1
|
Hu T, Wei Y, Wei J, Wang M, Fu S, Gao Z, Li H. Unraveling the aggregation mechanism and bioactivity of Tyr12 nitrated human calcitonin. Int J Biol Macromol 2025; 315:144577. [PMID: 40412678 DOI: 10.1016/j.ijbiomac.2025.144577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
The development of therapeutic human calcitonin (hCT) is limited by its irreversible aggregation to form amyloid fibrils. Salmon calcitonin (sCT), a clinical alternative, with only 50 % hCT sequence homology causes severe side effects, making the development of anti-fibrillation hCT analogs more promising in achieving therapeutic goals. It is reported that Tyr12 plays a critical role in inducing hCT fibrils. We also found that tyrosine nitrated hCT (3-NT-hCT) not only inhibits self-assembly of hCT, but also has little effect on its hypocalcaemic potency in vivo. In order to fully elucidate its aggregation features, as well as its role as a therapeutic agent, firstly, we systematically studied the process and mechanism of 3-NT-hCT aggregation and found that tyrosine nitration delayed the aggregation pathways of hCT. Furthermore, we explained the later in terms of structural and charge changes. Secondly, we investigated the bioactivity of 3-NT-hCT based on treating osteoporosis. The development of osteoporosis largely depends on the relative imbalance of osteoclast activity and osteoblast activity. Our results showed that 3-NT-hCT is more effective than hCT in balancing osteoclast and osteoblast activity. These findings suggest that 3-NT-hCT may be a valuable therapeutic substitute for sCT.
Collapse
Affiliation(s)
- Ting Hu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yanyan Wei
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Jingjing Wei
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Man Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Basha S, Mukunda DC, Pai AR, Mahato KK. Assessing amyloid fibrils and amorphous aggregates: A review. Int J Biol Macromol 2025; 311:143725. [PMID: 40324497 DOI: 10.1016/j.ijbiomac.2025.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation play a central role in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. These aggregates manifest either as structured amyloid fibrils enriched in β-sheet conformations or as irregular amorphous aggregates with diverse morphologies. Understanding their formation, structure, and behavior is critical for deciphering disease mechanisms and developing targeted diagnostics and therapeutics. This review presents an integrated overview of both conventional and advanced techniques used to detect, distinguish, and structurally characterize these protein aggregates. It covers a range of spectroscopic and spectrometric tools, such as fluorescence, Raman, and mass spectrometry that facilitate aggregate identification. Microscopy methods, including atomic force and electron microscopy, are highlighted for morphological analysis. The review also discusses in situ detection strategies using fluorescent dyes, conformation-specific antibodies, enzymatic reporters, and real-time imaging. Separation methods like centrifugation, electrophoresis, and chromatography are outlined alongside structural analysis tools such as X-ray diffraction. Furthermore, the growing utility of computational approaches and artificial intelligence in predicting aggregation propensities and integrating biological data is emphasized. By critically evaluating each method's capabilities and limitations, this review provides a practical and forward-looking resource for researchers studying the complex landscape of protein aggregation.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Park J, Cheong DY, Lee G, Han CE. Deep learning-based denoising for unbiased analysis of morphology and stiffness in amyloid fibrils. Comput Biol Med 2025; 184:109410. [PMID: 39577350 DOI: 10.1016/j.compbiomed.2024.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Understanding the morphology of amyloid fibrils is crucial for comprehending the aggregation and degradation mechanisms of abnormal proteins implicated in various diseases, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and various forms of amyloidosis. Atomic force microscopy (AFM) stands as the most representative method for studying amyloid fibril morphology. However, obstacles in AFM images, including noise, salt, and amorphous aggregates, often impede accurate sample quantification. In this study, we developed denoising software employing a U-Net deep learning architecture to address this issue. The software efficiently eliminated various impediments that interfere with fibril analysis in noisy AFM images, thereby facilitating precise quantification of amyloid fibrils. We also developed automated fibril analysis technologies using the denoised AFM images, leading to quicker, more precise, and more objective assessments of fibril morphology. Furthermore, we presented a method for fibril stiffness extraction from a modulus image through mask creation based on a denoised height image. Our approach secures time efficiency and precision in analyzing amyloid morphology, and we believe it will significantly advance the currently stagnant research on amyloid-related diseases.
Collapse
Affiliation(s)
- Jaehee Park
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Da Yeon Cheong
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Gyudo Lee
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
4
|
Hacker RM, Grimard DM, Morgan KA, Saleh E, Wrublik MM, Meiss CJ, Kant CC, Jones MA, Brennessel WW, Webb MI. Ru(II)-arene azole complexes as anti-amyloid-β agents. Dalton Trans 2024; 53:18845-18855. [PMID: 39093049 DOI: 10.1039/d4dt01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
With the recent clinical success of anti-amyloid-β (Aβ) monoclonal antibodies, there is a renewed interest in agents which target the Aβ peptide of Alzheimer's disease (AD). Metal complexes are particularly well-suited for this development, given their structural versatility and ability to form stabile interactions with soluble Aβ. In this report, a small series of ruthenium-arene complexes were evaluated for their respective ability to modulate both the aggregation and cytotoxicity of Aβ. First, the stability of the complexes was evaluated in a variety of aqueous media where the complexes demonstrated exceptional stability. Next, the ability to coordinate and modulate the Aβ peptide was evaluated using several spectroscopic methods, including thioflavin T (ThT) fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the complex RuBO consistently gave the greatest inhibitory action towards Aβ aggregation, which correlated with its ability to coordinate to Aβ in solution. Furthermore, RuBO also had the lowest affinity for serum albumin, which is a key consideration for a neurotherapeutic, as this protein does not cross the blood brain barrier. Lastly, RuBO also displayed promising neuroprotective properties, as it had the greatest inhibition of Aβ-inducted cytotoxicity.
Collapse
Affiliation(s)
- Ryan M Hacker
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Daniela M Grimard
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Katie A Morgan
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Eaman Saleh
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Morgan M Wrublik
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Cade J Meiss
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Caitlyn C Kant
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | | | - Michael I Webb
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| |
Collapse
|
5
|
Tang Y, Zhang D, Zheng J. ROF-2 as an Aggregation-Induced Emission (AIE) Probe for Multi-Target Amyloid Detection and Screening of Amyloid Inhibitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400879. [PMID: 38751069 DOI: 10.1002/smll.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Indexed: 10/04/2024]
Abstract
Misfolding and aggregation of amyloid peptides into β-structure-rich fibrils represent pivotal pathological features in various neurodegenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). The development of effective amyloid detectors and inhibitors for probing and preventing amyloid aggregation is crucial for diagnosing and treating debilitating diseases, yet it poses significant challenges. Here, an aggregation-induced emission (AIE) molecule of ROF2 with multifaceted functionalities as an amyloid probe and a screening tool for amyloid inhibitors using different biophysical, cellular, and worm assays, are reported. As an amyloid probe, ROF2 outperformed ThT, demonstrating its superior sensing capability in monitoring, detecting, and distinguishing amyloid aggregates of different sequences (Amyloid-β, human islet amyloid polypeptide, or human calcitonin) and sizes (monomers, oligomers, or fibrils). More importantly, the utilization of ROF2 as a screening molecule to identify and repurpose cardiovascular drugs as amyloid inhibitors is introduced. These drugs exhibit potent amyloid inhibition properties, effectively preventing amyloid aggregation and reducing amyloid-induced cytotoxicity both in cells and nematode. The findings present a novel strategy to discovery AIE-based amyloid probes and to be used to repurpose amyloid inhibitors, expanding diagnostic and therapeutic options for neurodegenerative diseases while addressing vascular congestion and amyloid aggregation risks.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, 44325, USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, 44325, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, 44325, USA
| |
Collapse
|
6
|
Nabi F, Ahmad O, Khan A, Hassan MN, Hisamuddin M, Malik S, Chaari A, Khan RH. Natural compound plumbagin based inhibition of hIAPP revealed by Markov state models based on MD data along with experimental validations. Proteins 2024; 92:1070-1084. [PMID: 38497314 DOI: 10.1002/prot.26682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Human islet amyloid polypeptide (amylin or hIAPP) is a 37 residue hormone co-secreted with insulin from β cells of the pancreas. In patients suffering from type-2 diabetes, amylin self-assembles into amyloid fibrils, ultimately leading to the death of the pancreatic cells. However, a research gap exists in preventing and treating such amyloidosis. Plumbagin, a natural compound, has previously been demonstrated to have inhibitory potential against insulin amyloidosis. Our investigation unveils collapsible regions within hIAPP that, upon collapse, facilitates hydrophobic and pi-pi interactions, ultimately leading to aggregation. Intriguingly plumbagin exhibits the ability to bind these specific collapsible regions, thereby impeding the aforementioned interactions that would otherwise drive hIAPP aggregation. We have used atomistic molecular dynamics approach to determine secondary structural changes. MSM shows metastable states forming native like hIAPP structure in presence of PGN. Our in silico results concur with in vitro results. The ThT assay revealed a striking 50% decrease in fluorescence intensity at a 1:1 ratio of hIAPP to Plumbagin. This finding suggests a significant inhibition of amyloid fibril formation by plumbagin, as ThT fluorescence directly correlates with the presence of these fibrils. Further TEM images revealed disappearance of hIAPP fibrils in plumbagin pre-treated hIAPP samples. Also, we have shown that plumbagin disrupts the intermolecular hydrogen bonding in hIAPP fibrils leading to an increase in the average beta strand spacing, thereby causing disaggregation of pre-formed fibrils demonstrating overall disruption of the aggregation machinery of hIAPP. Our work is the first to report a detailed atomistic simulation of 22 μs for hIAPP. Overall, our studies put plumbagin as a potential candidate for both preventive and therapeutic candidate for hIAPP amyloidosis.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adeeba Khan
- Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Wilson DL, Carreon A, Chinnam S, Sharifan H, Ahlawat J, Narayan M. Screening Carbon Nano Materials for Preventing Amyloid Protein Aggregation by Adopting a Facile Method. Cell Biochem Biophys 2024; 82:1389-1395. [PMID: 38802601 PMCID: PMC11600300 DOI: 10.1007/s12013-024-01293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aβ), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others are associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. The dissolution of mature fibrils and toxic amyloidogenic intermediates, including oligomers, continues to be the pinnacle in the treatment of neurodegenerative disorders. Yet, methods to effectively and quantitatively report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. Here we describe a simplified method that implements the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique implements an optimized but well-known, simple, inexpensive, and quantitative assessment previously used to assess the oligomerization of amyloid monomers and subsequent amyloid fibrils. This method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers, dimers, and trimers and/or retain amyloid proteins in their monomeric forms. Most importantly, our optimized method diminishes existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.
