1
|
Vidal PJ, Pérez AP, Yahya G, Aldea M. Transcriptomic balance and optimal growth are determined by cell size. Mol Cell 2024; 84:3288-3301.e3. [PMID: 39084218 DOI: 10.1016/j.molcel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
Collapse
Affiliation(s)
- Pedro J Vidal
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Alexis P Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, 44511 Zagazig, Egypt.
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
2
|
Villani RM, McKenzie ME, Davidson AL, Spurdle AB. Regional-specific calibration enables application of computational evidence for clinical classification of 5' cis-regulatory variants in Mendelian disease. Am J Hum Genet 2024; 111:1301-1315. [PMID: 38815586 PMCID: PMC11267523 DOI: 10.1016/j.ajhg.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
To date, clinical genetic testing for Mendelian disease variants has focused heavily on exonic coding and intronic gene regions. This multi-step study was undertaken to provide an evidence base for selecting and applying computational approaches for use in clinical classification of 5' cis-regulatory region variants. Curated datasets of clinically reported disease-causing 5' cis-regulatory region variants and variants from matched genomic regions in population controls were used to calibrate six bioinformatic tools as predictors of variant pathogenicity. Likelihood ratio estimates were aligned to code weights following ClinGen recommendations for application of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) classification scheme. Considering code assignment across all reference dataset variants, performance was best for CADD (81.2%) and REMM (81.5%). Optimized thresholds provided moderate evidence toward pathogenicity (CADD, REMM) and moderate (CADD) or supporting (REMM) evidence against pathogenicity. Both sensitivity and specificity of prediction were improved when further categorizing variants based on location in an EPDnew-defined promoter region. Combining predictions (CADD, REMM, and location in a promoter region) increased specificity at the expense of sensitivity. Importantly, the optimal CADD thresholds for assigning ACMG/AMP codes PP3 (≥10) and BP4 (≤8) were vastly different from recommendations for protein-coding variants (PP3 ≥25.3; BP4 ≤22.7); CADD <22.7 would incorrectly assign BP4 for >90% of reported disease-causing cis-regulatory region variants. Our results demonstrate the need to consider a tiered approach and tailored score thresholds to optimize bioinformatic impact prediction for clinical classification of 5' cis-regulatory region variants.
Collapse
Affiliation(s)
- Rehan M Villani
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maddison E McKenzie
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aimee L Davidson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Filonov SV, Podkolodnyy NL, Podkolodnaya OA, Tverdokhleb NN, Ponomarenko PM, Rasskazov DA, Bogomolov AG, Ponomarenko MP. Human_SNP_TATAdb: a database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: genome-wide analysis and use cases. Vavilovskii Zhurnal Genet Selektsii 2023; 27:728-736. [PMID: 38213714 PMCID: PMC10777301 DOI: 10.18699/vjgb-23-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 01/13/2024] Open
Abstract
It was previously shown that the expression levels of human genes positively correlate with TBP affinity for the promoters of these genes. In turn, single nucleotide polymorphisms (SNPs) in human gene promoters can affect TBP affinity for DNA and, as a consequence, gene expression. The Institute of Cytology and Genetics SB RAS (ICG) has developed a method for predicting TBP affinity for gene promoters based on a three-step binding mecha- nism: (1) TBP slides along DNA, (2) TBP stops at the binding site, and (3) the TBP-promoter complex is fixed due to DNA helix bending. The method showed a high correlation of theoretical predictions with measured values during repeated experimental testing by independent groups of researchers. This model served as a base for other ICG web services, SNP_TATA_Z-tester and SNP_TATA_Comparator, which make a statistical assessment of the SNP-induced change in the affinity of TBP binding to the human gene promoter and help predict changes in expression that may be associated with a genetic predisposition to diseases or phenotypic features of the organism. In this work, we integrated into a single database information about SNPs in human gene promoters obtained by automatic extrac- tion from various heterogeneous data sources, as well as the estimates of TBP affinity for the promoter obtained using the three-step binding model and predicting their effect on gene expression for wild-type promoters and promoters with SNPs. We have shown that Human_SNP_TATAdb can be used for annotation and identification of candidate SNP markers of diseases. The results of a genome-wide data analysis are presented, including the distri- bution of genes with respect to the number of transcripts, the distribution of SNPs affecting TBP-DNA affinity with respect to positions within promoters, as well as patterns linking TBP affinity for the promoter, the specificity of the TBP binding site for the promoter and other characteristics of promoters. The results of the genome-wide analysis showed that the affinity of TBP for the promoter and the specificity of its binding site are statistically related to other characteristics of promoters important for the functional classification of promoters and the study of the features of differential gene expression.
Collapse
Affiliation(s)
- S V Filonov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - N L Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O A Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N N Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P M Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Kharytonchyk S, Burnett C, GC K, Telesnitsky A. Transcription start site heterogeneity and its role in RNA fate determination distinguish HIV-1 from other retroviruses and are mediated by core promoter elements. J Virol 2023; 97:e0081823. [PMID: 37681957 PMCID: PMC10537674 DOI: 10.1128/jvi.00818-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5´ isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively, the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogeneous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic comparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site. IMPORTANCE Retroviruses use RNA both to encode their proteins and to serve in place of DNA as their genomes. A recent surprising discovery was that the genomic RNAs and messenger RNAs of HIV-1 are not identical but instead differ subtly on one of their ends. These differences enable the functional separation of HIV-1 RNAs into genome and messenger roles. In this report, we examined a broad collection of HIV-1-related viruses and discovered that each produced only one end class of RNA, and thus must differ from HIV-1 in how they specify RNA fates. By comparing regulatory signals, we generated virus variants that pinpointed the determinants of HIV-1 RNA fates, as well as HIV-1 variants that produced only one or the other functional class of RNA. Competition and replication assays confirmed that HIV-1 has evolved to rely on the coordinated actions of both its RNA forms.
Collapse
Affiliation(s)
- Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Keshav GC
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Kharytonchyk S, Burnett C, Gc K, Telesnitsky A. Transcription start site heterogeneity and its role in RNA fate determination distinguish HIV-1 from other retroviruses and are mediated by core promoter elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541776. [PMID: 37292892 PMCID: PMC10245945 DOI: 10.1101/2023.05.22.541776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5' isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogenous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic csomparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site.
