1
|
Aguadé-Gorgorió J, Jami-Alahmadi Y, Calvanese V, Kardouh M, Fares I, Johnson H, Rezek V, Ma F, Magnusson M, Wang Y, Shin JE, Nance KJ, Goodridge HS, Liebscher S, Schenke-Layland K, Crooks GM, Wohlschlegel JA, Mikkola HKA. MYCT1 controls environmental sensing in human haematopoietic stem cells. Nature 2024; 630:412-420. [PMID: 38839950 PMCID: PMC11168926 DOI: 10.1038/s41586-024-07478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.
Collapse
Affiliation(s)
- Júlia Aguadé-Gorgorió
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Pfizer, Cambridge, MA, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Maya Kardouh
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Iman Fares
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Kite Pharma, Santa Monica, CA, USA
| | - Haley Johnson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Valerie Rezek
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- UCLA AIDS Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | - Mattias Magnusson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yanling Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana E Shin
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karina J Nance
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simone Liebscher
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Gay M Crooks
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Manesia JK, Maganti HB, Almoflehi S, Jahan S, Hasan T, Pasha R, McGregor C, Dumont N, Laganière J, Audet J, Pineault N. AA2P-mediated DNA demethylation synergizes with stem cell agonists to promote expansion of hematopoietic stem cells. CELL REPORTS METHODS 2023; 3:100663. [PMID: 38070507 PMCID: PMC10783628 DOI: 10.1016/j.crmeth.2023.100663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/28/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Small molecules have enabled expansion of hematopoietic stem and progenitor cells (HSPCs), but limited knowledge is available on whether these agonists can act synergistically. In this work, we identify a stem cell agonist in AA2P and optimize a series of stem cell agonist cocktails (SCACs) to help promote robust expansion of human HSPCs. We find that SCACs provide strong growth-promoting activities while promoting retention and function of immature HSPC. We show that AA2P-mediated HSPC expansion is driven through DNA demethylation leading to enhanced expression of AXL and GAS6. Further, we demonstrate that GAS6 enhances the serial engraftment activity of HSPCs and show that the GAS6/AXL pathway is critical for robust HSPC expansion.
Collapse
Affiliation(s)
- Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Harinad B Maganti
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Sakhar Almoflehi
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Tanvir Hasan
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Chelsea McGregor
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | | | | | - Julie Audet
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Mao Y, Lei R, Pei H, Zhang Y, Jiang Y, Gu Y, Zhu C, Zhu Z. Identification of module genes and functional pathway analysis in septic shock subtypes by integrated bioinformatics analysis. J Gene Med 2023; 25:e3561. [PMID: 37394280 DOI: 10.1002/jgm.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND The present study aimed to identify the module genes and key gene functions and biological pathways of septic shock (SS) through integrated bioinformatics analysis. METHODS In the study, we performed batch correction and principal component analysis on 282 SS samples and 79 normal control samples in three datasets, GSE26440, GSE95233 and GSE57065, to obtain a combined corrected gene expression matrix containing 21,654 transcripts. Patients with SS were then divided into three molecular subtypes according to sample subtyping analysis. RESULTS By analyzing the demographic characteristics of the different subtypes, we found no statistically significant differences in gender ratio and age composition among the three groups. Then, three subtypes of differentially expressed genes (DEGs) and specific upregulated DEGs (SDEGs) were identified by differential gene expression analysis. We found 7361 DEGs in the type I group, 5594 DEGs in the type II group, and 7159 DEGs in the type III group. There were 1698 SDEGs in the type I group, 2443 in the type II group, and 1831 in the type III group. In addition, we analyzed the correlation between the expression data of 5972 SDEGs in the three subtypes and the gender and age of 227 patients, constructed a weighted gene co-expression network, and identified 11 gene modules, among which the module with the highest correlation with gender ratio was MEgrey. The modules with the highest correlation with age composition were MEgrey60 and MElightyellow. Then, by analyzing the differences in module genes among different subgroups of SS, we obtained the differential expression of 11 module genes in four groups: type I, type II, type III and the control group. Finally, we analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of all module DEGs, and the GO function and KEGG pathway enrichment of different module genes were different. CONCLUSIONS Our findings aim to identify the specific genes and intrinsic molecular functional pathways of SS subtypes, as well as further explore the genetic and molecular pathophysiological mechanisms of SS.
Collapse
Affiliation(s)
- Yujing Mao
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyi Lei
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yepeng Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yumin Jiang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulei Gu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changjv Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Emergency Department and Trauma Engineering Research Center, Henan Provincial, Zhengzhou, China
- Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou, Henan Province, China
| | - Zhiqiang Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Baudet A, Hultmark S, Ek F, Magnusson M. Small Molecule Screening of Primary Human Acute Myeloid Leukemia Using Co-culture and Multiplexed FACS Analysis. Bio Protoc 2022; 12:e4353. [PMID: 35434186 PMCID: PMC8983156 DOI: 10.21769/bioprotoc.4353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/20/2021] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Ex vivo culture of primary acute myeloid leukemia (AML) cells is notoriously difficult due to spontaneous differentiation and cell death, which hinders mechanistic and translational studies. To overcome this bottleneck, we have implemented a co-culture system, where the OP9-M2 stromal cells support the growth, but most notably limit the differentiation of primary AML cells, thus allowing for mechanistic studies in vitro. Additionally, the co-culture on OP9-M2 stromal is superior in preserving surface marker expression of primary (adult and pediatric) AML cells in comparison to stroma-free culture. Thus, by combining the co-culture with multicolor, high-throughput FACS, we can evaluate the effect of hundreds of small molecules on multi-parametric processes including: cell survival, stemness (leukemic stem cells), and myeloid differentiation on the primary AML cells at a single-cell level. This method streamlines the identification of potential therapeutic agents, but also facilitates combinatorial screening aiming, for instance, at dissecting the regulatory pathways in a patient-specific manner. Graphic abstract: Schematic representation of the ex vivo small molecule screening of primary human acute myeloid leukemia. Irradiated, sub-confluent OP9-M2 stromal cells are plated in half-area 96 wells plates 4-16 h prior to adding primary AML cells. Compounds are added 36-48 h later and effects on cell number, leukemic stem cell population, and myeloid differentiation are quantifed by FACS after 4 days of treatment.