Collapse
Affiliation(s)
- Daisy L Wilson
- The Environmental Science & Engineering Program, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Ana Carreon
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, TX, 79968, USA
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonoumous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, TX, 79968, USA
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, TX, 79968, USA.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, TX, 79968, USA.
| |
Collapse
|
8
|
Wilson DL, Carreon A, Chinnam S, Sharifan H, Ahlawat J, Narayan M. Screening Carbon Nano Materials for preventing amyloid protein aggregation by adopting a facile method. RESEARCH SQUARE 2024:rs.3.rs-4164618. [PMID: 38585783 PMCID: PMC10996794 DOI: 10.21203/rs.3.rs-4164618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aβ), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others is associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. The dissolution of mature fibrils and toxic amyloidogenic intermediates including oligomers continues to be the pinnacle in the treatment of neurodegenerative disorders. Yet, methods to effectively, and quantitatively, report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. Here we describe a simplified method that implements the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique implements an optimized but well-known, simple, inexpensive and quantitative assessment previously used to assess the oligomerization of amyloid monomers and subsequent amyloid fibrils. This method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers, dimers, and trimers and/or retain amyloid proteins in their monomeric forms. Most importantly, our optimized method diminishes existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.
Collapse
Affiliation(s)
| | | | - Sampath Chinnam
- M.S. Ramaiah Institute of Technology (Autonoumous Institution, Affiliated to Visvesvaraya Technological University
| | | | | | | |
Collapse
|
9
|
Farzadfard A, Kunka A, Mason TO, Larsen JA, Norrild RK, Dominguez ET, Ray S, Buell AK. Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation. Chem Sci 2024; 15:2528-2544. [PMID: 38362440 PMCID: PMC10866369 DOI: 10.1039/d3sc05371g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Amyloid fibrils of proteins such as α-synuclein are a hallmark of neurodegenerative diseases and much research has focused on their kinetics and mechanisms of formation. The question as to the thermodynamic stability of such structures has received much less attention. Here, we newly utilize the principle of transient incomplete separation of species in laminar flow in combination with chemical depolymerization for the quantification of amyloid fibril stability. The relative concentrations of fibrils and monomer at equilibrium are determined through an in situ separation of these species based on their different diffusivity inside a microfluidic capillary. The method is highly sample economical, using much less than a microliter of sample per data point and its only requirement is the presence of aromatic residues (W, Y) because of its label-free nature, which makes it widely applicable. Using this method, we investigate the differences in thermodynamic stability between different fibril polymorphs of α-synuclein and quantify these differences for the first time. Importantly, we show that fibril formation can be under kinetic or thermodynamic control and that a change in solution conditions can both stabilise and destabilise amyloid fibrils. Taken together, our results establish the thermodynamic stability as a well-defined and key parameter that can contribute towards a better understanding of the physiological roles of amyloid fibril polymorphism.
Collapse
Affiliation(s)
- Azad Farzadfard
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Antonin Kunka
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Thomas Oliver Mason
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Jacob Aunstrup Larsen
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Rasmus Krogh Norrild
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Elisa Torrescasana Dominguez
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Soumik Ray
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| | - Alexander K Buell
- Protein Biophysics Group, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 227, Kgs. Lyngby 2800 Denmark
| |
Collapse
|
10
|
Eremina OE, Yarenkov NR, Bikbaeva GI, Kapitanova OO, Samodelova MV, Shekhovtsova TN, Kolesnikov IE, Syuy AV, Arsenin AV, Volkov VS, Tselikov GI, Novikov SM, Manshina AA, Veselova IA. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta 2024; 266:124970. [PMID: 37536108 DOI: 10.1016/j.talanta.2023.124970] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) pathogenesis is the production, aggregation, and deposition of amyloid-β (Aβ) peptide. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical technique capable of providing valuable information on chemical composition and molecule conformations in biological samples. However, one of the main challenges for introducing the SERS technique into the practice is preparation of scalable and at the same time stable nanostructured sensors with uniform spatial distribution of nanoparticles. Herein, we propose SERS platforms for reproducible, sensitive, label-free quantification of amyloid-β aggregates for short-wavelength - 532 and 633 nm - lasers. A SERS sensor - based on silver nanoparticles immobilized into a chitosan film (AgNP/CS) - provided a uniform distribution of AgNPs from a colloidal suspension across the SERS sensor, resulting in nanomolar limits of detection (LODs) for Aβ42 aggregates with a portable 532 nm laser. The laser-induced deposition was used to obtain denser periodic plasmonic sensors (AgNP/LID) with a uniform nanoparticle distribution. The AgNP/LID SERS sensor allowed for 15 pM LOD for Aβ42 aggregates with 633 nm laser. Notably, both nanostructured substrates allowed to distinguish amyloid aggregates from monomers. Therefore, our approach demonstrated applicability of SERS for detection of macromolecular volumetric objects as amyloid-β aggregates for fundamental biological studies as well as for "point-of-care" diagnostics and screening for early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga E Eremina
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Nikita R Yarenkov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Gulia I Bikbaeva
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Olesya O Kapitanova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Research Park, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alexander V Syuy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institute of High Technologies and Advanced Materials of the Far Eastern Federal University, Vladivostok, Russia
| | - Aleksey V Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - Gleb I Tselikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey M Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alina A Manshina
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Irina A Veselova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Ehlbeck JT, Grimard DM, Hacker RM, Garcia JA, Wall BJ, Bothwell PJ, Jones MA, Webb MI. Finding the best location: Improving the anti-amyloid ability of ruthenium(III) complexes with pyridine ligands. J Inorg Biochem 2024; 250:112424. [PMID: 37952508 DOI: 10.1016/j.jinorgbio.2023.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder where one of the primary pathological hallmarks are aggregate deposits of the peptide amyloid-beta (Aβ). Although the Food and Drug Administration (FDA) has recently approved therapeutics that specifically target Aβ, resulting in the removal of these deposits, the associated costs of such treatments create a need for effective, yet cheaper, alternatives. Metal-based compounds are propitious therapeutic candidates as they exploit the metal-binding properties of Aβ, forming stable interactions with the peptide, thereby limiting its aggregation and toxicity. Previously, ruthenium-based complexes have shown a strong ability to modulate the aggregation and cytotoxicity of Aβ, where the incorporation of a primary amine on the coordinated heterocyclic ligand gave the greatest activity. To determine the importance of the location of the primary amine on the pyridine ligand, thereby establishing structure-activity relationships (SAR), four complexes (RuP1-4) were prepared and evaluated for their ability to coordinate and subsequently modulate the aggregation and cytotoxicity of Aβ. Coordination to Aβ was determined using three complementary spectroscopic methods: UV-Vis, 1H NMR, and circular dichroism (CD). Similarly, the impact of the complexes on Aβ aggregation was evaluated using three sequential methods of turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the location of the primary amine on the pyridine ligand did affect the resultant anti-Aβ performance, with the 2-aminopyridine complex (RuP2) being the most active. This SAR will provide another guiding principle in the design of future metal-based anti-Aβ complexes.
Collapse
Affiliation(s)
- Johanna T Ehlbeck
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Daniela M Grimard
- Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America
| | - Ryan M Hacker
- Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America
| | - Jimmy A Garcia
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Brendan J Wall
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Paige J Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Michael I Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America; Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America.
| |
Collapse
|
12
|
Ahlawat J, Wilson DL, Carreon A, Narayan M. Resolving the soluble-to-toxic transformation of amyloidogenic proteins: A method to assess intervention by small-molecules. RESEARCH SQUARE 2023:rs.3.rs-2631727. [PMID: 36945382 PMCID: PMC10029074 DOI: 10.21203/rs.3.rs-2631727/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aβ), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others is associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. Conversely, the dissolution of mature fibrils and toxic amyloidogenic intermediates including oligomers remains the holy grail in the treatment of neurodegenerative disorders. Yet, methods to effectively, and quantitatively, report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. For the first time, we describe the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique permits rapid, inexpensive and quantitative assessment of the fraction of amyloid monomers that form intermediates and mature fibrils. In addition, the method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers or retain amyloid proteins in their monomeric forms. Importantly, our methodological advance diminishes major existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.