Collapse
Affiliation(s)
- Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Keshav Gc
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| |
Collapse
|
6
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Vishnevsky O, Chadaeva I, Sharypova E, Khandaev B, Zolotareva K, Kazachek A, Ponomarenko P, Podkolodny N, Rasskazov D, Bogomolov A, Podkolodnaya O, Savinkova L, Zemlyanskaya E, Ponomarenko M. Promoters of genes encoding β-amylase, albumin and globulin in food plants have weaker affinity for TATA-binding protein as compared to non-food plants: in silico analysis. Vavilovskii Zhurnal Genet Selektsii 2022; 26:798-805. [PMID: 36694715 PMCID: PMC9837162 DOI: 10.18699/vjgb-22-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
It is generally accepted that during the domestication of food plants, selection was focused on their productivity, the ease of their technological processing into food, and resistance to pathogens and environmental stressors. Besides, the palatability of plant foods and their health benefits could also be subjected to selection by humans in the past. Nonetheless, it is unclear whether in antiquity, aside from positive selection for beneficial properties of plants, humans simultaneously selected against such detrimental properties as allergenicity. This topic is becoming increasingly relevant as the allergization of the population grows, being a major challenge for modern medicine. That is why intensive research by breeders is already underway for creating hypoallergenic forms of food plants. Accordingly, in this paper, albumin, globulin, and β-amylase of common wheat Triticum aestivum L. (1753) are analyzed, which have been identified earlier as targets for attacks by human class E immunoglobulins. At the genomic level, we wanted to find signs of past negative selection against the allergenicity of these three proteins (albumin, globulin, and β-amylase) during the domestication of ancestral forms of modern food plants. We focused the search on the TATA-binding protein (TBP)-binding site because it is located within a narrow region (between positions -70 and -20 relative to the corresponding transcription start sites), is the most conserved, necessary for primary transcription initiation, and is the best-studied regulatory genomic signal in eukaryotes. Our previous studies presented our publicly available Web service Plant_SNP_TATA_Z-tester, which makes it possible to estimate the equilibrium dissociation constant (KD) of TBP complexes with plant proximal promoters (as output data) using 90 bp of their DNA sequences (as input data). In this work, by means of this bioinformatics tool, 363 gene promoter DNA sequences representing 43 plant species were analyzed. It was found that compared with non-food plants, food plants are characterized by significantly weaker affinity of TBP for proximal promoters of their genes homologous to the genes of common-wheat globulin, albumin, and β-amylase (food allergens) (p < 0.01, Fisher's Z-test). This evidence suggests that in the past humans carried out selective breeding to reduce the expression of food plant genes encoding these allergenic proteins.
Collapse
Affiliation(s)
- O.V. Vishnevsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russi
| | - I.V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B.M. Khandaev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K.A. Zolotareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.V. Kazachek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P.M. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N.L. Podkolodny
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaInstitute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D.A. Rasskazov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.G. Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O.A. Podkolodnaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L.K. Savinkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.V. Zemlyanskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M.P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Transcription Factors as Important Regulators of Changes in Behavior through Domestication of Gray Rats: Quantitative Data from RNA Sequencing. Int J Mol Sci 2022; 23:ijms232012269. [PMID: 36293128 PMCID: PMC9603081 DOI: 10.3390/ijms232012269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on hereditary fixation of the tame-behavior phenotype during animal domestication remain relevant and important because they are of both basic research and applied significance. In model animals, gray rats Rattus norvegicus bred for either an enhancement or reduction in defensive response to humans, for the first time, we used high-throughput RNA sequencing to investigate differential expression of genes in tissue samples from the tegmental region of the midbrain in 2-month-old rats showing either tame or aggressive behavior. A total of 42 differentially expressed genes (DEGs; adjusted p-value < 0.01 and fold-change > 2) were identified, with 20 upregulated and 22 downregulated genes in the tissue samples from tame rats compared with aggressive rats. Among them, three genes encoding transcription factors (TFs) were detected: Ascl3 was upregulated, whereas Fos and Fosb were downregulated in tissue samples from the brains of tame rats brain. Other DEGs were annotated as associated with extracellular matrix components, transporter proteins, the neurotransmitter system, signaling molecules, and immune system proteins. We believe that these DEGs encode proteins that constitute a multifactorial system determining the behavior for which the rats have been artificially selected. We demonstrated that several structural subtypes of E-box motifs—known as binding sites for many developmental TFs of the bHLH class, including the ASCL subfamily of TFs—are enriched in the set of promoters of the DEGs downregulated in the tissue samples of tame rats’. Because ASCL3 may act as a repressor on target genes of other developmental TFs of the bHLH class, we hypothesize that the expression of TF gene Ascl3 in tame rats indicates longer neurogenesis (as compared to aggressive rats), which is a sign of neoteny and domestication. Thus, our domestication model shows a new function of TF ASCL3: it may play the most important role in behavioral changes in animals.
Collapse
|
9
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
10
|
Zhang Z, Liu C, Hao W, Yin W, Ai S, Zhao Y, Duan Z. Novel Single Nucleotide Polymorphisms and Haplotype of MYF5 Gene Are Associated with Body Measurements and Ultrasound Traits in Grassland Short-Tailed Sheep. Genes (Basel) 2022; 13:genes13030483. [PMID: 35328037 PMCID: PMC8949509 DOI: 10.3390/genes13030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Myogenic factor 5 plays active roles in the regulation of myogenesis. The aim of this study is to expose the genetic variants of the MYF5 and its association with growth performance and ultrasound traits in grassland short-tailed sheep (GSTS) in China. The combination technique of sequencing and SNaPshot revealed seven SNPs in ovine MYF5 from 533 adult individuals (male 103 and female 430), four of which are novel ones located at g.6838G > A, g.6989 G > T, g.7117 C > A in the promoter region and g.9471 T > G in the second intron, respectively. Genetic diversity indexes showed the seven SNPs in low or intermediate level, but each of them conformed HWE (p > 0.05) in genotypic frequencies. Association analysis indicated that g.6838G > A, g.7117 C > A, g.8371 T > C, g.9471 T > G, and g.10044 C > T had significant effects on growth performance and ultrasound traits. The diplotypes of H1H3 and H2H3 had higher body weight and greater body size, and haplotype H3 had better performance on meat production than the others. In addition, the dual-luciferase reporter assay showed that there are two active regions in the MYF5 promoter located at −1799~−1197 bp and −514~−241 bp, respectively, but g.6838G > A and g.7117 C > A were out of the region, suggesting these two SNPs influence the phenotype by other pathway. The results suggest that the MYF5 gene might be applied as a promising candidate of functional genetic marker in GSTS breeding.
Collapse
Affiliation(s)
- Zhichao Zhang
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Liu
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Wenjing Hao
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Weiwen Yin
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Sitong Ai
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Yanfang Zhao
- Animal Disease Prevention and Control Center, Ewenki Autonomous Banner, Hulunbuir 021000, China;
| | - Ziyuan Duan
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
11
|
Stress Reactivity, Susceptibility to Hypertension, and Differential Expression of Genes in Hypertensive Compared to Normotensive Patients. Int J Mol Sci 2022; 23:ijms23052835. [PMID: 35269977 PMCID: PMC8911431 DOI: 10.3390/ijms23052835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Although half of hypertensive patients have hypertensive parents, known hypertension-related human loci identified by genome-wide analysis explain only 3% of hypertension heredity. Therefore, mainstream transcriptome profiling of hypertensive subjects addresses differentially expressed genes (DEGs) specific to gender, age, and comorbidities in accordance with predictive preventive personalized participatory medicine treating patients according to their symptoms, individual lifestyle, and genetic background. Within this mainstream paradigm, here, we determined whether, among the known hypertension-related DEGs that we could find, there is any genome-wide hypertension theranostic molecular marker applicable to everyone, everywhere, anytime. Therefore, we sequenced the hippocampal transcriptome of tame and aggressive rats, corresponding to low and high stress reactivity, an increase of which raises hypertensive risk; we identified stress-reactivity-related rat DEGs and compared them with their known homologous hypertension-related animal DEGs. This yielded significant correlations between stress reactivity-related and hypertension-related fold changes (log2 values) of these DEG homologs. We found principal components, PC1 and PC2, corresponding to a half-difference and half-sum of these log2 values. Using the DEGs of hypertensive versus normotensive patients (as the control), we verified the correlations and principal components. This analysis highlighted downregulation of β-protocadherins and hemoglobin as whole-genome hypertension theranostic molecular markers associated with a wide vascular inner diameter and low blood viscosity, respectively.