Collapse
Affiliation(s)
| | | | - Fredrik Ek
- Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Mattias Magnusson
- Lund Stem Cell Center, Lund University, Lund, Sweden
,
*For correspondence:
| |
Collapse
|
5
|
Hultmark S, Baudet A, Schmiderer L, Prabhala P, Palma-Tortosa S, Sandén C, Fioretos T, Sasidharan R, Larsson C, Lehmann S, Juliusson G, Ek F, Magnusson M. Combinatorial molecule screening identified a novel diterpene and the BET inhibitor CPI-203 as differentiation inducers of primary acute myeloid leukemia cells. Haematologica 2021; 106:2566-2577. [PMID: 32855276 PMCID: PMC8485661 DOI: 10.3324/haematol.2020.249177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Combination treatment has proven effective for patients with acute promyelocytic leukemia, exemplifying the importance of therapy targeting multiple components of oncogenic regulation for a successful outcome. However, recent studies have shown that the mutational complexity of acute myeloid leukemia (AML) precludes the translation of molecular targeting into clinical success. Here, as a complement to genetic profiling, we used unbiased, combinatorial in vitro drug screening to identify pathways that drive AML and to develop personalized combinatorial treatments. First, we screened 513 natural compounds on primary AML cells and identified a novel diterpene (H4) that preferentially induced differentiation of FLT3 wild-type AML, while FLT3-ITD/mutations conferred resistance. The samples responding to H4, displayed increased expression of myeloid markers, a clear decrease in the nuclear-cytoplasmic ratio and the potential of re-activation of the monocytic transcriptional program reducing leukemia propagation in vivo. By combinatorial screening using H4 and molecules with defined targets, we demonstrated that H4 induces differentiation by the activation of the protein kinase C (PKC) signaling pathway, and in line with this, activates PKC phosphorylation and translocation of PKC to the cell membrane. Furthermore, the combinatorial screening identified a bromo- and extra-terminal domain (BET) inhibitor that could further improve H4-dependent leukemic differentiation in FLT3 wild-type monocytic AML. These findings illustrate the value of an unbiased, multiplex screening platform for developing combinatorial therapeutic approaches for AML.
Collapse
Affiliation(s)
- Simon Hultmark
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Aurélie Baudet
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Ludwig Schmiderer
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Pavan Prabhala
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carl Sandén
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Christer Larsson
- Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Skane University Hospital, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Lund University, Lund, Sweden
| | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| |
Collapse
|
6
|
Miyoshi H, Abo K, Hosoya D, Matsuo K, Utsumi Y. Effects of mouse fetal liver cell culture density on hematopoietic cell expansion in three-dimensional cocultures with stromal cells. Int J Artif Organs 2021; 45:103-112. [PMID: 33611956 DOI: 10.1177/0391398821996377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE An effective ex vivo expansion system of primitive hematopoietic cells (HCs) is required for wider application of hematopoietic stem cell transplantation. In this study, we examined effects of culture density on mouse fetal liver cells (FLCs) used as an HC source for the expansion of primitive HCs in three-dimensional (3D) cocultures with two kinds of mouse stromal cell lines (OP9 or C3H10T1/2). MATERIALS AND METHODS FLCs were seeded at different densities (1, 2, and 10 × 107 cells/cm3) into porous polymer scaffolds with or without stromal cell layers and HCs were expanded in the cultures for 2 weeks without exogenous cytokines. RESULTS Differential effects of culture density on HC expansion were observed between cocultures and solitary FLC controls. In stromal cell cocultures, high expansion of HCs was achieved when FLCs were seeded at low densities. In contrast, the expansion in the controls was enhanced with increasing culture densities. With respect to expansion of primitive HCs existing in the FLCs, cocultures with C3H10T1/2 cells were superior to those with OP9 cells with a 29.3-fold expansion for c-kit+ hematopoietic progenitor cells and 8.3-fold expansion for CD34+ hematopoietic stem cells. In the controls, HC expansion was lower than in any cocultures, demonstrating the advantages of coculturing for HC expansion. CONCLUSION Stromal cell lines are useful in expanding primitive HCs derived from FLCs in 3D cocultures. Culture density is a pivotal factor for the effective expansion of primitive HCs and this effect differs by culture condition.
