. [DOI: 10.1016/j.vetmic.2015.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 11/24/2022]
|
40
|
Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets. Microb Pathog 2014; 78:74-86. [PMID: 25435362 DOI: 10.1016/j.micpath.2014.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 11/21/2022]
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p < 0.05). The up-regulated genes are involved in energy metabolism, gene transcription and translation, virulence related gene such as LPS, Trimeric Autotransporter Adhesin, RTX and similar genes. The down-regulated genes are involved in amino acid, cofactor, and vitamin metabolism, and also include ABC transporters. These data demonstrate that A. pleuropneumoniae induces apoptosis of PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified, suggesting new strategies for the development of vaccines and medicines for both preventive and clinical use.
Collapse
|
41
|
Abstract
EF4, a highly conserved protein present in bacteria, mitochondria and chloroplasts, can bind to both the posttranslocation and pretranslocation ribosomal complexes. When binding to the posttranslocation state, it catalyzes backward translocation to a pretranslocation state. When binding to the pretranslocation state, it catalyzes transition to another pretranslocation state that is similar and possibly identical to that resulting from the posttranslocation state bound by EF4, and competes with EF-G to regulate the elongation cycle. However, the molecular mechanism on how EF4 induces state transitions and mRNA translocation remains unclear. Here, we present both the model for state transitions induced by EF4 binding to the posttranslocation state and that by EF4 binding to the pretranslocation state, based on which we study the kinetics of EF4-induced state transitions and mRNA translocation, giving quantitative explanations of the available experimental data. Moreover, we present some predicted results on state transitions and mRNA translocation induced by EF4 binding to the pretranslocation state complexed with the mRNA containing a duplex region.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
42
|
Compton CL, Schmitz KR, Sauer RT, Sello JK. Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. ACS Chem Biol 2013; 8:2669-77. [PMID: 24047344 DOI: 10.1021/cb400577b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is rapidly mounting evidence that intracellular proteases in bacteria are compelling targets for antibacterial drugs. Multiple reports suggest that the human pathogen Mycobacterium tuberculosis and other actinobacteria may be particularly sensitive to small molecules that perturb the activities of self-compartmentalized peptidases, which catalyze intracellular protein turnover as components of ATP-dependent proteolytic machines. Here, we report chemical syntheses and evaluations of structurally diverse β-lactones, which have a privileged structure for selective, suicide inhibition of the self-compartmentalized ClpP peptidase. β-Lactones with certain substituents on the α- and β-carbons were found to be toxic to M. tuberculosis. Using an affinity-labeled analogue of a bioactive β-lactone in a series of chemical proteomic experiments, we selectively captured the ClpP1P2 peptidase from live cultures of two different actinobacteria that are related to M. tuberculosis. Importantly, we found that the growth inhibitory β-lactones also inactivate the M. tuberculosis ClpP1P2 peptidase in vitro via formation of a covalent adduct at the ClpP2 catalytic serine. Given the potent antibacterial activity of these compounds and their medicinal potential, we sought to identify innate mechanisms of resistance. Using a genome mining strategy, we identified a genetic determinant of β-lactone resistance in Streptomyces coelicolor, a non-pathogenic relative of M. tuberculosis. Collectively, these findings validate the potential of ClpP inhibition as a strategy in antibacterial drug development and define a mechanism by which bacteria could resist the toxic effects of ClpP inhibitors.
Collapse
Affiliation(s)
- Corey L. Compton
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Karl R. Schmitz
- Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert T. Sauer
- Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jason K. Sello
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
43
|
Tremblay YDN, Deslandes V, Jacques M. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus. BMC Genomics 2013; 14:364. [PMID: 23725589 PMCID: PMC3671958 DOI: 10.1186/1471-2164-14-364] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Yannick D N Tremblay
- Groupe de recherche sur les maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec J2S 7C6, Canada
| | | | | |
Collapse
|
44
|
Deresinski S. The multiple paths to heteroresistance and intermediate resistance to vancomycin in Staphylococcus aureus. J Infect Dis 2013; 208:7-9. [PMID: 23539742 DOI: 10.1093/infdis/jit136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|