Collapse
|
12
|
Wang C, Wang R, Yang H, Wang Y, Zhang Z. Gene cloning and transcriptional regulation of the alkaline and acid phosphatase genes in Scylla paramamosain. Gene 2021; 810:146057. [PMID: 34732367 DOI: 10.1016/j.gene.2021.146057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/04/2022]
Abstract
In crustaceans, innate immunity serves as the frontline of defense against microbes. Alkaline phosphatases (ALPs) and acid phosphatases (ACPs) are essential enzymes that play a significant role in crustaceans' immune defenses. However, the function and transcriptional regulation of the alp and acp genes in the Scylla paramamosain, an important aquaculture species in China, have not been elucidated. In this study, the full-length cDNAs of Spalp and Spacp were identified, which consist of 2,718 bp and 3,768 bp, encoding 579 and 452 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that these two genes were conserved among different species and shared high homology with crustaceans. The mRNA expression of Spalp and Spacp were examined in eight tested tissues, with the highest levels in the hepatopancreas. The 5'-flanking regions of Spalp and Spacp were cloned and sequenced. The core promoter region of the Spalp and Spacp was -39 bp∼+8 bp and -39 bp∼+10 bp, respectively. Potential binding sequences for SOX-2, c-fos, SP1, NF-κB, GATA-1, YY1, and AP-1 transcription factors were found in the 5'-flanking regions of Spalp and Spacp. The NF-κB binding site located between -1,223 bp and -972 bp in Spalp while SP1 and AP-1 binding sites located between -1,249 bp and -514 bp in Spacp. Mutation analysis confirmed that NF-κB negatively regulated the expression of Spalp gene, and SP1 and AP-1 positively regulated Spacp gene expression. These results provide us with essential information to elucidate the function of the Spalp and Spacp in S. paramamosain. This study is the first one to analyze the activity of Spalp and Spacp promoters.
Collapse
Affiliation(s)
- Caixia Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruoxuan Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32653, USA
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, Fujian 361021, China
| | - Ziping Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou. Fujian 350002, China.
| |
Collapse
|
13
|
Wang WJ, Guo YQ, Xie KJ, Li YD, Li ZW, Wang N, Xiao F, Guo HS, Li H, Wang SZ. A functional variant in the promoter region of IGF1 gene is associated with chicken abdominal fat deposition. Domest Anim Endocrinol 2021; 75:106584. [PMID: 33276215 DOI: 10.1016/j.domaniend.2020.106584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factor 1 (IGF1) plays an important role in the regulation of cell growth, proliferation, differentiation, and apoptosis. Previously several studies revealed that genotypes of chicken IGF1 c.-366A > C were significantly associated with abdominal fat weight and body weight in chickens. But the underlying mechanism is still unknown. To investigate the mechanism underlying the association, herein, we performed IGF1 gene mRNA expression profiling, a dual-luciferase reporter assay and electrophoretic mobility shift assay (EMSA). Quantitative real-time PCR results showed that IGF1 gene was widely expressed in 14 tissues. The mRNA expression levels of IGF1 gene in both abdominal fat and jejunum were significantly higher in fat broilers than in lean broilers. However, the opposite results were observed in the pancreas. The reporter gene assay showed that the promoter luciferase activity of allele A was significantly higher than that of allele C (P < 0.05). In addition, the luciferase activity of allele A promoted by the transcription factor AP1 and OCT1 was higher than that of allele C (P < 0.05). Electrophoretic mobility shift assay result showed that allele A binding to the transcription factor AP1 and OCT1 was stronger than that of allele C. All in all, our data indicated that the IGF1 gene c.-366A > C is a functional SNP responsible for chicken adipose deposition.
Collapse
Affiliation(s)
- W J Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Q Guo
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - K J Xie
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Z W Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H S Guo
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Ponomarenko M, Sharypova E, Drachkova I, Chadaeva I, Arkova O, Podkolodnaya O, Ponomarenko P, Kolchanov N, Savinkova L. Unannotated single nucleotide polymorphisms in the TATA box of erythropoiesis genes show in vitro positive involvements in cognitive and mental disorders. BMC MEDICAL GENETICS 2020; 21:165. [PMID: 33092544 PMCID: PMC7579878 DOI: 10.1186/s12881-020-01106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hemoglobin is a tetramer consisting of two α-chains and two β-chains of globin. Hereditary aberrations in the synthesis of one of the globin chains are at the root of thalassemia, one of the most prevalent monogenic diseases worldwide. In humans, in addition to α- and β-globins, embryonic zeta-globin and fetal γ-globin are expressed. Immediately after birth, the expression of fetal Aγ- and Gγ-globin ceases, and then adult β-globin is mostly expressed. It has been shown that in addition to erythroid cells, hemoglobin is widely expressed in nonerythroid cells including neurons of the cortex, hippocampus, and cerebellum in rodents; embryonic and adult brain neurons in mice; and mesencephalic dopaminergic brain cells in humans, mice, and rats. Lately, there is growing evidence that different forms of anemia (changes in the number and quality of blood cells) may be involved in (or may accompany) the pathogenesis of various cognitive and mental disorders, such as Alzheimer's and Parkinson's diseases, depression of various severity levels, bipolar disorders, and schizophrenia. Higher hemoglobin concentrations in the blood may lead to hyperviscosity, hypovolemia, and lung diseases, which may cause brain hypoxia and anomalies of brain function, which may also result in cognitive deficits. METHODS In this study, a search for unannotated single-nucleotide polymorphisms (SNPs) of erythroid genes was initially performed using our previously created and published SNP-TATA_Z-tester, which is a Web service for computational analysis of a given SNP for in silico estimation of its influence on the affinity of TATA-binding protein (TBP) for TATA and TATA-like sequences. The obtained predictions were finally verified in vitro by an electrophoretic mobility shift assay (EMSA). RESULTS On the basis of these experimental in vitro results and literature data, we studied TATA box SNPs influencing both human erythropoiesis and cognitive abilities. For instance, TBP-TATA affinity in the HbZ promoter decreases 6.6-fold as a result of a substitution in the TATA box (rs113180943), thereby possibly disrupting stage-dependent events of "switching" of hemoglobin genes and thus causing erythroblastosis. Therefore, rs113180943 may be a candidate marker of severe hemoglobinopathies with comorbid cognitive and mental disorders associated with cerebral blood flow disturbances. CONCLUSIONS The literature data and experimental and computations results suggest that the uncovered candidate SNP markers of erythropoiesis anomalies may also be studied in cohorts of patients with cognitive and/or mental disorders with comorbid erythropoiesis diseases in comparison to conventionally healthy volunteers. Research into the regulatory mechanisms by which the identified SNP markers contribute to the development of hemoglobinopathies and of the associated cognitive deficits will allow physicians not only to take timely and adequate measures against hemoglobinopathies but also to implement strategies preventing cognitive and mental disorders.