Collapse
Affiliation(s)
- Hirotoshi Miyoshi
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Abo
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Hosoya
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyuki Matsuo
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshio Utsumi
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Calvanese V, Nguyen AT, Bolan TJ, Vavilina A, Su T, Lee LK, Wang Y, Lay FD, Magnusson M, Crooks GM, Kurdistani SK, Mikkola HKA. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 2019; 576:281-286. [PMID: 31776511 DOI: 10.1038/s41586-019-1790-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Limited knowledge of the mechanisms that govern the self-renewal of human haematopoietic stem cells (HSCs), and why this fails in culture, have impeded the expansion of HSCs for transplantation1. Here we identify MLLT3 (also known as AF9) as a crucial regulator of HSCs that is highly enriched in human fetal, neonatal and adult HSCs, but downregulated in culture. Depletion of MLLT3 prevented the maintenance of transplantable human haematopoietic stem or progenitor cells (HSPCs) in culture, whereas stabilizing MLLT3 expression in culture enabled more than 12-fold expansion of transplantable HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Similar to endogenous MLLT3, overexpressed MLLT3 localized to active promoters in HSPCs, sustained levels of H3K79me2 and protected the HSC transcriptional program in culture. MLLT3 thus acts as HSC maintenance factor that links histone reader and modifying activities to modulate HSC gene expression, and may provide a promising approach to expand HSCs for transplantation.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
| | - Andrew T Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy J Bolan
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Anastasia Vavilina
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Trent Su
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Lydia K Lee
- Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yanling Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Mattias Magnusson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Gay M Crooks
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Siavash K Kurdistani
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Daniel MG, Sachs D, Bernitz JM, Fstkchyan Y, Rapp K, Satija N, Law K, Patel F, Gomes AM, Kim HS, Pereira CF, Chen B, Lemischka IR, Moore KA. Induction of human hemogenesis in adult fibroblasts by defined factors and hematopoietic coculture. FEBS Lett 2019; 593:3266-3287. [PMID: 31557312 DOI: 10.1002/1873-3468.13621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF)-based reprogramming of somatic tissues holds great promise for regenerative medicine. Previously, we demonstrated that the TFs GATA2, GFI1B, and FOS convert mouse and human fibroblasts to hemogenic endothelial-like precursors that generate hematopoietic stem progenitor (HSPC)-like cells over time. This conversion is lacking in robustness both in yield and biological function. Herein, we show that inclusion of GFI1 to the reprogramming cocktail significantly expands the HSPC-like population. AFT024 coculture imparts functional potential to these cells and allows quantification of stem cell frequency. Altogether, we demonstrate an improved human hemogenic induction protocol that could provide a valuable human in vitro model of hematopoiesis for disease modeling and a platform for cell-based therapeutics. DATABASE: Gene expression data are available in the Gene Expression Omnibus (GEO) database under the accession number GSE130361.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Sachs
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey M Bernitz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Yesai Fstkchyan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namita Satija
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Law
- Rocket Pharmaceuticals Ltd, New York, NY, USA
| | - Foram Patel
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andreia M Gomes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Huen-Suk Kim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos-Filipe Pereira
- Division of Molecular Medicine and Gene Therapy, Lund University, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | - Benjamin Chen
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, NY, USA
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Vaidya A, Singh S, Limaye L, Kale V. Chimeric feeders of mesenchymal stromal cells and stromal cells modified with constitutively active AKT expand hematopoietic stem cells. Regen Med 2019; 14:535-553. [PMID: 31115264 DOI: 10.2217/rme-2018-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To examine whether AKT-modified stromal cells expand human CD34+ hematopoietic stem cells (HSCs). Methods: Coculture, in vitro functional assays, immuno-fluorescence microscopy, flow cytometry. Results: M2-10B4 stromal cells (M2) modified with AKT1 (M2-AKT) expanded primitive CD34+38- HSCs, but affected their functionality. A chimeric feeder layer comprising naive human bone marrow-derived mesenchymal stromal cells and M2-AKT not only overcame the negative effects of M2-AKT, but, unexpectedly, also gave a synergistic effect on the growth and functionality of the HSCs. Conditioned medium of bone marrow stromal cells worked as effectively, but cell-cell contact between HSCs and M2-AKT cells was necessary for the synergistic effect of M2-AKT and bone marrow-derived mesenchymal stromal cells or their CM. Conclusion: Chimeric feeders expand HSCs.
Collapse
Affiliation(s)
- Anuradha Vaidya
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India.,Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Shweta Singh
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India
| | - Lalita Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India
| | - Vaijayanti Kale
- Stem Cell Lab, National Centre for Cell Science, Pune 411007, India.,Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
10
|
Yassin M, Aqaqe N, Yassin AA, van Galen P, Kugler E, Bernstein BE, Koren-Michowitz M, Canaani J, Nagler A, Lechman ER, Dick JE, Wienholds E, Izraeli S, Milyavsky M. A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia 2019; 33:2061-2077. [PMID: 30705411 DOI: 10.1038/s41375-019-0386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Acute leukemia is an aggressive blood malignancy with low survival rates. A high expression of stem-like programs in leukemias predicts poor prognosis and is assumed to act in an aberrant fashion in the phenotypically heterogeneous leukemia stem cell (LSC) population. A lack of suitable genome engineering tools that can isolate LSCs based on their stemness precludes their comprehensive examination and full characterization. We hypothesized that tagging endogenous stemness-regulatory regions could generate a genome reporter for the putative leukemia stemness-state. Our analysis revealed that the ERG + 85 enhancer region can serve as a marker for stemness-state and a fluorescent lentiviral reporter was developed that can accurately recapitulate the endogenous activity. Using our novel reporter, we revealed cellular heterogeneity in several leukemia cell lines and patient-derived samples. Alterations in reporter activity were associated with transcriptomic and functional changes that were closely related to the hematopoietic stem cell (HSC) identity. Notably, the differentiation potential was skewed towards the erythro-megakaryocytic lineage. Moreover, an ERG + 85High fraction of AML cells could regenerate the original cellular heterogeneity and was enriched for LSCs. RNA-seq analysis coupled with in silico drug-screen analysis identified 4HPR as an effective inhibitor of ERG + 85High leukemia growth. We propose that further utilization of our novel molecular tool will identify crucial determinants of LSCs, thus providing a rationale for their therapeutic targeting.