Collapse
|
13
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Khan AN, Khan RH. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. Int J Biol Macromol 2022; 223:143-160. [PMID: 36356861 DOI: 10.1016/j.ijbiomac.2022.11.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Most of the cell's chemical reactions and structural components are facilitated by proteins. But proteins are highly dynamic molecules, where numerous modifications or changes in the cellular environment can affect their native conformational fold leading to protein aggregation. Various stress conditions, such as oxidative stress, mutations and metal toxicity may cause protein misfolding and aggregation by shifting the conformational equilibrium towards more aggregation-prone states. Most of the protein misfolding diseases (PMDs) involve aggregation of protein. We have discussed such proteins like Aβ peptide, α-synuclein, amylin and lysozyme involved in Alzheimer's, Parkinson's, type II diabetes and non-neuropathic systemic amyloidosis respectively. Till date, all advances in PMDs therapeutics help symptomatically but do not prevent the root cause of the disease, i.e., the aggregation of protein involved in the diseases. Current efforts focused on developing therapies for PMDs have employed diverse strategies; repositioning pre-existing drugs as it saves time and money; natural compounds that are touted as potential drug candidates have an advantage of being taken in diet normally and will induce lesser side effects. This review also covers recently developed therapeutic strategies like antisense drugs and disaggregases which has yielded therapeutic agents that have transitioned from preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | | |
Collapse
|
16
|
John T, Adler J, Elsner C, Petzold J, Krueger M, Martin LL, Huster D, Risselada HJ, Abel B. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. J Colloid Interface Sci 2022; 622:804-818. [PMID: 35569410 DOI: 10.1016/j.jcis.2022.04.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
The aggregation of peptides into amyloid fibrils has been linked to ageing-related diseases, such as Alzheimer's and type 2 diabetes. Interfaces, particularly those with large nanostructured surfaces, can affect the kinetics of peptide aggregation, which ranges from complete inhibition to strong acceleration. While a number of physiochemical parameters determine interfacial effects, we focus here on the role of nanoparticle (NP) size and curvature. We used thioflavin T (ThT) fluorescence assays to demonstrate the size-dependent effects of NPs on amyloid fibril formation for the peptides Aβ40, NNFGAIL, GNNQQNY and VQIYVK. While 5 nm gold NPs (AuNP-5) retarded or inhibited the aggregation of all peptides except NNFGAIL, larger 20 nm gold NPs (AuNP-20) tended to accelerate or not influence peptide aggregation. Differences in the NP effects for the peptides resulted from the different peptide properties (size, tendency to aggregate) and associated surface binding affinities. Additional dynamic light scattering (DLS), electron microscopy, and atomic force microscopy (AFM) experiments with the Aβ40 peptide confirmed size-dependent NP effects on peptide aggregation, and also suggested a structural influence on the formed fibrils. NPs can serve as a surface for the adsorption of peptide monomers and enable nucleation to oligomers and fibril formation. However, molecular dynamics (MD) simulations showed that peptide oligomers were less stable at smaller NPs. High surface curvatures destabilized prefibrillar structures, which provides a possible explanation for inhibitory effects on fibril growth, provided that peptide-NP surface binding was relevant for fibril formation. These mechanistic insights can support the design of future nanostructured materials.
Collapse
Affiliation(s)
- Torsten John
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany; School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Christian Elsner
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Johannes Petzold
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Herre Jelger Risselada
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Institute for Theoretical Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Malik S, Zaidi N, Siddiqi MK, Majid N, Masroor A, Salam S, Khan RH. Mechanistic insight into inhibition of amyloid fibrillation of human serum albumin by Vildagliptin. Colloids Surf B Biointerfaces 2022; 216:112563. [PMID: 35588684 DOI: 10.1016/j.colsurfb.2022.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Protein aggregation leads to several human pathologies such as Alzheimer's disease (AD), type 2 diabetes (T2D), Parkinson's disease (PD), etc. Due to the overlap in the mechanisms of type 2 diabetes and brain disorders, common effective pharmacological interventions to treat both T2D and AD is under extensive research. Therefore, major aim of research is to repurpose already established treatment of diabetes to cure AD as well. This study evaluates mechanistic insight into anti-amyloidogenic potential of anti-diabetic drug Vildagliptin (VLD) on human serum albumin fibrillation (HSA) by using biophysical, calorimetric, imaging techniques along with hemolytic assay. Dynamic light scattering (DLS) and Rayleigh light scattering (RLS) results showed presence of few small-sized aggregates in the presence of VLD which are formed by deaccelerating the amyloidogenesis as shown by thioflavin T (ThT) fluorescence and Congo red (CR) binding assay. Further, Isothermal titration calorimetry (ITC), steady state fluorescence quenching, molecular docking results revealed that VLD form complex with amyloid facilitating state of HSA and consequently mask the hydrophobic residues involved in amyloidogenesis as evident from decrease in ANS fluorescence. Differential scanning calorimetry (DSC) results confirm that VLD stabilizes the amyloid facilitating state of HSA. In addition, SEM images demonstrated that VLD alleviates the hemolytic effect induced by fibrils of HSA. This study reports VLD as a potential inhibitor of amyloid fibrillation and provides promising results to repurpose VLD as a drug candidate for the cure of Alzheimer's diseases along with diabetes.
Collapse
Affiliation(s)
- Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Samreen Salam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
18
|
Wang Y, Wu C. The effect of mechanical shocks on the initial aggregation behavior of yeast prion protein Sup35NM. Int J Biol Macromol 2022; 212:465-473. [PMID: 35618091 DOI: 10.1016/j.ijbiomac.2022.05.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
To study the effect of mechanical shocks on the neurodegenerative-related fibril-formation protein, the aggregation process, especially the initial oligomerization of a model yeast prion protein Sup35NM, was followed and analyzed by using a combination of laser light scattering, the Smoluchowski coagulation analysis, Thioflavin T fluorescence assay, and transmission electron microscopy. We find that an initial short-time mechanical shock (ultrasonication or circular shaking) affects the in vitro association kinetics of neurodegenerative-related Sup35NM proteins in dilute PBS solutions by generating a relatively larger number of smaller non-structured oligomers that further serve as tiny "crystallization" seeds in promoting the formation of longer fibrils. Our study provides an effective and quantitative method to investigate the initial oligomerization kinetics of amyloid fibrils formation. Furthermore, the current results may shed light on the molecular understanding on how environmental factors increase the risk of neurodegenerative diseases such as dementia.
Collapse
Affiliation(s)
- Yanjing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Chi Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Betschart MU, Sarem M, Shastri VP, Lüdeke S. Reversible, β-sheet-dependent self-assembly of the phosphoprotein phosvitin is controlled by the concentration and valency of cations. Phys Chem Chem Phys 2022; 24:11791-11800. [PMID: 35506877 DOI: 10.1039/d1cp05493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hyperphosphorylated protein phosvitin (PV) undergoes a pH-dependent transition between PII- and β-sheet secondary structures, a process deemed crucial for its role in the promotion of biogenic apatite formation. The transition occurs surprisingly slowly (minutes to hours). This is consistent with a slow aggregation process involving ionic interactions of charged groups on the protein surface. Herein, we determined the associated transition pK values and time constants through matrix least-squares (MLS) global fitting of a series of pH- and time-dependent circular dichroism (CD) spectra recorded in the presence of different mono-, bi- and trivalent cations. Supporting our results with dynamic light scattering data, we clearly identified a close correlation of β-sheet transition and the formation of small aggregates at low pH. This process is inhibited in the presence of all tested cations with the strongest effects for trivalent cations (Fe3+ and Al3+). In the presence of Ca2+ and Mg2+, larger higher-order particles are formed from PV in the β-sheet conformation, as identified from the interpretation of differential scattering observed in the CD spectra. Our observations are consistent with the existence of a multi-step equilibrium between aggregated and non-aggregated species of PV. The equilibrium is highly sensitive to the environment pH and salt concentration with exceptional behavior in the presence of divalent cations such as Ca2+ and Mg2+.
Collapse
Affiliation(s)
- Martin U Betschart
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Melika Sarem
- Institute for Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.,Institut für Pharmazeutische und Biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Weeks WB, Tainter CJ, Buchanan LE. Investigating the effects of N-terminal acetylation on KFE8 self-assembly with 2D IR spectroscopy. Biophys J 2022; 121:1549-1559. [PMID: 35247339 PMCID: PMC9072574 DOI: 10.1016/j.bpj.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Peptide self-assembly is an exciting and robust approach to create novel nanoscale materials for biomedical applications. However, the complex interplay between intra- and intermolecular interactions in peptide aggregation means that minor changes in peptide sequence can yield dramatic changes in supramolecular structure. Here, we use two-dimensional infrared (2D IR) spectroscopy to study a model amphiphilic peptide, KFE8, and its N-terminal acetylated counterpart, AcKFE8. 2D IR spectra of isotope-labeled peptides reveal that AcKFE8 aggregates comprise two distinct β-sheet structures while KFE8 aggregates comprise only one of these structures. Using an excitonic Hamiltonian to simulate the vibrational spectra of model β-sheets, we determine that the spectra are consistent with antiparallel β-sheets with different strand alignments, specifically a two-residue shift in the register of the β-strands. These findings bring forth new insights into how N-terminal acetylation may subtly impact secondary structure, leading to larger effects on overall aggregate morphology. Additionally, these results highlight the importance of understanding the residue-level structural differences that result from changes in peptide sequence in order to facilitate the rational design of peptide materials.