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 1 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga Arkova
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
15
|
Ponomarenko M, Kleshchev M, Ponomarenko P, Chadaeva I, Sharypova E, Rasskazov D, Kolmykov S, Drachkova I, Vasiliev G, Gutorova N, Ignatieva E, Savinkova L, Bogomolov A, Osadchuk L, Osadchuk A, Oshchepkov D. Disruptive natural selection by male reproductive potential prevents underexpression of protein-coding genes on the human Y chromosome as a self-domestication syndrome. BMC Genet 2020; 21:89. [PMID: 33092533 PMCID: PMC7583315 DOI: 10.1186/s12863-020-00896-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
Background In population ecology, the concept of reproductive potential denotes the most vital indicator of chances to produce and sustain a healthy descendant until his/her reproductive maturity under the best conditions. This concept links quality of life and longevity of an individual with disease susceptibilities encoded by his/her genome. Female reproductive potential has been investigated deeply, widely, and comprehensively in the past, but the male one has not received an equal amount of attention. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of male reproductive potential. Results Examining in silico (i.e., using our earlier created Web-service SNP_TATA_Z-tester) all 1206 unannotated SNPs within 70 bp proximal promoters of all 63 Y-linked genes, we found 261 possible male-reproductive-potential SNP markers that can significantly alter the binding affinity of TATA-binding protein (TBP) for these promoters. Among them, there are candidate SNP markers of spermatogenesis disorders (e.g., rs1402972626), pediatric cancer (e.g., rs1483581212) as well as male anxiety damaging family relationships and mother’s and children’s health (e.g., rs187456378). First of all, we selectively verified in vitro both absolute and relative values of the analyzed TBP–promoter affinity, whose Pearson’s coefficients of correlation between predicted and measured values were r = 0.84 (significance p < 0.025) and r = 0.98 (p < 0.025), respectively. Next, we found that there are twofold fewer candidate SNP markers decreasing TBP–promoter affinity relative to those increasing it, whereas in the genome-wide norm, SNP-induced damage to TBP–promoter complexes is fourfold more frequent than SNP-induced improvement (p < 0.05, binomial distribution). This means natural selection against underexpression of these genes. Meanwhile, the numbers of candidate SNP markers of an increase and decrease in male reproductive potential were indistinguishably equal to each other (p < 0.05) as if male self-domestication could have happened, with its experimentally known disruptive natural selection. Because there is still not enough scientific evidence that this could have happened, we discuss the human diseases associated with candidate SNP markers of male reproductive potential that may correspond to domestication-related disorders in pets. Conclusions Overall, our findings seem to support a self-domestication syndrome with disruptive natural selection by male reproductive potential preventing Y-linked underexpression of a protein.
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia.
| | - Maxim Kleshchev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Semyon Kolmykov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Gennady Vasiliev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Natalia Gutorova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena Ignatieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Alexandr Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
16
|
Nazet U, Schröder A, Spanier G, Wolf M, Proff P, Kirschneck C. Simplified method for applying static isotropic tensile strain in cell culture experiments with identification of valid RT-qPCR reference genes for PDL fibroblasts. Eur J Orthod 2020; 42:359-370. [PMID: 31352484 DOI: 10.1093/ejo/cjz052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Periodontal ligament fibroblasts (PDLF) play an important mediating role in orthodontic tooth movement expressing various cytokines, when exposed to compressive or tensile strain. Here, we present a simplified and easy-to-handle, but reliable and valid method for simulating static isotropic tensile strain in vitro using spherical silicone cap stamps. Furthermore, we identify appropriate reference genes for data normalization in real-time quantitative polymerase chain reaction (RT-qPCR) experiments on PDLF subjected to tensile strain. MATERIALS AND METHODS PDLF were cultivated on flexible bioflex membranes and exposed to static isotropic tensile strain of different magnitudes and timeframes. We determined cell number, cytotoxicity, and relative expression of proinflammatory genes cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6). For normalization of RT-qPCR data, we tested the stability and validity of nine candidate reference genes with four mathematical algorithms (geNorm, NormFinder, comparative ΔCq, and BestKeeper) and ranked them based on their calculated expression stability. RESULTS We observed no decrease in cell number or cytotoxic effect at any of the applied magnitudes and timeframes of tensile strain. At 16 per cent and 35 per cent tensile strain for 48 hours, we detected a significant increase in COX-2 and decrease in IL-6 gene expression. Highest stability was found for TBP (TATA-box-binding protein) and PPIB (peptidylprolyl isomerase A) in reference gene validation. According to the geNorm algorithm, both genes in conjunction are sufficient for normalization. In contrast to all other candidate genes tested, gene expression normalization of target gene COX-2 to reference genes EEF1A1, RPL22, and RNA18S5 indicated no significant upregulation of COX-2 expression. CONCLUSIONS A strain magnitude of 16 per cent for 48 hours elicited the most distinct cellular response by PDLF subjected to static tensile isotropic strain by the presented method. TBP and PPIB in conjunction proved to be the most appropriate reference genes to normalize target gene expression in RT-qPCR studies on PDLF subjected to tensile strain.
Collapse
Affiliation(s)
- Ute Nazet
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Gerrit Spanier
- Department of Maxillo-Facial Surgery, University Medical Centre of Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | |
Collapse
|
17
|
Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 2020; 11:2828. [PMID: 32504003 PMCID: PMC7275037 DOI: 10.1038/s41467-020-16702-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
Collapse
Affiliation(s)
- Kevin Kramm
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Florian B Heiss
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
- Human Technopole Foundation, Centre of Structural Biology, 20157, Milan, Italy
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Dina Grohmann
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
18
|
Moradifard S, Saghiri R, Ehsani P, Mirkhani F, Ebrahimi‐Rad M. A preliminary computational outputs versus experimental results: Application of sTRAP, a biophysical tool for the analysis of SNPs of transcription factor-binding sites. Mol Genet Genomic Med 2020; 8:e1219. [PMID: 32155318 PMCID: PMC7216802 DOI: 10.1002/mgg3.1219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/25/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In the human genome, the transcription factors (TFs) and transcription factor-binding sites (TFBSs) network has a great regulatory function in the biological pathways. Such crosstalk might be affected by the single-nucleotide polymorphisms (SNPs), which could create or disrupt a TFBS, leading to either a disease or a phenotypic defect. Many computational resources have been introduced to predict the TFs binding variations due to SNPs inside TFBSs, sTRAP being one of them. METHODS A literature review was performed and the experimental data for 18 TFBSs located in 12 genes was provided. The sequences of TFBS motifs were extracted using two different strategies; in the size similar with synthetic target sites used in the experimental techniques, and with 60 bp upstream and downstream of the SNPs. The sTRAP (http://trap.molgen.mpg.de/cgi-bin/trap_two_seq_form.cgi) was applied to compute the binding affinity scores of their cognate TFs in the context of reference and mutant sequences of TFBSs. The alternative bioinformatics model used in this study was regulatory analysis of variation in enhancers (RAVEN; http://www.cisreg.ca/cgi-bin/RAVEN/a). The bioinformatics outputs of our study were compared with experimental data, electrophoretic mobility shift assay (EMSA). RESULTS In 6 out of 18 TFBSs in the following genes COL1A1, Hb ḉᴪ, TF, FIX, MBL2, NOS2A, the outputs of sTRAP were inconsistent with the results of EMSA. Furthermore, no p value of the difference between the two scores of binding affinity under the wild and mutant conditions of TFBSs was presented. Nor, were any criteria for preference or selection of any of the measurements of different matrices used for the same analysis. CONCLUSION Our preliminary study indicated some paradoxical results between sTRAP and experimental data. However, to link the data of sTRAP to the biological functions, its optimization via experimental procedures with the integration of expanded data and applying several other bioinformatics tools might be required.