Collapse
Affiliation(s)
- Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Abed Alkader Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Peter van Galen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eitan Kugler
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Jonathan Canaani
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Erno Wienholds
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shai Izraeli
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
11
|
Chen Z, Amro EM, Becker F, Hölzer M, Rasa SMM, Njeru SN, Han B, Di Sanzo S, Chen Y, Tang D, Tao S, Haenold R, Groth M, Romanov VS, Kirkpatrick JM, Kraus JM, Kestler HA, Marz M, Ori A, Neri F, Morita Y, Rudolph KL. Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation. J Exp Med 2019; 216:152-175. [PMID: 30530755 PMCID: PMC6314529 DOI: 10.1084/jem.20181505] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023] Open
Abstract
Organism aging is characterized by increased inflammation and decreased stem cell function, yet the relationship between these factors remains incompletely understood. This study shows that aged hematopoietic stem and progenitor cells (HSPCs) exhibit increased ground-stage NF-κB activity, which enhances their responsiveness to undergo differentiation and loss of self-renewal in response to inflammation. The study identifies Rad21/cohesin as a critical mediator of NF-κB signaling, which increases chromatin accessibility in the vicinity of NF-κB target genes in response to inflammation. Rad21 is required for normal differentiation, but limits self-renewal of hematopoietic stem cells (HSCs) during aging and inflammation in an NF-κB-dependent manner. HSCs from aged mice fail to down-regulate Rad21/cohesin and inflammation/differentiation signals in the resolution phase of inflammation. Inhibition of cohesin/NF-κB reverts hypersensitivity of aged HSPCs to inflammation-induced differentiation and myeloid-biased HSCs with disrupted/reduced expression of Rad21/cohesin are increasingly selected during aging. Together, Rad21/cohesin-mediated NF-κB signaling limits HSPC function during aging and selects for cohesin-deficient HSCs with myeloid-skewed differentiation.
Collapse
Affiliation(s)
- Zhiyang Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Elias Moris Amro
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Friedrich Becker
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | | | | | - Bing Han
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Simone Di Sanzo
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yulin Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Duozhuang Tang
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Si Tao
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ronny Haenold
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Vasily S Romanov
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Manja Marz
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Neri
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - K Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Medicine, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
12
|
Komorowska K, Doyle A, Wahlestedt M, Subramaniam A, Debnath S, Chen J, Soneji S, Van Handel B, Mikkola HKA, Miharada K, Bryder D, Larsson J, Magnusson M. Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration. Cell Rep 2018; 21:3514-3523. [PMID: 29262330 DOI: 10.1016/j.celrep.2017.11.084] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/19/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023] Open
Abstract
The transcription factor hepatic leukemia factor (HLF) is strongly expressed in hematopoietic stem cells (HSCs) and is thought to influence both HSC self-renewal and leukemogenesis. However, the physiological role of HLF in hematopoiesis and HSC function is unclear. Here, we report that mice lacking Hlf are viable with essentially normal hematopoietic parameters, including an intact HSC pool during steady-state hematopoiesis. In contrast, when challenged through transplantation, Hlf-deficient HSCs showed an impaired ability to reconstitute hematopoiesis and became gradually exhausted upon serial transplantation. Transcriptional profiling of Hlf-deficient HSCs revealed changes associated with enhanced cellular activation, and cell-cycle analysis demonstrated a significant reduction of quiescent HSCs. Accordingly, toxic insults targeting dividing cells completely eradicated the HSC pool in Hlf-deficient mice. In summary, our findings point to HLF as a critical regulator of HSC quiescence and as an essential factor for maintaining the HSC pool during regeneration.
Collapse
Affiliation(s)
- Karolina Komorowska
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Alexander Doyle
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Martin Wahlestedt
- Molecular Hematology, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Agatheeswaran Subramaniam
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Shubhranshu Debnath
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Jun Chen
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Shamit Soneji
- Molecular Hematology, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Ben Van Handel
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; CarthroniX, Inc., Tarzana, CA 91356, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kenichi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - David Bryder
- Molecular Hematology, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Mattias Magnusson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden.
| |
Collapse
|
13
|
Talkhoncheh MS, Subramaniam A, Magnusson M, Kumar P, Larsson J, Baudet A. Transient inhibition of NF-κB signaling enhances ex vivo propagation of human hematopoietic stem cells. Haematologica 2018; 103:1444-1450. [PMID: 29880606 PMCID: PMC6119158 DOI: 10.3324/haematol.2018.188466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/17/2018] [Indexed: 01/15/2023] Open
Abstract
Despite extensive studies, defining culture conditions in which hematopoietic stem cells can be expanded ex vivo has been challenging. Here we show that chemical inhibition of the NF-κB signaling pathway leads to a significant improvement of hematopoietic stem cell function from ex vivo cultured human umbilical cord blood derived CD34+ cells. We found a distinct peak of activation of the NF-κB pathway shortly after cells were put in culture, and consequently inhibition of the pathway was both necessary and sufficient during the first 24 hours of culture where it reduced the levels of several pro-inflammatory cytokines. Taken together, NF-κB pathway inhibition facilitates propagation of hematopoietic stem cells in culture and may complement other strategies for hematopoietic stem cell expansion by relieving stress signals that are induced as an immediate response to culture initiation.