Collapse
Affiliation(s)
- William B Weeks
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Craig J Tainter
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
21
|
Awasthi P, Das S. Kinetics of protein aggregation at a temperature gradient condition. SOFT MATTER 2021; 17:9008-9013. [PMID: 34610083 DOI: 10.1039/d1sm00857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unconventional multi-sigmoidal kinetic behaviour of protein aggregation at a temperature gradient condition is reported in this study. To establish a feasible theory for protein aggregation kinetics at a temperature gradient condition, the spatial height of the protein solution is divided into hypothetical layers and the kinetic equations in those layers are solved. Furthermore, we endeavour to study numerically the effect of the temperature gradient on the kinetics of oligomer-mediated protein aggregation and protein inhibition.
Collapse
Affiliation(s)
- Prasoon Awasthi
- BioMEMS and Microfluidic Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, India.
| | - Soumen Das
- BioMEMS and Microfluidic Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, India.
| |
Collapse
|
22
|
Schneider MM, Gautam S, Herling TW, Andrzejewska E, Krainer G, Miller AM, Trinkaus VA, Peter QAE, Ruggeri FS, Vendruscolo M, Bracher A, Dobson CM, Hartl FU, Knowles TPJ. The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat Commun 2021; 12:5999. [PMID: 34650037 PMCID: PMC8516981 DOI: 10.1038/s41467-021-25966-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular chaperones contribute to the maintenance of cellular protein homoeostasis through assisting de novo protein folding and preventing amyloid formation. Chaperones of the Hsp70 family can further disaggregate otherwise irreversible aggregate species such as α-synuclein fibrils, which accumulate in Parkinson's disease. However, the mechanisms and kinetics of this key functionality are only partially understood. Here, we combine microfluidic measurements with chemical kinetics to study α-synuclein disaggregation. We show that Hsc70 together with its co-chaperones DnaJB1 and Apg2 can completely reverse α-synuclein aggregation back to its soluble monomeric state. This reaction proceeds through first-order kinetics where monomer units are removed directly from the fibril ends with little contribution from intermediate fibril fragmentation steps. These findings extend our mechanistic understanding of the role of chaperones in the suppression of amyloid proliferation and in aggregate clearance, and inform on possibilities and limitations of this strategy in the development of therapeutics against synucleinopathies.
Collapse
Affiliation(s)
- Matthias M. Schneider
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Saurabh Gautam
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,Present Address: ViraTherapeutics GmbH, 6063 Rum, Austria
| | - Therese W. Herling
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ewa Andrzejewska
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Georg Krainer
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Alyssa M. Miller
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Victoria A. Trinkaus
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Quentin A. E. Peter
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Francesco Simone Ruggeri
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Andreas Bracher
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - F. Ulrich Hartl
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tuomas P. J. Knowles
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK ,grid.5335.00000000121885934Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Road, Cambridge, CB3 0HE UK
| |
Collapse
|
23
|
Mohapatra S, Viswanathan GKK, Wettstein L, Arad E, Paul A, Kumar V, Jelinek R, Münch J, Segal D. Dual concentration-dependent effect of ascorbic acid on PAP(248-286) amyloid formation and SEVI-mediated HIV infection. RSC Chem Biol 2021; 2:1534-1545. [PMID: 34704058 PMCID: PMC8496042 DOI: 10.1039/d1cb00084e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022] Open
Abstract
Human semen contains various amyloidogenic peptides derived from Prostatic Acid Phosphatase (PAP) and Semenogelin proteins that are capable of enhancing HIV-1 infection when assembled into fibrils. The best characterized among them is a 39 amino acid peptide PAP(248–286), which forms amyloid fibrils termed SEVI (semen-derived enhancer of viral infection) that increase the infectivity of HIV-1 by orders of magnitude. Inhibiting amyloid formation by PAP(248–286) may mitigate the sexual transmission of HIV-1. Several vitamins have been shown to reduce the aggregation of amyloids such as Aβ, α-Synuclein, and Tau, which are associated with neurodegenerative diseases. Since ascorbic acid (AA, vitamin C) is the most abundant vitamin in semen with average concentrations of 0.4 mM, we here examined how AA affects PAP(248–286) aggregation in vitro. Using ThT binding assays, transmission electron microscopy, and circular dichroism spectroscopy, a dual and concentration-dependent behavior of AA in modulating PAP(248–286) fibril formation was observed. We found that low molar ratios of AA:PAP(248–286) promoted whereas high molar ratios inhibited PAP(248–286) fibril formation. Accordingly, PAP(248–286) aggregated in the presence of low amounts of AA enhanced HIV-1 infection, whereas excess amounts of AA during aggregation reduced the infectivity enhancing effect in cell culture. Collectively, this work provides a biophysical insight into the effect of AA, an important seminal component, on SEVI fibrillation which might impact amyloid formation kinetics, thereby modulating the biological activity of semen amyloids. Human semen contains various amyloidogenic peptides derived from Prostatic Acid Phosphatase (PAP) and Semenogelin proteins that are capable of enhancing HIV-1 infection when assembled into fibrils.![]()
Collapse
Affiliation(s)
- Satabdee Mohapatra
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Guru Krishna Kumar Viswanathan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center Ulm 89081 Germany
| | - Elad Arad
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev Beer Sheva 8410501 Israel
| | - Ashim Paul
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Vijay Kumar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev Beer Sheva 8410501 Israel
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center Ulm 89081 Germany
| | - Daniel Segal
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
24
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
25
|
Wall BJ, Will MF, Yawson GK, Bothwell PJ, Platt DC, Apuzzo CF, Jones MA, Ferrence GM, Webb MI. Importance of Hydrogen Bonding: Structure-Activity Relationships of Ruthenium(III) Complexes with Pyridine-Based Ligands for Alzheimer's Disease Therapy. J Med Chem 2021; 64:10124-10138. [PMID: 34197109 DOI: 10.1021/acs.jmedchem.1c00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, where one of the pathological hallmarks of AD is extracellular protein deposits, the primary component of which is the peptide amyloid-β (Aβ). Recently, the soluble form of Aβ has been recognized as the primary neurotoxic species, making it an important target for therapeutic development. Metal-based drugs are promising candidates to target Aβ, as the interactions with the peptide can be tuned by ligand design. In the current study, 11 ruthenium complexes containing pyridine-based ligands were prepared, where the functional groups at the para position on the coordinated pyridine ligand were varied to determine structure-activity relationships. Overall, the complexes with terminal primary amines had the greatest impact on modulating the aggregation of Aβ and diminishing its cytotoxicity. These results identify the importance of specific intermolecular interactions and are critical in the advancement of metal-based drugs for AD therapy.