Collapse
Affiliation(s)
| | - Reza Saghiri
- Biochemistry DepartmentPasteur Institute of IranTehranIran
| | - Parastoo Ehsani
- Molecular Biology DepartmentPasteur Institute of IranTehranIran
| | | | | |
Collapse
|
19
|
Candidate SNP Markers of Atherogenesis Significantly Shifting the Affinity of TATA-Binding Protein for Human Gene Promoters show stabilizing Natural Selection as a Sum of Neutral Drift Accelerating Atherogenesis and Directional Natural Selection Slowing It. Int J Mol Sci 2020; 21:ijms21031045. [PMID: 32033288 PMCID: PMC7037642 DOI: 10.3390/ijms21031045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: The World Health Organization (WHO) regards atherosclerosis-related myocardial infarction and stroke as the main causes of death in humans. Susceptibility to atherogenesis-associated diseases is caused by single-nucleotide polymorphisms (SNPs). (2) Methods: Using our previously developed public web-service SNP_TATA_Comparator, we estimated statistical significance of the SNP-caused alterations in TATA-binding protein (TBP) binding affinity for 70 bp proximal promoter regions of the human genes clinically associated with diseases syntonic or dystonic with atherogenesis. Additionally, we did the same for several genes related to the maintenance of mitochondrial genome integrity, according to present-day active research aimed at retarding atherogenesis. (3) Results: In dbSNP, we found 1186 SNPs altering such affinity to the same extent as clinical SNP markers do (as estimated). Particularly, clinical SNP marker rs2276109 can prevent autoimmune diseases via reduced TBP affinity for the human MMP12 gene promoter and therefore macrophage elastase deficiency, which is a well-known physiological marker of accelerated atherogenesis that could be retarded nutritionally using dairy fermented by lactobacilli. (4) Conclusions: Our results uncovered SNPs near clinical SNP markers as the basis of neutral drift accelerating atherogenesis and SNPs of genes encoding proteins related to mitochondrial genome integrity and microRNA genes associated with instability of the atherosclerotic plaque as a basis of directional natural selection slowing atherogenesis. Their sum may be stabilizing the natural selection that sets the normal level of atherogenesis.
Collapse
|
20
|
Chadaeva IV, Rasskazov DA, Sharypova EB, Drachkova IA, Oshchepkova EA, Savinkova LK, Ponomarenko PM, Ponomarenko MP, Kolchanov NA, Kozlov VA. Сandidate SNP-markers of rheumatoid arthritis that can significantly alter the affinity of the TATA-binding protein for human gene promoters. Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj19.586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rheumatoid polyarthritis (RA) is an autoimmune disease with autoantibodies, including antibodies to citrullant antigens and proinflammatory cytokines, such as TNF-α and IL-6, which are involved in the induction of chronic synovitis, bone erosion, followed by deformity. Immunopathogenesis is based on the mechanisms of the breakdown of immune tolerance to its own antigens, which is characterized by an increase in the activity of T-effector cells, causing RA symptomatology. At the same time, against the background of such increased activity of effector lymphocytes, a decrease in the activity of a number of regulatory cells, including regulatory T-cells (Treg) and myeloid suppressor cells, is recorded. There is reason to say that it is the change in the activity of suppressor cells that is the leading element in RA pathogenesis. That is why only periods of weakening (remission) of RA are spoken of. According to the more powerful female immune system compared to the male one, the risk of developing RA in women is thrice as high, this risk decreases during breastfeeding and grows during pregnancy as well as after menopause in proportion to the level of sex hormones. It is believed that 50 % of the risk of developing RA depends on the conditions and lifestyle, while the remaining 50 % is dependent on genetic predisposition. That is why, RA fits the main idea of postgenomic predictive-preventive personalized medicine that is to give a chance to those who would like to reduce his/her risk of diseases by bringing his/her conditions and lifestyle in line with the data on his/her genome sequenced. This is very important, since doctors consider RA as one of the most frequent causes of disability. Using the Web service SNP_TATA_Z-tester (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan_fox/start.pl), 227 variants of single nucleotide polymorphism (SNP) of the human gene promoters were studied. As a result, 43 candidate SNP markers for RA that can alter the affinity of the TATA-binding protein (TBP) for the promoters of these genes were predicted.
Collapse
Affiliation(s)
- I. V. Chadaeva
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | | | | | | | | | | | | | - M. P. Ponomarenko
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - N. A. Kolchanov
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - V. A. Kozlov
- Research Institute of Fundamental and Clinical Immunology
| |
Collapse
|
21
|
Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading. PLoS One 2019; 14:e0225790. [PMID: 31809510 PMCID: PMC6897414 DOI: 10.1371/journal.pone.0225790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Selection of appropriate housekeeping genes is essential for the validity of data normalization in reverse transcription quantitative PCR (RT-qPCR). Synovial fibroblasts (SF) play a mediating role in the development and progression of osteoarthritis (OA) pathogenesis, but there is no information on reliable housekeeping genes available. Therefore the goal of this study was to identify a set of reliable housekeeping genes suitable for studies of mechanical loading on SF from healthy and OA patients. Nine genes were evaluated towards expression stability and ranked according their relative stability determined by four different mathematical procedures (geNorm, NormFinder, BestKeeper and comparative ΔCq). We observed that RPLP0 (ribosomal protein, large, P0) and EEF1A1 (eukaryotic translation elongation factor 1 alpha 1) turned out to be the genes with the most stable expression in SF from non-OA or OA patients treated with or without mechanical loading. According to geNorm two genes are sufficient for normalization throughout. Expression of one tested target gene varied considerably, if normalized to different candidate housekeeping genes. Our study provides a tool for accurate and valid housekeeping gene selection in gene expression experiments on SF from healthy and OA patients with and without mechanical loading in consistent with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines and additionally demonstrates the impact of proper housekeeping gene selection on the expression of the gene of interest.