Collapse
Affiliation(s)
| | | | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Praveen Kumar
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Aurélie Baudet
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| |
Collapse
|
14
|
Attenuated DNA damage responses and increased apoptosis characterize human hematopoietic stem cells exposed to irradiation. Sci Rep 2018; 8:6071. [PMID: 29666389 PMCID: PMC5904119 DOI: 10.1038/s41598-018-24440-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Failure to precisely repair DNA damage in self-renewing Hematopoietic Stem and early Progenitor Cells (HSPCs) can disrupt normal hematopoiesis and promote leukemogenesis. Although HSPCs are widely considered a target of ionizing radiation (IR)-induced hematopoietic injury, definitive data regarding cell death, DNA repair, and genomic stability in these rare quiescent cells are scarce. We found that irradiated HSPCs, but not lineage-committed progenitors (CPs), undergo rapid ATM-dependent apoptosis, which is suppressed upon interaction with bone-marrow stroma cells. Using DNA repair reporters to quantify mutagenic Non-Homologous End Joining (NHEJ) processes, we found that HSPCs exhibit reduced NHEJ activities in comparison with CPs. HSPC-stroma interactions did not affect the NHEJ capacity of HSPCs, emphasizing its cell autonomous regulation. We noted diminished expression of multiple double strand break (DSB) repair transcripts along with more persistent 53BP1 foci in irradiated HSPCs in comparison with CPs, which can account for low NHEJ activity and its distinct control in HSPCs. Finally, we documented clonal chromosomal aberrations in 10% of IR-surviving HSPCs. Taken together, our results revealed potential mechanisms contributing to the inherent susceptibility of human HSPC to the cytotoxic and mutagenic effects of DNA damage.
Collapse
|
15
|
Psatha N, Georgolopoulos G, Phelps S, Papayannopoulou T. Brief Report: A Differential Transcriptomic Profile of Ex Vivo Expanded Adult Human Hematopoietic Stem Cells Empowers Them for Engraftment Better than Their Surface Phenotype. Stem Cells Transl Med 2017; 6:1852-1858. [PMID: 28801972 PMCID: PMC6430062 DOI: 10.1002/sctm.17-0048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022] Open
Abstract
Transplantation of small cord blood (CB) units, or of autologous ex vivo‐genetically modified adult hematopoietic stem cells (HSC), face the common challenge of suboptimal HSC doses for infusion and impaired engraftment of the transplanted cells. Ex vivo expansion of HSCs, using either cell‐based coculture approaches or especially small molecules have been successfully tested mainly in CB and in prolonged cultures. Here, we explored whether innovative combinations of small molecules can sufficiently, after short culture, expand adult HSCs while retaining their functionality in vivo. We found that 5‐day cultured cells, in the presence of the small molecule combinations tested, achieved higher engraftment levels in NSG mice than both their uncultured and their cytokine only‐cultured counterparts. Surprisingly, the engraftment levels were neither concordant to the numbers of phenotypically similar HSCs expanded under different small molecule combinations, nor explained by their distinct companion cells present. Transcriptomic comparative analysis of sorted, phenotypically similar, ex vivo generated HSCs transplanted in equal numbers, suggested that HSCs generated under expansion conditions that maintain low expression of the Rap1/Ras/PI3K‐AKT pathway exhibit a superior functional profile in vivo. Stem Cells Translational Medicine2017;6:1852–1858
Collapse
Affiliation(s)
- Nikoletta Psatha
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | | | - Susan Phelps
- Division of Hematology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
16
|
Rönn RE, Guibentif C, Saxena S, Woods NB. Reactive Oxygen Species Impair the Function of CD90 + Hematopoietic Progenitors Generated from Human Pluripotent Stem Cells. Stem Cells 2016; 35:197-206. [PMID: 27641910 DOI: 10.1002/stem.2503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/01/2016] [Indexed: 01/22/2023]
Abstract
Cell stressors, such as elevated levels of reactive oxygen species (ROS), adversely affect hematopoietic stem cell (HSC) reconstituting ability. However, the effects of ROS have not been evaluated in the context of hematopoietic development from human pluripotent stem cells (hPSCs). Using our previously described in vitro system for efficient derivation of hematopoietic cells from hPSCs, we show that the vast majority of generated hematopoietic cells display supraphysiological levels of ROS compared to fresh cord blood cells. Elevated ROS resulted in DNA damage of the CD34+ hematopoietic fraction and, following functional assays, reduced colony formation and impaired proliferative capacity. Interestingly, all the proliferative potential of the most primitive hematopoietic cells was limited to a small fraction with low ROS levels. We show that elevation of ROS in hPSC-derived hematopoietic cells is contributed by multiple distinct cellular processes. Furthermore, by targeting these molecular processes with 4 unique factors, we could reduce ROS levels significantly, yielding a 22-fold increase in the most primitive CD90+ CD34+ hematopoietic cells with robust growth capacity. We demonstrate that the ROS reducing factors specifically reduced ROS in more primitive hematopoietic fractions, in contrast to endothelial cells that maintained low ROS levels in the cultures. We conclude that high levels of ROS in in vitro differentiation systems of hPSCs is a major determinant in the lack of ability to generate hematopoietic cells with similar proliferation/differentiation potential to in vivo hematopoietic progenitors, and suggest that elevated ROS is a significant barrier to generating hPSC-derived repopulating HSCs. Stem Cells 2017;35:197-206.