Collapse
Affiliation(s)
- Brendan J Wall
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Mark F Will
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gideon K Yawson
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Paige J Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - David C Platt
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - C Fiore Apuzzo
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gregory M Ferrence
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Michael I Webb
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
26
|
Marquette A, Aisenbrey C, Bechinger B. Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner. Int J Mol Sci 2021; 22:ijms22136725. [PMID: 34201610 PMCID: PMC8268948 DOI: 10.3390/ijms22136725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive glutamines which, when exceeding ~ 37 residues, results in the occurrence of the disease. Furthermore, it has also been demonstrated that the 17-residue amino-terminal domain of the protein (htt17), located upstream of this polyglutamine tract, strongly correlates with aggregate formation and pathology. Here, we demonstrate that membrane interactions strongly accelerate the oligomerisation and β-amyloid fibril formation of htt17-polyglutamine segments. By using a combination of biophysical approaches, the kinetics of fibre formation is investigated and found to be strongly dependent on the presence of lipids, the length of the polyQ expansion, and the polypeptide-to-lipid ratio. Finally, the implications for therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Arnaud Marquette
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Christopher Aisenbrey
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Burkhard Bechinger
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
- Insitut Universitaire de France, 75005 Paris, France
- Correspondence:
| |
Collapse
|
27
|
Yamashita S, O Kamatari Y, Honda R, Niwa A, Tomiata H, Hara A, Kuwata K. Monomeric a-synuclein (aS) inhibits amyloidogenesis of human prion protein (hPrP) by forming a stable aS-hPrP hetero-dimer. Prion 2021; 15:37-43. [PMID: 33849375 PMCID: PMC8049198 DOI: 10.1080/19336896.2021.1910176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular interaction between hPrP and αS was investigated using high-speed atomic force microscopy, dynamic light scattering, and nuclear magnetic resonance. We found that hPrP spontaneously gathered and naturally formed oligomers. Upon addition of monomer αS with a disordered conformation, poly-dispersive property of hPrP was lost, and hetero-dimer formation started quite coherently, and further oligomerization was not observed. Solution structure of hPrP-αS dimer was firstly characterized using hetero-nuclear NMR spectroscopy. In this hetero-dimeric complex, C-terminal helical region of hPrP was in the molten-globule like state, while specific sites including hot spot and C-terminal region of αS selectively interacted with hPrP. Thus αS may suppress amyloidogenesis of hPrP by trapping the hPrP intermediate by the formation of a stable hetero-dimer with hPrP. Abbreviations: hPrP, human prion protein of amino acid residues of 23-231; PrPC, cellular form of prion protein; PrPSc, scrapie form of prion protein, HS-AFM; high speed atomic force microscopy; αS, α-synuclein; DLS, dynamic light scattering
Collapse
Affiliation(s)
- Satoshi Yamashita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Hiroyuki Tomiata
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Department of Gene and Development, Gifu University School of Medicine, Tokai National Higher Education and Research System, Gifu, Japan
| |
Collapse
|
28
|
A multimethod approach for analyzing FapC fibrillation and determining mass per length. Biophys J 2021; 120:2262-2275. [PMID: 33812849 DOI: 10.1016/j.bpj.2021.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Amyloid proteins are found in a wide range of organisms owing to the high stability of the β-sheet core of the amyloid fibrils. There are both pathological amyloids involved in various diseases and functional amyloids that play a beneficial role for the organism. The aggregation process is complex and often involves many different species. Full understanding of this process requires parallel acquisition of data by complementary techniques monitoring the time course of aggregation. This is not an easy task, given the often-stochastic nature of aggregation, which can lead to significant variations in lag time. Here, we investigate the aggregation process of the functional amyloid FapC by simultaneous use of four different techniques, namely dynamic light scattering, small-angle x-ray scattering (SAXS), circular dichroism, and Thioflavin T fluorescence. All these approaches are applied to the same FapC sample just after desalting. Our data allow us to construct a master time-course graph showing the same time-course of aggregation by all techniques. This allows us to integrate insights from approaches that report on different structural and length scales. During the lag phase, loosely aggregated oligomers with random-coil structure are formed, which subsequently transform to fibrils without accumulation of additional significant species. Subsequently, the loosely associated protofilaments/subfilaments, which form side by side, mature to more compact fibrils. Furthermore, we determine the mass per length of the mature fibrils, obtaining very similar results by SAXS (33 kDa/nm) and tilted-beam transmission electron microscopy (31 kDa/nm). Transmission electron microscopy showed that the fibrils consist of primarily two protofilaments and similar dimensions of the cross section of the fibrils as revealed by SAXS modeling when the number of protofilaments per fibril was taken into account. Mass per length information underscores the general usefulness of SAXS in fibrillation analysis and provides an important constraint for further modeling the fibril structures.
Collapse
|
29
|
Damian Guerrero E, Lopez-Velazquez AM, Ahlawat J, Narayan M. Carbon Quantum Dots for Treatment of Amyloid Disorders. ACS APPLIED NANO MATERIALS 2021; 4:2423-2433. [PMID: 33969279 PMCID: PMC8101282 DOI: 10.1021/acsanm.0c02792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Prion-like amyloids self-template and form toxic oligomers, protofibrils, and fibrils from their soluble monomers; a phenomenon that has been implicated in the onset and progress of neurodegenerative disorders such as Alzheimer's (AD), Parkinson's (PD), Huntington's, and systemic lysozyme amyloidosis. Carbon quantum dots (CQDs), sourced from Na-citrate as a carbon precursor were synthesized and characterized before being tested for their ability to intervene in amyloidogenic (fibril-forming) trajectories. Hen-egg white lysozyme (HEWL) served as a model amyloidogenic protein. A pulse-chase lysozyme fibril-forming assay developed to examine the impact of CQDs on the HEWL amyloid-fibril-forming trajectory used ThT fluorescence as a reporter of mature fibril presence. The results revealed that the Na-citrate-derived CQDs were able to intervene at multiple points along the fibril-forming trajectory by preventing the conversion of both monomeric and oligomeric HEWL intermediates into mature fibrils. In addition, and importantly, the carbon nano material (CNM) was able to dissolve oligomeric HEWL into monomeric HEWL and provoke the disaggregation of mature HEWL fibrils. These results suggest that Na-citrate CQD's intervene in amyloidogenesis by multiple mechanisms. The gathered data, coupled with cell-line results demonstrating the relatively low cytotoxicity of Na-citrate CQDs, suggest that this emerging CNM has the potential to intervene both prophylactically and therapeutically in protein misfolding diseases. The aforementioned findings are likely to enable Na-citrate CQDs to eventually transition to both cell-line and preclinical models of protein-misfolding-related disorders. Importantly, the study outcomes positions Na-citrate CQDs as an important class of chemical, nanotechnological, and biobased interventional tools in neuroscience.
Collapse
Affiliation(s)
- Erick Damian Guerrero
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Angela Marlene Lopez-Velazquez
- Department of Biological Sciences, Bioscience Research Building, Border Biomedical Research Center, the Cellular Characterization and Biorepository Core Facility, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
30
|
Benoit SL, Maier RJ. The nickel-chelator dimethylglyoxime inhibits human amyloid beta peptide in vitro aggregation. Sci Rep 2021; 11:6622. [PMID: 33758258 PMCID: PMC7988135 DOI: 10.1038/s41598-021-86060-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
One of the hallmarks of the most common neurodegenerative disease, Alzheimer's disease (AD), is the extracellular deposition and aggregation of Amyloid Beta (Aβ)-peptides in the brain. Previous studies have shown that select metal ions, most specifically copper (Cu) and zinc (Zn) ions, have a synergistic effect on the aggregation of Aβ-peptides. In the present study, inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the metal content of a commercial recombinant human Aβ40 peptide. Cu and Zn were among the metals detected; unexpectedly, nickel (Ni) was one of the most abundant elements. Using a fluorescence-based assay, we found that Aβ40 peptide in vitro aggregation was enhanced by addition of Zn2+ and Ni2+, and Ni2+-induced aggregation was facilitated by acidic conditions. Nickel binding to Aβ40 peptide was confirmed by isothermal titration calorimetry. Addition of the Ni-specific chelator dimethylglyoxime (DMG) inhibited Aβ40 aggregation in absence of added metal, as well as in presence of Cu2+ and Ni2+, but not in presence of Zn2+. Finally, mass spectrometry analysis revealed that DMG can coordinate Cu or Ni, but not Fe, Se or Zn. Taken together, our results indicate that Ni2+ ions enhance, whereas nickel chelation inhibits, Aβ peptide in vitro aggregation. Hence, DMG-mediated Ni-chelation constitutes a promising approach towards inhibiting or slowing down Aβ40 aggregation.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, The University of Georgia, 805 Biological Sciences Bldg, Athens, GA, 30602, USA
- Center for Metalloenzyme Studies, The University of Georgia, Athens, GA, 30602, USA
| | - Robert J Maier
- Department of Microbiology, The University of Georgia, 805 Biological Sciences Bldg, Athens, GA, 30602, USA.
- Center for Metalloenzyme Studies, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
31
|
Aggregation of gelsolin wild-type and G167K/R, N184K, and D187N/Y mutant peptides and inhibition. Mol Cell Biochem 2021; 476:2393-2408. [PMID: 33598831 DOI: 10.1007/s11010-021-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Gelsolin, an actin-binding protein, is localized intra- and extracellularly in the bloodstream and throughout the body. Gelsolin amyloidosis is a disease characterized by several point mutations that lead to cleavage and fibrillization of gelsolin. The D187 mutation to N or Y leads to aggregation of peptide fragments with shortest aggregating peptide identified as 182SFNNGDCFILD192. Recently, G167 has also been identified as relevant gelsolin mutation, which leads to gelsolin deposits in kidneys, but its aggregation is much less understood. Hence, we systematically investigated in vitro the aggregation propensities of the following gelsolin peptides: 167GRRVV171 (1), 161RLFQVKG167 (2), 184NNGDCFILDL193 (3), 188CFILDL193 (4), 187DCFILDL193 (5), and their respective mutants (G167K, G167R, N184K, D187Y, D187N), by using spectroscopic methods [fluorescence Proteostat, Thioflavin T (ThT), turbidity assay, and Dynamic Light Scattering (DLS)], and Transmission Electron Microscopy (TEM). The (non) mutant peptides containing CFILDL sequence aggregated into fibrillar networks, while G167R mutation promoted aggregation compared to the wild-type sequence. In the presence of inhibitors, Methylene Blue (MB) and epigallocatechin gallate (EGCG), the gelsolin peptide (3-5) aggregation was reduced with the IC50 values in the 2-13 µM range. We discovered that inhibitors have dual functionality, as aggregation inhibitors and disaggregation promoters, potentially allowing for the prevention and reversal of gelsolin amyloidosis. Such therapeutic strategies may improve outcomes related to other amyloidogenic diseases of the heart, brain, and eye.