Collapse
|
22
|
Ponomarenko MP, Rasskazov DA, Chadaeva IV, Sharypova EB, Drachkova IA, Ponomarenko PM, Oshchepkova EA, Savinkova LK, Kolchanov NA. Candidate SNP Markers of Atherosclerosis That May Significantly Change the Affinity of the TATA-Binding Protein for the Human Gene Promoters. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419090114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Chadaeva I, Ponomarenko P, Rasskazov D, Sharypova E, Kashina E, Kleshchev M, Ponomarenko M, Naumenko V, Savinkova L, Kolchanov N, Osadchuk L, Osadchuk A. Natural Selection Equally Supports the Human Tendencies in Subordination and Domination: A Genome-Wide Study With in silico Confirmation and in vivo Validation in Mice. Front Genet 2019; 10:73. [PMID: 30873204 PMCID: PMC6404730 DOI: 10.3389/fgene.2019.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
We proposed the following heuristic decision-making rule: "IF {an excess of a protein relating to the nervous system is an experimentally known physiological marker of low pain sensitivity, fast postinjury recovery, or aggressive, risk/novelty-seeking, anesthetic-like, or similar agonistic-intolerant behavior} AND IF {a single nucleotide polymorphism (SNP) causes overexpression of the gene encoding this protein} THEN {this SNP can be a SNP marker of the tendency in dominance} WHILE {underexpression corresponds to subordination} AND vice versa." Using this decision-making rule, we analyzed 231 human genes of neuropeptidergic, non-neuropeptidergic, and neurotrophinergic systems that encode neurotrophic and growth factors, interleukins, neurotransmitters, receptors, transporters, and enzymes. These proteins are known as key factors of human social behavior. We analyzed all the 5,052 SNPs within the 70 bp promoter region upstream of the position where the protein-coding transcript starts, which were retrieved from databases Ensembl and dbSNP using our previously created public Web service SNP_TATA_Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl). This definition of the promoter region includes all TATA-binding protein (TBP)-binding sites. A total of 556 and 552 candidate SNP markers contributing to the dominance and the subordination, respectively, were uncovered. On this basis, we determined that 231 human genes under study are subject to natural selection against underexpression (significance p < 0.0005), which equally supports the human tendencies in domination and subordination such as the norm of a reaction (plasticity) of the human social hierarchy. These findings explain vertical transmission of domination and subordination traits previously observed in rodent models. Thus, the results of this study equally support both sides of the century-old unsettled scientific debate on whether both aggressiveness and the social hierarchy among humans are inherited (as suggested by Freud and Lorenz) or are due to non-genetic social education, when the children are influenced by older individuals across generations (as proposed by Berkowitz and Fromm).
Collapse
Affiliation(s)
- Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Maxim Kleshchev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir Naumenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexandr Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
25
|
Chadaeva IV, Ponomarenko PM, Rasskazov DA, Sharypova EB, Kashina EV, Zhechev DA, Drachkova IA, Arkova OV, Savinkova LK, Ponomarenko MP, Kolchanov NA, Osadchuk LV, Osadchuk AV. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2018; 19:0. [PMID: 29504899 PMCID: PMC5836831 DOI: 10.1186/s12864-018-4478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.
Collapse
Affiliation(s)
- Irina V Chadaeva
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Dmitry A Rasskazov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina B Sharypova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena V Kashina
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry A Zhechev
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina A Drachkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Vector-Best Inc., Koltsovo, Novosibirsk Region, 630559, Russia
| | - Ludmila K Savinkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Mikhail P Ponomarenko
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Nikolay A Kolchanov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ludmila V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State Agricultural University, Novosibirsk, 630039, Russia
| | - Alexandr V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
26
|
Kirschneck C, Batschkus S, Proff P, Köstler J, Spanier G, Schröder A. Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 2017; 7:14751. [PMID: 29116140 PMCID: PMC5677027 DOI: 10.1038/s41598-017-15281-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
Meaningful, reliable and valid mRNA expression analyses by real-time quantitative PCR (RT-qPCR) can only be achieved, if suitable reference genes are chosen for normalization and if appropriate RT-qPCR quality standards are met. Human periodontal ligament (hPDL) fibroblasts play a major mediating role in orthodontic tooth movement and periodontitis. Despite corresponding in-vitro gene expression studies being a focus of interest for many years, no information is available for hPDL fibroblasts on suitable reference genes, which are generally used in RT-qPCR experiments to normalize variability between samples. The aim of this study was to identify and validate suitable reference genes for normalization in untreated hPDL fibroblasts as well as experiments on orthodontic tooth movement or periodontitis (Aggregatibacter actinomycetemcomitans). We investigated the suitability of 13 candidate reference genes using four different algorithms (geNorm, NormFinder, comparative ΔCq and BestKeeper) and ranked them according to their expression stability. Overall PPIB (peptidylprolyl isomerase A), TBP (TATA-box-binding protein) and RPL22 (ribosomal protein 22) were found to be most stably expressed with two genes in conjunction sufficient for reliable normalization. This study provides an accurate tool for quantitative gene expression analysis in hPDL fibroblasts according to the MIQE guidelines and shows that reference gene reliability is treatment-specific.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany.
| | - Sarah Batschkus
- Department of Orthodontics, University of Goettingen, Goettingen, D-37075, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Josef Köstler
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Gerrit Spanier
- Department of Cranial and Maxillo-Facial Surgery, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
27
|
Molecular characterization and functional analysis of PPARα promoter in yellow catfish Pelteobagrus fulvidraco. Gene 2017. [DOI: 10.1016/j.gene.2017.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Ponomarenko P, Chadaeva I, Rasskazov DA, Sharypova E, Kashina EV, Drachkova I, Zhechev D, Ponomarenko MP, Savinkova LK, Kolchanov N. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. Front Aging Neurosci 2017; 9:231. [PMID: 28775688 PMCID: PMC5517495 DOI: 10.3389/fnagi.2017.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may become interesting to the general population [may help to choose a lifestyle (in childhood, adolescence, and adulthood) that can reduce the risks of sporadic AD, its comorbidities, and complications in the elderly].
Collapse
Affiliation(s)
- Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern CaliforniaLos Angeles, CA, United States
| | - Irina Chadaeva
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Dmitry A Rasskazov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Ekaterina Sharypova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Elena V Kashina
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Irina Drachkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Dmitry Zhechev
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Mikhail P Ponomarenko
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Ludmila K Savinkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Nikolay Kolchanov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| |
Collapse
|
29
|
Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation. Mol Neurobiol 2017; 55:1871-1904. [PMID: 28233272 DOI: 10.1007/s12035-017-0427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 01/31/2023]
Abstract
Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.
Collapse
|
30
|
Chadaeva IV, Ponomarenko MP, Rasskazov DA, Sharypova EB, Kashina EV, Matveeva MY, Arshinova TV, Ponomarenko PM, Arkova OV, Bondar NP, Savinkova LK, Kolchanov NA. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2016; 17:995. [PMID: 28105927 PMCID: PMC5249025 DOI: 10.1186/s12864-016-3353-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. RESULTS Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence with cardiovascular complications in adulthood). CONCLUSIONS After validation of these candidate markers by clinical protocols, these SNPs may become useful for physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing aggressiveness-related complications).