Collapse
Affiliation(s)
- Roger E Rönn
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carolina Guibentif
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shobhit Saxena
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niels-Bjarne Woods
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy. Adv Pharm Bull 2016; 6:293-299. [PMID: 27766213 DOI: 10.15171/apb.2016.041] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell-to-cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC-derived exosomes (MSC-DEs) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC-DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC-DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues, and the present paper aims to introduce MSC-DEs as a novel hope in cell-free therapy.
Collapse
Affiliation(s)
- Davod Pashoutan Sarvar
- Umbilical Cord Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Umbilical Cord Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Dou DR, Calvanese V, Sierra MI, Nguyen AT, Minasian A, Saarikoski P, Sasidharan R, Ramirez CM, Zack JA, Crooks GM, Galic Z, Mikkola HKA. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol 2016; 18:595-606. [PMID: 27183470 PMCID: PMC4981340 DOI: 10.1038/ncb3354] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/08/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSC) may provide a potential source of haematopoietic stem/progenitor cells (HSPCs) for transplantation; however, unknown molecular barriers prevent the self-renewal of PSC-HSPCs. Using two-step differentiation, human embryonic stem cells (hESCs) differentiated in vitro into multipotent haematopoietic cells that had CD34+CD38−/loCD90+CD45+GPI-80+ foetal liver (FL) HSC immunophenotype, but displayed poor expansion potential and engraftment ability. Transcriptome analysis of immunophenotypic hESC-HSPCs revealed that, despite their molecular resemblance to FL-HSPCs, medial HOXA genes remained suppressed. Knockdown of HOXA7 disrupted FL-HSPC function and caused transcriptome dysregulation that resembled hESC-derived progenitors. Overexpression of medial HOXA genes prolonged FL-HSPC maintenance but was insufficient to confer self-renewal to hESC-HSPCs. Stimulation of retinoic acid signalling during endothelial-to-haematopoietic transition induced the HOXA cluster and other HSC/definitive haemogenic endothelium genes, and prolonged HSPC maintenance in culture. Thus, retinoic acid signalling-induced medial HOXA gene expression marks the establishment of the definitive HSC fate and controls HSC identity and function.
Collapse
Affiliation(s)
- Diana R Dou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Maria I Sierra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Andrew T Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Arazin Minasian
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Pamela Saarikoski
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Jerome A Zack
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Gay M Crooks
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Zoran Galic
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Baudet A, Ek F, Davidsson J, Soneji S, Olsson R, Magnusson M, Cammenga J, Juliusson G. Small molecule screen identifies differentiation-promoting compounds targeting genetically diverse acute myeloid leukaemia. Br J Haematol 2015; 175:342-346. [DOI: 10.1111/bjh.13851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Aurélie Baudet
- Department of Molecular Medicine and Gene Therapy; Lund University; Lund Sweden
- Department of Haematopoietic Stem Cell Transplantation; Lund University; Lund Sweden
| | - Fredrik Ek
- Department of Chemical Biology & Therapeutics; Lund University; Lund Sweden
| | - Josef Davidsson
- Department of Molecular Medicine and Gene Therapy; Lund University; Lund Sweden
| | - Shamit Soneji
- Department of Molecular Medicine and Gene Therapy; Lund University; Lund Sweden
| | - Roger Olsson
- Department of Chemical Biology & Therapeutics; Lund University; Lund Sweden
| | - Mattias Magnusson
- Department of Molecular Medicine and Gene Therapy; Lund University; Lund Sweden
| | - Jörg Cammenga
- Department of Molecular Medicine and Gene Therapy; Lund University; Lund Sweden
- Departments of Haematology; Skanes University Hospital; Lund University; Lund Sweden
| | - Gunnar Juliusson
- Department of Haematopoietic Stem Cell Transplantation; Lund University; Lund Sweden
- Departments of Haematology; Skanes University Hospital; Lund University; Lund Sweden
| |
Collapse
|
20
|
Kadekar D, Kale V, Limaye L. Differential ability of MSCs isolated from placenta and cord as feeders for supporting ex vivo expansion of umbilical cord blood derived CD34(+) cells. Stem Cell Res Ther 2015; 6:201. [PMID: 26481144 PMCID: PMC4617445 DOI: 10.1186/s13287-015-0194-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/15/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ex vivo expansion of umbilical cord blood (UCB) is attempted to increase cell numbers to overcome the limitation of cell dose. Presently, suspension cultures or feeder mediated co-cultures are performed for expansion of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) have proved to be efficient feeders for the maintenance of HSCs. Here, we have established MSCs-HSCs co-culture system with MSCs isolated from less invasive and ethically acceptable sources like umbilical cord tissue (C-MSCs) and placenta (P-MSCs). MSCs derived from these tissues are often compared with bone marrow derived MSCs (BM-MSCs) which are considered as a gold standard. However, so far none of the studies have directly compared C-MSCs with P-MSCs as feeders for ex vivo expansion of HSCs. Thus, we for the first time performed a systematic comparison of hematopoietic supportive capability of C and P-MSCs using paired samples. METHODS UCB-derived CD34(+) cells were isolated and co-cultured on irradiated C and P-MSCs for 10 days. C-MSCs and P-MSCs were isolated from the same donor. The cultures comprised of serum-free medium supplemented with 25 ng/ml each of SCF, TPO, Flt-3 L and IL-6. After 10 days cells were collected and analyzed for phenotype and functionality. RESULTS C-MSCs and P-MSCs were found to be morphologically and phenotypically similar but exhibited differential ability to support ex vivo hematopoiesis. Cells expanded on P-MSCs showed higher percentage of primitive cells (CD34(+)CD38(-)), CFU (Colony forming unit) content and LTC-IC (Long term culture initiating cells) ability. CD34(+) cells expanded on P-MSCs also exhibited better in vitro adhesion to fibronectin and migration towards SDF-1α and enhanced NOD/SCID repopulation ability, as compared to those grown on C-MSCs. P-MSCs were found to be closer to BM-MSCs in their ability to expand HSCs. P-MSCs supported expansion of functionally superior HSCs by virtue of reduction in apoptosis of primitive HSCs, higher Wnt and Notch activity, HGF secretion and cell-cell contact. On the other hand, C-MSCs facilitated expansion of progenitors (CD34(+)CD38(+)) and differentiated (CD34(-)CD38(+)) cells by secretion of IL1-α, β, MCP-2, 3 and MIP-3α. CONCLUSIONS P-MSCs were found to be better feeders for ex vivo maintenance of primitive HSCs with higher engraftment potential than the cells expanded with C-MSCs as feeders.