Collapse
|
32
|
Ziaunys M, Sakalauskas A, Smirnovas V. Identifying Insulin Fibril Conformational Differences by Thioflavin-T Binding Characteristics. Biomacromolecules 2020; 21:4989-4997. [PMID: 33201685 PMCID: PMC7739267 DOI: 10.1021/acs.biomac.0c01178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Amyloidogenic
protein aggregation into highly structured fibrils
is linked to more than 30 amyloidoses, including several neurodegenerative
disorders. Despite significant progress in trying to understand the
process of amyloid formation, there is still no cure or effective
treatment available. A number of studies involving potential anti-amyloid
compounds rely on the use of a fluorescent probe—thioflavin-T—to
track the appearance, growth, or disassembly of these cytotoxic aggregates.
Despite the wide application of this dye molecule, its interaction
with amyloid fibrils is still poorly understood. Recent reports have
shown it may possess distinct binding modes and fluorescence intensities
based on the conformation of the examined fibrils. In this work, we
generate insulin fibrils under four different conditions and attempt
to identify distinct conformations using both classic methods, such
as atomic force microscopy and Fourier-transform infrared spectroscopy,
as well as their ThT binding ability and fluorescence quantum yield.
We show that there is a significant variance of ThT fluorescence quantum
yields, excitation/emission maxima positions, and binding modes between
distinct insulin fibril conformations.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
33
|
Fluorescence Lifetime and Intensity of Thioflavin T as Reporters of Different Fibrillation Stages: Insights Obtained from Fluorescence Up-Conversion and Particle Size Distribution Measurements. Int J Mol Sci 2020; 21:ijms21176169. [PMID: 32859090 PMCID: PMC7504639 DOI: 10.3390/ijms21176169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023] Open
Abstract
Thioflavin T (ThT) assay is extensively used for studying fibrillation kinetics in vitro. However, the differences in the time course of ThT fluorescence intensity and lifetime and other physical parameters of the system, such as particle size distribution, raise questions about the correct interpretation of the aggregation kinetics. In this work, we focused on the investigation of the mechanisms, which underlay the difference in sensitivity of ThT fluorescence intensity and lifetime to the formation of protein aggregates during fibrillation by the example of insulin and during binding to globular proteins. The assessment of aggregate sizes and heterogeneity was performed using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Using the sub-nanosecond resolution measurements, it was shown that the ThT lifetime is sensitive to the appearance of as much as a few percent of ThT bound to the high-affinity sites that occur simultaneously with an abrupt increase of the average particle size, particles concentration, and size heterogeneity. The discrepancy between ThT fluorescence intensity and a lifetime can be explained as the consequence of a ThT molecule fraction with ultrafast decay and weak fluorescence. These ThT molecules can only be detected using time-resolved fluorescence measurements in the sub-picosecond time domain. The presence of a bound ThT subpopulation with similar photophysical properties was also demonstrated for globular proteins that were attributed to non-specifically bound ThT molecules with a non-rigid microenvironment.
Collapse
|
34
|
Simpson L, Szeto GL, Boukari H, Good TA, Leach JB. Impact of Four Common Hydrogels on Amyloid-β (Aβ) Aggregation and Cytotoxicity: Implications for 3D Models of Alzheimer's Disease. ACS OMEGA 2020; 5:20250-20260. [PMID: 32832778 PMCID: PMC7439392 DOI: 10.1021/acsomega.0c02046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/23/2020] [Indexed: 05/08/2023]
Abstract
The physiochemical properties of hydrogels utilized in 3D culture can be used to modulate cell phenotype and morphology with a striking resemblance to cellular processes that occur in vivo. Indeed, research areas including regenerative medicine, tissue engineering, in vitro cancer models, and stem cell differentiation have readily utilized 3D biomaterials to investigate cell biological questions. However, cells are only one component of this biomimetic milieu. In many models of disease such as Alzheimer's disease (AD) that could benefit from the in vivo-like cell morphology associated with 3D culture, other aspects of the disease such as protein aggregation have yet to be methodically considered in this 3D context. A hallmark of AD is the accumulation of the peptide amyloid-β (Aβ), whose aggregation is associated with neurotoxicity. We have previously demonstrated the attenuation of Aβ cytotoxicity when cells were cultured within type I collagen hydrogels versus on 2D substrates. In this work, we investigated the extent to which this phenomenon is conserved when Aβ is confined within hydrogels of varying physiochemical properties, notably mesh size and bioactivity. We investigated the Aβ structure and aggregation kinetics in solution and hydrogels composed of type I collagen, agarose, hyaluronic acid, and polyethylene glycol using fluorescence correlation spectroscopy and thioflavin T assays. Our results reveal that all hydrogels tested were associated with enhanced Aβ aggregation and Aβ cytotoxicity attenuation. We suggest that confinement itself imparts a profound effect, possibly by stabilizing Aβ structures and shifting the aggregate equilibrium toward larger species. If this phenomenon of altered protein aggregation in 3D hydrogels can be generalized to other contexts including the in vivo environment, it may be necessary to reevaluate aspects of protein aggregation disease models used for drug discovery.
Collapse
Affiliation(s)
- Laura
W. Simpson
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Eng 314, Baltimore, Maryland 21250, United States
| | - Gregory L. Szeto
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Eng 314, Baltimore, Maryland 21250, United States
- Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, 22 S Greene Street, Baltimore, Maryland 21201, United
States
| | - Hacene Boukari
- Division
of Physical and Computational Sciences, Delaware State University, 1200 N. Dupont Highway, Dover, Delaware 19901, United States
| | - Theresa A. Good
- Division
of Molecular and Cellular Biosciences, National
Science Foundation, 2415 Eisenhower Avenue, E 12485, Alexandria, Virginia 22314, United States
| | - Jennie B. Leach
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Eng 314, Baltimore, Maryland 21250, United States
| |
Collapse
|
35
|
Abstract
Nanoscale optical labeling is an advanced bioimaging tool. It is mostly based on fluorescence (FL) phenomena and enables the visualization of single biocells, bacteria, viruses, and biological tissues, providing monitoring of functional biosystems in vitro and in vivo, and the imaging-guided transportation of drug molecules. There is a variety of FL biolabels such as organic molecular dyes, genetically encoded fluorescent proteins (green fluorescent protein and homologs), semiconductor quantum dots, carbon dots, plasmonic metal gold-based nanostructures and more. In this review, a new generation of FL biolabels based on the recently found biophotonic effects of visible FL are described. This intrinsic FL phenomenon is observed in any peptide/protein materials folded into β-sheet secondary structures, irrespective of their composition, complexity, and origin. The FL effect has been observed both in natural amyloid fibrils, associated with neurodegenerative diseases (Alzheimer’s, Parkinson’s, and more), and diverse synthetic peptide/protein structures subjected to thermally induced biological refolding helix-like→β-sheet. This approach allowed us to develop a new generation of FL peptide/protein bionanodots radiating multicolor, tunable, visible FL, covering the entire visible spectrum in the range of 400–700 nm. Newly developed biocompatible nanoscale biomarkers are considered as a promising tool for emerging precise biomedicine and advanced medical nanotechnologies (high-resolution bioimaging, light diagnostics, therapy, optogenetics, and health monitoring).
Collapse
|
36
|
Scanavachi G, Espinosa Y, Yoneda J, Rial R, Ruso J, Itri R. Aggregation features of partially unfolded bovine serum albumin modulated by hydrogenated and fluorinated surfactants: Molecular dynamics insights and experimental approaches. J Colloid Interface Sci 2020; 572:9-21. [DOI: 10.1016/j.jcis.2020.03.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
|
37
|
Amyloidophilic Molecule Interactions on the Surface of Insulin Fibrils: Cooperative Binding and Fluorescence Quenching. Sci Rep 2019; 9:20303. [PMID: 31889118 PMCID: PMC6937241 DOI: 10.1038/s41598-019-56788-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/16/2019] [Indexed: 11/12/2022] Open
Abstract
Protein aggregation into insoluble fibrillar aggregates is linked to several neurodegenerative disorders, such as Alzheimer’s or Parkinson’s disease. Commonly used methods to study aggregation inhibition or fibril destabilization by potential drugs include spectroscopic measurements of amyloidophilic dye molecule fluorescence or absorbance changes. In this work we show the cross-interactions of five different dye molecules on the surface of insulin amyloid fibrils, resulting in cooperative binding and fluorescence quenching.
Collapse
|
38
|
Taricska N, Horváth D, Menyhárd DK, Ákontz-Kiss H, Noji M, So M, Goto Y, Fujiwara T, Perczel A. The Route from the Folded to the Amyloid State: Exploring the Potential Energy Surface of a Drug-Like Miniprotein. Chemistry 2019; 26:1968-1978. [PMID: 31647140 PMCID: PMC7028080 DOI: 10.1002/chem.201903826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 12/16/2022]
Abstract
The amyloid formation of the folded segment of a variant of Exenatide (a marketed drug for type‐2 diabetes mellitus) was studied by electronic circular dichroism (ECD) and NMR spectroscopy. We found that the optimum temperature for E5 protein amyloidosis coincides with body temperature and requires well below physiological salt concentration. Decomposition of the ECD spectra and its barycentric representation on the folded‐unfolded‐amyloid potential energy surface allowed us to monitor the full range of molecular transformation of amyloidogenesis. We identified points of no return (e.g.; T=37 °C, pH 4.1, cE5=250 μm, cNaCl=50 mm, t>4–6 h) that will inevitably gravitate into the amyloid state. The strong B‐type far ultraviolet (FUV)‐ECD spectra and an unexpectedly strong near ultraviolet (NUV)‐ECD signal (Θ≈275–285
nm) indicate that the amyloid phase of E5 is built from monomers of quasi‐elongated backbone structure (φ≈−145°, ψ≈+145°) with strong interstrand Tyr↔Trp interaction. Misfolded intermediates and the buildup of “toxic” early‐stage oligomers leading to self‐association were identified and monitored as a function of time. Results indicate that the amyloid transition is triggered by subtle misfolding of the α‐helix, exposing aromatic and hydrophobic side chains that may provide the first centers for an intermolecular reorganization. These initial clusters provide the spatial closeness and sufficient time for a transition to the β‐structured amyloid nucleus, thus the process follows a nucleated growth mechanism.