Collapse
Affiliation(s)
- Irina V. Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Dmitry A. Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ekaterina B. Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Elena V. Kashina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Marina Yu Matveeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Tatjana V. Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Petr M. Ponomarenko
- Children’s Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027 USA
| | - Olga V. Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Vector-Best Inc, Koltsovo, Novosibirsk Region 630559 Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ludmila K. Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| |
Collapse
|
31
|
Takeuchi T, Hattori-Kato M, Okuno Y, Kanatani A, Zaitsu M, Mikami K. A single nucleotide polymorphism in kidney anion exchanger 1 gene is associated with incomplete type 1 renal tubular acidosis. Sci Rep 2016; 6:35841. [PMID: 27767102 PMCID: PMC5073285 DOI: 10.1038/srep35841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/06/2016] [Indexed: 11/19/2022] Open
Abstract
Various conditions including distal renal tubular acidosis (dRTA) can induce stone formation in the kidney. dRTA is characterized by an impairment of urine acidification in the distal nephron. dRTA is caused by variations in genes functioning in intercalated cells including SLC4A1/AE1/Band3 transcribing two kinds of mRNAs encoding the Cl−/HCO3− exchanger in erythrocytes and that expressed in α-intercalated cells (kAE1). With the acid-loading test, 25% of urolithiasis patients were diagnosed with incomplete dRTA. In erythroid intron 3 containing the promoter region of kAE1, rs999716 SNP showed a significantly higher minor allele A frequency in incomplete dRTA compared with non-dRTA patients. The promoter regions of the kAE1 gene with the minor allele A at rs999716 downstream of the TATA box showed reduced promoter activities compared that with the major allele G. Patients with the A allele at rs999716 may express less kAE1 mRNA and protein in the intercalated cells, developing incomplete dRTA.
Collapse
Affiliation(s)
- Takumi Takeuchi
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Mami Hattori-Kato
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Yumiko Okuno
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Atsushi Kanatani
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masayoshi Zaitsu
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Koji Mikami
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| |
Collapse
|
32
|
Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8642703. [PMID: 27635400 PMCID: PMC5011241 DOI: 10.1155/2016/8642703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 01/14/2023]
Abstract
Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning). By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).
Collapse
|
33
|
A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun 2016; 7:12248. [PMID: 27461529 PMCID: PMC4974459 DOI: 10.1038/ncomms12248] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Live-cell imaging has revealed unexpected features of gene expression. Here using improved single-molecule RNA microscopy, we show that synthesis of HIV-1 RNA is achieved by groups of closely spaced polymerases, termed convoys, as opposed to single isolated enzymes. Convoys arise by a Mediator-dependent reinitiation mechanism, which generates a transient but rapid succession of polymerases initiating and escaping the promoter. During elongation, polymerases are spaced by few hundred nucleotides, and physical modelling suggests that DNA torsional stress may maintain polymerase spacing. We additionally observe that the HIV-1 promoter displays stochastic fluctuations on two time scales, which we refer to as multi-scale bursting. Each time scale is regulated independently: Mediator controls minute-scale fluctuation (convoys), while TBP-TATA-box interaction controls sub-hour fluctuations (long permissive/non-permissive periods). A cellular promoter also produces polymerase convoys and displays multi-scale bursting. We propose that slow, TBP-dependent fluctuations are important for phenotypic variability of single cells. HIV-1 viral gene expression stochastically switches between active and inactive states. Here, using improved single molecule RNA microscopy, the authors show that HIV-1 RNA stochastic transcription is achieved by groups of closely spaced polymerases, and is regulated by Mediator and TBP at different time scales.
Collapse
|
34
|
Ponomarenko MP, Arkova O, Rasskazov D, Ponomarenko P, Savinkova L, Kolchanov N. Candidate SNP Markers of Gender-Biased Autoimmune Complications of Monogenic Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. Front Immunol 2016; 7:130. [PMID: 27092142 PMCID: PMC4819121 DOI: 10.3389/fimmu.2016.00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Some variations of human genome [for example, single nucleotide polymorphisms (SNPs)] are markers of hereditary diseases and drug responses. Analysis of them can help to improve treatment. Computer-based analysis of millions of SNPs in the 1000 Genomes project makes a search for SNP markers more targeted. Here, we combined two computer-based approaches: DNA sequence analysis and keyword search in databases. In the binding sites for TATA-binding protein (TBP) in human gene promoters, we found candidate SNP markers of gender-biased autoimmune diseases, including rs1143627 [cachexia in rheumatoid arthritis (double prevalence among women)]; rs11557611 [demyelinating diseases (thrice more prevalent among young white women than among non-white individuals)]; rs17231520 and rs569033466 [both: atherosclerosis comorbid with related diseases (double prevalence among women)]; rs563763767 [Hughes syndrome-related thrombosis (lethal during pregnancy)]; rs2814778 [autoimmune diseases (excluding multiple sclerosis and rheumatoid arthritis) underlying hypergammaglobulinemia in women]; rs72661131 and rs562962093 (both: preterm delivery in pregnant diabetic women); and rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, rs397509430, rs34598529, rs33931746, rs281864525, and rs63750953 (all: autoimmune diseases underlying hypergammaglobulinemia in women). Validation of these predicted candidate SNP markers using the clinical standards may advance personalized medicine.
Collapse
Affiliation(s)
- Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
35
|
Turnaev II, Rasskazov DA, Arkova OV, Ponomarenko MP, Ponomarenko PM, Savinkova LK, Kolchanov NA. Hypothetical SNP markers that significantly affect the affinity of the TATA-binding protein to VEGFA, ERBB2, IGF1R, FLT1, KDR, and MET oncogene promoters as chemotherapy targets. Mol Biol 2016. [DOI: 10.1134/s0026893316010209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Arkova OV, Ponomarenko MP, Rasskazov DA, Drachkova IA, Arshinova TV, Ponomarenko PM, Savinkova LK, Kolchanov NA. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters. BMC Genomics 2015; 16 Suppl 13:S5. [PMID: 26694100 PMCID: PMC4686794 DOI: 10.1186/1471-2164-16-s13-s5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. RESULTS We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the statistical significance (α < 0.00025) of the differences in TBP affinity values between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation rate constants, ka and kd, of the TBP-DNA complex for these SNPs. CONCLUSIONS Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong rationale and may advance postgenomic predictive preventive personalized medicine.