Collapse
Affiliation(s)
- Darshana Kadekar
- Stem Cell Laboratory, National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
| | - Vaijayanti Kale
- Stem Cell Laboratory, National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
| | - Lalita Limaye
- Stem Cell Laboratory, National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
| |
Collapse
|
21
|
Prashad SL, Calvanese V, Yao CY, Kaiser J, Wang Y, Sasidharan R, Crooks G, Magnusson M, Mikkola HKA. GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 2015; 16:80-7. [PMID: 25465114 PMCID: PMC4520393 DOI: 10.1016/j.stem.2014.10.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 09/26/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023]
Abstract
Advances in pluripotent stem cell and reprogramming technologies have given us the hope of generating hematopoietic stem cells (HSCs) in culture. To succeed, greater understanding of the self-renewing HSC during human development is required. We discovered that the glycophosphatidylinositol-anchored surface protein GPI-80 defines a subpopulation of human fetal liver hematopoietic stem/progenitor cells (HSPCs) with self-renewal ability. CD34(+)CD38(lo/-)CD90(+)GPI-80(+) HSPCs were the sole population that maintained proliferative potential and an undifferentiated state in stroma coculture and engrafted in immunodeficient mice. GPI-80 expression also enabled tracking of HSPCs once they emerged from endothelium and migrated between human fetal hematopoietic niches. GPI-80 colocalized on the surface of HSPCs with Integrin alpha-M (ITGAM), which in leukocytes cooperates with GPI-80 to support migration. Knockdown of GPI-80 or ITGAM was sufficient to compromise HSPC expansion in culture and engraftment in vivo. These findings indicate that human fetal HSCs employ mechanisms used in leukocyte adhesion and migration to mediate HSC self-renewal.
Collapse
Affiliation(s)
- Sacha Leandra Prashad
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Catherine Yao Yao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua Kaiser
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanling Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay Crooks
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mattias Magnusson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hanna Katri Annikki Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Charbord P, Pouget C, Binder H, Dumont F, Stik G, Levy P, Allain F, Marchal C, Richter J, Uzan B, Pflumio F, Letourneur F, Wirth H, Dzierzak E, Traver D, Jaffredo T, Durand C. A systems biology approach for defining the molecular framework of the hematopoietic stem cell niche. Cell Stem Cell 2014; 15:376-391. [PMID: 25042701 DOI: 10.1016/j.stem.2014.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/04/2014] [Accepted: 06/06/2014] [Indexed: 12/20/2022]
Abstract
Despite progress in identifying the cellular composition of hematopoietic stem/progenitor cell (HSPC) niches, little is known about the molecular requirements of HSPC support. To address this issue, we used a panel of six recognized HSPC-supportive stromal lines and less-supportive counterparts originating from embryonic and adult hematopoietic sites. Through comprehensive transcriptomic meta-analyses, we identified 481 mRNAs and 17 microRNAs organized in a modular network implicated in paracrine signaling. Further inclusion of 18 additional cell strains demonstrated that this mRNA subset was predictive of HSPC support. Our gene set contains most known HSPC regulators as well as a number of unexpected ones, such as Pax9 and Ccdc80, as validated by functional studies in zebrafish embryos. In sum, our approach has identified the core molecular network required for HSPC support. These cues, along with a searchable web resource, will inform ongoing efforts to instruct HSPC ex vivo amplification and formation from pluripotent precursors.
Collapse
Affiliation(s)
- Pierre Charbord
- INSERM U972, University Paris 11, Hôpital Paul Brousse, 94807 Villejuif, France.