Collapse
Affiliation(s)
- Nóra Taricska
- Laboratory of Structural Chemistry and Biology &, MTA-ELTE Protein Modeling Research Group, Eötvös Loránd University, Pázmány Péter sétány 1A, 1117, Budapest, Hungary
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology &, MTA-ELTE Protein Modeling Research Group, Eötvös Loránd University, Pázmány Péter sétány 1A, 1117, Budapest, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology &, MTA-ELTE Protein Modeling Research Group, Eötvös Loránd University, Pázmány Péter sétány 1A, 1117, Budapest, Hungary
| | - Hanna Ákontz-Kiss
- Laboratory of Structural Chemistry and Biology &, MTA-ELTE Protein Modeling Research Group, Eötvös Loránd University, Pázmány Péter sétány 1A, 1117, Budapest, Hungary
| | - Masahiro Noji
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - András Perczel
- Laboratory of Structural Chemistry and Biology &, MTA-ELTE Protein Modeling Research Group, Eötvös Loránd University, Pázmány Péter sétány 1A, 1117, Budapest, Hungary
| |
Collapse
|
39
|
Lysozyme encapsulated gold nanoclusters for probing the early stage of lysozyme aggregation under acidic conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111540. [DOI: 10.1016/j.jphotobiol.2019.111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
40
|
Effects of Single Amino Acid Substitutions on Aggregation and Cytotoxicity Properties of Amyloid β Peptide. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Alkudaisi N, Russell BA, Jachimska B, Birch DJS, Chen Y. Detecting lysozyme unfolding via the fluorescence of lysozyme encapsulated gold nanoclusters. J Mater Chem B 2019; 7:1167-1175. [PMID: 32254785 DOI: 10.1039/c9tb00009g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein misfolding plays a critical role in the manifestation of amyloidosis type diseases. Therefore, understanding protein unfolding and the ability to track protein unfolding in a dynamic manner are of considerable interest. Fluorescence-based techniques are powerful tools for gaining real-time information about the local environmental conditions of a probe on the nanoscale. Fluorescent gold nanoclusters (AuNCs) are a new type of fluorescent probes which are <2 nm in diameter, incredibly robust and offer highly sensitive, wavelength tuneable emission. Their small size minimises intrusion and makes AuNCs ideal for studying protein dynamics. Lysozyme has previously been used to encapsulate AuNCs. The unfolding dynamics of lysozyme under different environmental conditions have been well-studied and being an amyloid type protein makes lysozyme an ideal candidate for encapsulating AuNCs in order to test their sensitivity to protein unfolding. In this study, we tracked the fluorescence characteristics of AuNCs encapsulated in lysozyme while inducing protein unfolding using urea, sodium dodecyl sulphate (SDS) and elevated temperature and compared them to complimentary circular dichroism spectra. It is found that AuNC fluorescence emission is quenched upon induced protein unfolding either due to a decrease in Forster Resonance Energy Transfer (FRET) efficiency between tryptophan and AuNCs or solvent exposure of the AuNC. Fluorescence lifetime measurements confirmed quenching to be collisional via oxygen dissolved in a solution which increases as the AuNC was exposed to the solvent during unfolding. Moreover, the longer decay component τ1 was observed to decrease as the protein unfolded, due to the increased collisional quenching. It is suggested that AuNC sensitivity to solvent exposure might be utilised in the future as a new approach to studying and possibly even detecting amyloidosis type diseases.
Collapse
Affiliation(s)
- Nora Alkudaisi
- Department of Physics, SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, UK.
| | | | | | | | | |
Collapse
|
42
|
Congo Red and amyloids: history and relationship. Biosci Rep 2019; 39:BSR20181415. [PMID: 30567726 PMCID: PMC6331669 DOI: 10.1042/bsr20181415] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Staining with Congo Red (CR) is a qualitative method used for the identification of amyloids in vitro and in tissue sections. However, the drawbacks and artefacts obtained when using this dye can be found both in vitro and in vivo. Analysis of scientific data from previous studies shows that CR staining alone is not sufficient for confirmation of the amyloid nature of protein aggregates in vitro or for diagnosis of amyloidosis in tissue sections. In the present paper, we describe the characteristics and limitations of other methods used for amyloid studies. Our historical review on the use of CR staining for amyloid studies may provide insight into the pitfalls and caveats related to this technique for researchers considering using this dye.
Collapse
|
43
|
Lu M, Banetta L, Young LJ, Smith EJ, Bates GP, Zaccone A, Kaminski Schierle GS, Tunnacliffe A, Kaminski CF. Live-cell super-resolution microscopy reveals a primary role for diffusion in polyglutamine-driven aggresome assembly. J Biol Chem 2018; 294:257-268. [PMID: 30401748 PMCID: PMC6322900 DOI: 10.1074/jbc.ra118.003500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
The mechanisms leading to self-assembly of misfolded proteins into amyloid aggregates have been studied extensively in the test tube under well-controlled conditions. However, to what extent these processes are representative of those in the cellular environment remains unclear. Using super-resolution imaging of live cells, we show here that an amyloidogenic polyglutamine-containing protein first forms small, amorphous aggregate clusters in the cytosol, chiefly by diffusion. Dynamic interactions among these clusters limited their elongation and led to structures with a branched morphology, differing from the predominantly linear fibrils observed in vitro. Some of these clusters then assembled via active transport at the microtubule-organizing center and thereby initiated the formation of perinuclear aggresomes. Although it is widely believed that aggresome formation is entirely governed by active transport along microtubules, here we demonstrate, using a combined approach of advanced imaging and mathematical modeling, that diffusion is the principal mechanism driving aggresome expansion. We found that the increasing surface area of the expanding aggresome increases the rate of accretion caused by diffusion of cytosolic aggregates and that this pathway soon dominates aggresome assembly. Our findings lead to a different view of aggresome formation than that proposed previously. We also show that aggresomes mature over time, becoming more compacted as the structure grows. The presence of large perinuclear aggregates profoundly affects the behavior and health of the cell, and our super-resolution imaging results indicate that aggresome formation and development are governed by highly dynamic processes that could be important for the design of potential therapeutic strategies.
Collapse
Affiliation(s)
- Meng Lu
- Cambridge Infinitus Research Center, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Luca Banetta
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Laurence J Young
- Cambridge Infinitus Research Center, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Edward J Smith
- Sobell Department of Motor Neuroscience and Movement Disorders and Huntington's Disease Center, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience and Movement Disorders and Huntington's Disease Center, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Alessio Zaccone
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Gabriele S Kaminski Schierle
- Cambridge Infinitus Research Center, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Alan Tunnacliffe
- Cambridge Infinitus Research Center, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clemens F Kaminski
- Cambridge Infinitus Research Center, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom.
| |
Collapse
|
44
|
Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int J Mol Sci 2018; 19:ijms19082292. [PMID: 30081572 PMCID: PMC6121665 DOI: 10.3390/ijms19082292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Kirill S Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
- Institut de Biologie Computationnelle (IBC), 34095 Montpellier, France.
- University ITMO, Institute of Bioengineering, Kronverksky Pr. 49, St. Petersburg 197101, Russia.