Collapse
Affiliation(s)
- Olga V Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Mikhail P Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk 630090, Russia
| | - Dmitry A Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Irina A Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Tatjana V Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Petr M Ponomarenko
- Children's Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027, USA
| | - Ludmila K Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
37
|
Ponomarenko M, Rasskazov D, Arkova O, Ponomarenko P, Suslov V, Savinkova L, Kolchanov N. How to Use SNP_TATA_Comparator to Find a Significant Change in Gene Expression Caused by the Regulatory SNP of This Gene's Promoter via a Change in Affinity of the TATA-Binding Protein for This Promoter. BIOMED RESEARCH INTERNATIONAL 2015; 2015:359835. [PMID: 26516624 PMCID: PMC4609514 DOI: 10.1155/2015/359835] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023]
Abstract
The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the "1000 Genomes" can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the "1000 Genomes" project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Valentin Suslov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
38
|
Human Genes Encoding Transcription Factors and Chromatin-Modifying Proteins Have Low Levels of Promoter Polymorphism: A Study of 1000 Genomes Project Data. Int J Genomics 2015; 2015:260159. [PMID: 26417590 PMCID: PMC4568383 DOI: 10.1155/2015/260159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
The expression level of each gene is controlled by its regulatory regions, which determine the precise regulation in a tissue-specific manner, according to the developmental stage of the body and the necessity of a response to external stimuli. Nucleotide substitutions in regulatory gene regions may modify the affinity of transcription factors to their specific DNA binding sites, affecting the transcription rates of genes. In our previous research, we found that genes controlling the sensory perception of smell and genes involved in antigen processing and presentation were overrepresented significantly among genes with high SNP contents in their promoter regions. The goal of our study was to reveal functional features of human genes containing extremely small numbers of SNPs in promoter regions. Two functional groups were found to be overrepresented among genes whose promoters did not contain SNPs: (1) genes involved in gene-specific transcription and (2) genes controlling chromatin organization. We revealed that the 5′-regulatory regions of genes encoding transcription factors and chromatin-modifying proteins were characterized by reduced genetic variability. One important exception from this rule refers to genes encoding transcription factors with zinc-coordinating DNA-binding domains (DBDs), which underwent extensive expansion in vertebrates, particularly, in primate evolution. Hence, we obtained new evidence for evolutionary forces shaping variability in 5′-regulatory regions of genes.
Collapse
|
39
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
40
|
Ignatieva EV, Podkolodnaya OA, Orlov YL, Vasiliev GV, Kolchanov NA. Regulatory genomics: Combined experimental and computational approaches. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Drachkova I, Savinkova L, Arshinova T, Ponomarenko M, Peltek S, Kolchanov N. The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein. Hum Mutat 2014; 35:601-8. [PMID: 24616209 DOI: 10.1002/humu.22535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/20/2014] [Indexed: 11/06/2022]
Abstract
SNPs in ТАТА boxes are the cause of monogenic diseases, contribute to a large number of complex diseases, and have implications for human sensitivity to external and internal environmental signals. The aim of this work was to explore the kinetic characteristics of the formation of human ТВР complexes with ТАТА boxes, in which the SNPs are associated with β-thalassemias of diverse severity, immunosuppression, neurological disorders, and so on. It has for the first time been demonstrated, using an electrophoretic mobility shift assay, that TBP interacts with SNP-containing ТАТА boxes with a significant (8-36-fold) decrease in TBP/ТАТА association rate constant (ka ) as compared with that in healthy people, a smaller decrease in dissociation rate constant (kd ) and changes in the half-lives of TBP/ТАТА complexes. Carriers of the -24G allele (rs 1800202T>G) in the TATA box of the triosephosphate isomerase gene promoter, associated with neurological and muscular disorders, were observed to have a 36-fold decrease in TBP/TATA association rate constant that are consistent with TPI deficiency shown for patients who carry this defective allele. The kinetic characteristics of TBP/ТАТА complexes obtained suggest that, at a molecular level, hereditary diseases are largely caused by changes in TBP/ТАТА association rates and these changes have a bearing on disease severity.
Collapse
Affiliation(s)
- Irina Drachkova
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
42
|
Real-Time Interaction between TBP and the TATA Box of the Human Triosephosphate Isomerase Gene Promoter in the Norm and Pathology. Acta Naturae 2014; 6:36-40. [PMID: 25093109 PMCID: PMC4115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The TATA-binding protein (TBP) is a key part of the transcription complex of RNA polymerase II. Alone or as a part of the basal transcription factor TFIID, TBP binds the TATA box located in the core region of the TATA-containing promoters of class II genes. Previously, we studied the effects of single nucleotide polymorphisms (SNPs) on TBP/TATA-box interactions using gel retardation assay. It was demonstrated that most SNPs in the TATA boxes of some human gene promoters cause a 2- to 4-fold decrease in TBP/TATA affinity, which is associated with an increased risk of hereditary diseases, such as β thalassemias of diverse severity, hemophilia B Leyden, myocardial infarction, thrombophlebitis, lung cancer, etc. In this work, the process of TBP/TATA complex formation has been studied in real time by a stopped-flow technique using recombinant human TBP and duplexes, which were identical to the TATA box of the wild-type and a SNP-containing triosephosphate isomerase gene promoter and were fluorescently labeled by the Cy3/Cy5 FRET pair. It has been demonstrated for the first time that real-time binding of TBP to the TATA box of the TPI gene promoter is complete within 10 s and is described by a single-stage kinetic model. The complex formation of TBP with the wild-type TATA box occurs 5.5 times faster and the complex dissociation occurs 31 times slower compared with the SNPcontaining TATA box. Within the first seconds of the interaction, TBP binds to and simultaneously bends the TATA box. Importantly, the TATA box of the wild-type TPI gene promoter requires lower TBP concentrations compared to the TATA box containing the -24T → G SNP, which is associated with neurological and muscular disorders, cardiomyopathy, and other diseases.
Collapse
|
43
|
Ponomarenko MP, Suslov VV, Ponomarenko PM, Gunbin KV, Stepanenko IL, Vishnevsky OV, Kolchanov NA. Abundances of microRNAs in human cells can be estimated as a function of the abundances of YRHB and RHHK tetranucleotides in these microRNAs as an ill-posed inverse problem solution. Front Genet 2013; 4:122. [PMID: 23847649 PMCID: PMC3697047 DOI: 10.3389/fgene.2013.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 06/06/2013] [Indexed: 02/03/2023] Open
Abstract
Mature microRNAs (miRNAs) are small endogenous non-coding RNAs 18–25 nt in length. They program the RNA Induced Silencing Complex (RISC) to make it inhibit either messenger RNAs or promoter DNAs. We have found that the mean abundance of miRNAs in Arabidopsis is correlated with the abundance of DRYD tetranucleotides near the 3′-end and the abundance of WRHB tetranucleotides in the center of the miRNA sequence. Based on this correlation, we have estimated miRNA abundances in seven organs of this plant, namely: inflorescences, stems, siliques, seedlings, roots, cauline, and rosette leaves. We have also found that the mean affinity of miRNAs for two proteins in the Argonaute family (Ago2 and Ago3) in man is correlated with the abundance of YRHB tetranucleotides near the 3′-end and that the preference of miRNAs for Ago2 is correlated with the abundance of RHHK tetranucleotides in the center of the miRNA sequence. This allowed us to obtain statistically significant estimates of miRNA abundances in human embryonic kidney cells, HEK293T. These findings in relation to two taxonomically distant entities (man and Arabidopsis) fit one another like pieces of a jigsaw puzzle, which allowed us to heuristically generalize them and state that the miRNA abundance in the human brain may be determined by the abundance of YRHB and RHHK tetranucleotides in these miRNAs.
Collapse
Affiliation(s)
- Mikhail P Ponomarenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|