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Florent Dumont
- Genomic Platform, Institut Cochin, INSERM U567, 75014 Paris, France
| | - Grégoire Stik
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Pacifique Levy
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Fabrice Allain
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Céline Marchal
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Jenna Richter
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | - Benjamin Uzan
- UMR967 INSERM, LSHL/IRCM, CEA, University Paris 7, 92260 Fontenay-aux-Roses, France
| | - Françoise Pflumio
- UMR967 INSERM, LSHL/IRCM, CEA, University Paris 7, 92260 Fontenay-aux-Roses, France
| | | | - Henry Wirth
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Elaine Dzierzak
- Department of Cell Biology, Erasmus Stem Cell Institute, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - David Traver
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | - Thierry Jaffredo
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Charles Durand
- Sorbonne Universités, UPMC Paris 06, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris; CNRS, INSERM U1156, IBPS, UMR 7622, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
23
|
Hughes T, Briercheck EL, Freud AG, Trotta R, McClory S, Scoville SD, Keller K, Deng Y, Cole J, Harrison N, Mao C, Zhang J, Benson DM, Yu J, Caligiuri MA. The transcription Factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep 2014; 8:150-62. [PMID: 24953655 PMCID: PMC4133146 DOI: 10.1016/j.celrep.2014.05.042] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 04/09/2014] [Accepted: 05/21/2014] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called "stage 3" developmental intermediate minimally characterized by a CD34(-)CD117(+)CD94(-) immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that include interleukin-1 receptor (IL-1R1)-positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here, we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes the differentiation of tonsillar IL-22-producing IL-1R1(hi) human ILC3s to CD56(bright)CD94(+) interferon (IFN)-γ-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, we demonstrate the lineage plasticity of human ILCs by identifying AHR as a transcription factor that prevents IL-1R1(hi) ILC3s from differentiating into NK cells.
Collapse
Affiliation(s)
- Tiffany Hughes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Edward L Briercheck
- Integrated Biomedical Graduate Program, Medical Scientist Program, The Ohio State University, Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Rossana Trotta
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Susan McClory
- Integrated Biomedical Graduate Program, Medical Scientist Program, The Ohio State University, Columbus, OH 43210, USA
| | - Steven D Scoville
- Integrated Biomedical Graduate Program, Medical Scientist Program, The Ohio State University, Columbus, OH 43210, USA
| | - Karen Keller
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Youcai Deng
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jordan Cole
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Harrison
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Charlene Mao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Don M Benson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Integrated Biomedical Graduate Program, Medical Scientist Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Developmental hematopoiesis: ontogeny, genetic programming and conservation. Exp Hematol 2014; 42:669-83. [PMID: 24950425 DOI: 10.1016/j.exphem.2014.06.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 02/01/2023]
Abstract
Hematopoietic stem cells (HSCs) sustain blood production throughout life and are of pivotal importance in regenerative medicine. Although HSC generation from pluripotent stem cells would resolve their shortage for clinical applications, this has not yet been achieved mainly because of the poor mechanistic understanding of their programming. Bone marrow HSCs are first created during embryogenesis in the dorsal aorta (DA) of the midgestation conceptus, from where they migrate to the fetal liver and, eventually, the bone marrow. It is currently accepted that HSCs emerge from specialized endothelium, the hemogenic endothelium, localized in the ventral wall of the DA through an evolutionarily conserved process called the endothelial-to-hematopoietic transition. However, the endothelial-to-hematopoietic transition represents one of the last steps in HSC creation, and an understanding of earlier events in the specification of their progenitors is required if we are to create them from naïve pluripotent cells. Because of their ready availability and external development, zebrafish and Xenopus embryos have enormously facilitated our understanding of the early developmental processes leading to the programming of HSCs from nascent lateral plate mesoderm to hemogenic endothelium in the DA. The amenity of the Xenopus model to lineage tracing experiments has also contributed to the establishment of the distinct origins of embryonic (yolk sac) and adult (HSC) hematopoiesis, whereas the transparency of the zebrafish has allowed in vivo imaging of developing blood cells, particularly during and after the emergence of HSCs in the DA. Here, we discuss the key contributions of these model organisms to our understanding of developmental hematopoiesis.
Collapse
|
25
|
Pabst C, Krosl J, Fares I, Boucher G, Ruel R, Marinier A, Lemieux S, Hébert J, Sauvageau G. Identification of small molecules that support human leukemia stem cell activity ex vivo. Nat Methods 2014; 11:436-42. [PMID: 24562423 DOI: 10.1038/nmeth.2847] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/12/2014] [Indexed: 11/09/2022]
Abstract
Leukemic stem cells (LSCs) are considered a major cause of relapse in acute myeloid leukemia (AML). Defining pathways that control LSC self-renewal is crucial for a better understanding of underlying mechanisms and for the development of targeted therapies. However, currently available culture conditions do not prevent spontaneous differentiation of LSCs, which greatly limits the feasibility of cell-based assays. To overcome these constraints we conducted a high-throughput chemical screen and identified small molecules that inhibit differentiation and support LSC activity in vitro. Similar to reports with cord blood stem cells, several of these compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway, which we show to be inactive in vivo and rapidly activated ex vivo in AML cells. We also identified a compound, UM729, that collaborates with AhR suppressors in preventing AML cell differentiation. Together, these findings provide newly defined culture conditions for improved ex vivo culture of primary human AML cells.
Collapse
Affiliation(s)
- Caroline Pabst
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Jana Krosl
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Iman Fares
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Geneviève Boucher
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Réjean Ruel
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Anne Marinier
- 1] Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada. [2] Chemistry Department, University of Montreal, Montreal, Quebec, Canada
| | - Sébastien Lemieux
- 1] Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada. [2] Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec, Canada
| | - Josée Hébert
- 1] Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada. [2] Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada. [3] Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada. [4] Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guy Sauvageau
- 1] Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada. [2] Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada. [3] Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada. [4] Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|