| | - Anton A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
45
|
Gobeaux F, Wien F. Reversible Assembly of a Drug Peptide into Amyloid Fibrils: A Dynamic Circular Dichroism Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7180-7191. [PMID: 29772895 DOI: 10.1021/acs.langmuir.8b00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The common view on the amyloid fibril formation is that it is a multistep process that involves many oligomeric intermediate species, which leads to a high degree of polymorphism. This view derives from numerous kinetic studies whose vast majority was carried out with amyloid β fragments or other pathological amyloidogenic sequences. Yet, it is not clear whether the mechanisms inferred from these studies are universal and also apply to functional amyloids, in particular to peptide hormones which form reversible amyloid structures. In the present work, we study the self-assembly properties of atosiban, a nonapeptide drug, whose sequence is very close to those of the oxytocin and vasopressin hormones. We show that this very soluble peptide consistently self-assembles into 7 nm wide amyloid fibrils above a critical aggregation concentration (2-10 w/w % depending on the buffer conditions). The peptide system is characterized in details, from the monomeric to the assembled form, with osmotic concentration measurements, transmission electron microscopy, small-angle X-ray scattering, infrared and fluorescence spectroscopy, and circular dichroism (CD). We have followed in situ the fibril assembly with fluorescence and synchrotron radiation CD and noticed that the peptide undergoes conformational changes during the process. However, several lines of evidence point toward the association of monomers and dimers into fibrils without passing through oligomeric intermediate species contrary to what is usually reported for pathogenic amyloids. The native β-hairpin conformation of the monomer could explain the straightforward assembly. The tyrosine stacking is also shown to play an important role.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS-NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Frank Wien
- SOLEIL Synchrotron , Saint Aubin 91190 , France
| |
Collapse
|
46
|
Sundaram GSM, Binz K, Sharma V, Yeung M, Sharma V. Live-cell fluorescence imaging: assessment of thioflavin T uptake in human epidermal carcinoma cells. MEDCHEMCOMM 2018; 9:946-950. [PMID: 30108983 PMCID: PMC6072315 DOI: 10.1039/c8md00101d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022]
Abstract
Thioflavin T (ThT), a positively charged heterocyclic small molecule, is a widely used fluorescent marker of amyloid pathophysiology to confirm the cause of death in post mortem brain tissue of Alzheimer's disease (AD) patients. Literature precedents indicate that current positron emission tomography (PET) agents, such as 11C-PIB and 18F-flutemetamol, share significant structural similarity with ThT, a lipophilic dye which does not traverse the blood-brain barrier (BBB) to enable the detection of Aβ plaques in vivo. While vital for maintaining normal physiology and healthy brain function, the BBB comprises brain endothelial cells sealed via paracellular protein complexes, bound by an extracellular matrix forming tight junctions thus controlling the delivery of molecules into the brain. The human P-glycoprotein (Pgp/ABCB1, 170 kD plasma membrane protein), belonging to the ABC family of efflux transporter proteins, also lines the luminal surface of brain endothelial cells thus poised to secrete its recognized substrates into the blood. Herein, we postulate that thioflavin T (ThT), due to its physico-chemical attributes, such as moderate lipophilicity and protonated nitrogen, could very well be recognized as a transport substrate of Pgp (P-glycoprotein, ABCB1) thus restricting its permeation into the brain. To evaluate whether or not ThT is indeed recognized by Pgp as its transport substrate thus limiting its BBB permeability, herein, we evaluate cellular accumulation profiles of ThT and PiB (a similar structural uncharged mimetic) in human epidermal carcinoma KB-3-1 (Pgp-) and MDR KB-8-5 (Pgp+) cells, using live-cell fluorescence imaging. While ThT penetrates KB-3-1 cells, it gets excluded from KB-8-5 cells, and also indicates LY335979-induced uptake in Pgp-expressing cells. Furthermore, the cellular uptake profiles of PiB are not impacted by the expression of Pgp under identical conditions. These data show that uptake profiles of ThT have been modified by the expression of Pgp in these cells, and are inversely proportional to the expression of the transporter protein located on the plasma membrane of these cells. Combined data demonstrate that ThT is efficiently recognized by Pgp as its transport substrate.
Collapse
Affiliation(s)
- G S M Sundaram
- ICCE Institute , Molecular Imaging Center , Mallinckrodt Institute of Radiology , Washington University School of Medicine , St. Louis , MO 63110 , USA .
| | - Kristen Binz
- ICCE Institute , Molecular Imaging Center , Mallinckrodt Institute of Radiology , Washington University School of Medicine , St. Louis , MO 63110 , USA .
| | - Vedica Sharma
- ICCE Institute , Molecular Imaging Center , Mallinckrodt Institute of Radiology , Washington University School of Medicine , St. Louis , MO 63110 , USA .
| | - Melany Yeung
- Students and Teachers as Research Scientists (STARS) Program , USA
| | - Vijay Sharma
- ICCE Institute , Molecular Imaging Center , Mallinckrodt Institute of Radiology , Washington University School of Medicine , St. Louis , MO 63110 , USA .
- Students and Teachers as Research Scientists (STARS) Program , USA
- Department of Neurology , Washington University School of Medicine , St. Louis , MO 63110 , USA
- Department of Biomedical Engineering , School of Engineering & Applied Science , Washington University , St. Louis 63105 , USA
| |
Collapse
|
47
|
Siddiqi MK, Alam P, Chaturvedi SK, Khan MV, Nusrat S, Malik S, Khan RH. Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:549-557. [PMID: 29496560 DOI: 10.1016/j.bbapap.2018.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Protein aggregation and amyloid fibrillation are responsible for several serious pathological conditions (like type II diabetes, Alzheimer's and Parkinson's diseases etc.) and protein drugs ineffectiveness. Therefore, a molecule that can inhibit the amyloid fibrillation and potentially clear amyloid fibrils is of great therapeutic value. In this manuscript, we investigated the antiamyloidogenic, fibril disaggregating, as well as cell protective effect of an anti-tuberculosis drug, Capreomycin (CN). Aggregation kinetics data, as monitored by ThT fluorescence, inferred that CN retards the insulin amyloid fibrillation by primarily targeting the fibril elongation step with little effect on lag time. Increasing the dose of CN boosted its inhibitory potency. Strikingly, CN arrested the growth of fibrils when added during the elongation phase, and disaggregated mature insulin fibrils. Our Circular Dichroism (CD) results showed that, although CN is not able to maintain the alpha helical structure of protein during fibrillation, reduces the formation of beta sheet rich structure. Furthermore, Dynamic Light Scattering (DLS) and Transmission Electronic Microscopy (TEM) analysis confirmed that CN treated samples exhibited different size distribution and morphology, respectively. In addition, molecular docking results revealed that CN interacts with insulin through hydrophobic interactions as well as hydrogen bonding, and the Hemolytic assay confirmed the non-hemolytic activity of CN on human RBCs. For future research, this study may assist in the rational designing of molecules against amyloid formation.
Collapse
Affiliation(s)
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sumit Kumar Chaturvedi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
48
|
Lee K, Kim Y, Jung J, Ihee H, Park Y. Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging. Sci Rep 2018; 8:3064. [PMID: 29449627 PMCID: PMC5814402 DOI: 10.1038/s41598-018-21403-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/31/2018] [Indexed: 12/25/2022] Open
Abstract
A novel optical holographic technique is presented to simultaneously measure both the real and imaginary components of the complex refractive index (CRI) of a protein solution over a wide visible wavelength range. Quantitative phase imaging was employed to precisely measure the optical field transmitted from a protein solution, from which the CRIs of the protein solution were retrieved using the Fourier light scattering technique. Using this method, we characterized the CRIs of the two dominant structural states of a photoactive yellow protein solution over a broad wavelength range (461-582 nm). The significant CRI deviation between the two structural states was quantified and analysed. The results of both states show the similar overall shape of the expected rRI obtained from the Kramers-Kronig relations.
Collapse
Affiliation(s)
- KyeoReh Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Youngmin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - JaeHwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
49
|
Cao KJ, Yang J. Translational opportunities for amyloid-targeting fluorophores. Chem Commun (Camb) 2018; 54:9107-9118. [DOI: 10.1039/c8cc03619e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloid-targeting fluorophores have become increasingly useful as clinical tools to aid in the early-stage detection and diagnoses of amyloid-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Kevin J. Cao
- Department of Chemistry and Biochemistry, University of California
- La Jolla
- USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California
- La Jolla
- USA
| |
Collapse
|
50
|
Hiew SH, Sánchez-Ferrer A, Amini S, Zhou F, Adamcik J, Guerette P, Su H, Mezzenga R, Miserez A. Squid Suckerin Biomimetic Peptides Form Amyloid-like Crystals with Robust Mechanical Properties. Biomacromolecules 2017; 18:4240-4248. [PMID: 29112414 DOI: 10.1021/acs.biomac.7b01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present the self-assembly of fibers formed from a peptide sequence (A1H1) derived from suckerin proteins of squid sucker ring teeth (SRT). SRT are protein-only biopolymers with an unconventional set of physicochemical and mechanical properties including high elastic modulus coupled with thermoplastic behavior. We have identified a conserved peptide building block from suckerins that possess the ability to assemble into materials with similar mechanical properties as the native SRT. A1H1 displays amphiphilic characteristics and self-assembles from the bottom-up into mm-scale fibers initiated by the addition of a polar aprotic solvent. A1H1 fibers are thermally resistant up to 239 °C, coupled with an elastic modulus of ∼7.7 GPa, which can be explained by the tight packing of β-sheet-enriched crystalline building blocks as identified by wide-angle X-ray scattering (WAXS), with intersheet and interstrand distances of 5.37 and 4.38 Å, respectively. A compact packing of the peptides at their Ala-rich terminals within the fibers was confirmed from molecular dynamics simulations, and we propose a hierarchical model of fiber assembly of the mature peptide fiber.
Collapse
Affiliation(s)
- Shu Hui Hiew
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Antoni Sánchez-Ferrer
- Department of Health Sciences & Technology, ETH Zurich , Zurich CH-8092, CH-8093, Switzerland
| | - Shahrouz Amini
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Feng Zhou
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Jozef Adamcik
- Department of Health Sciences & Technology, ETH Zurich , Zurich CH-8092, CH-8093, Switzerland
| | - Paul Guerette
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Haibin Su
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich , Zurich CH-8092, CH-8093, Switzerland
| | - Ali Miserez
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore.,School of Biological Sciences, Nanyang Technological University , Singapore 637551, Singapore
| |
Collapse
|