1
|
Ranjbar J, Gibbins JM, Roe J, Roach P, Yang Y, Harper AG. A humanised thrombus-on-a-chip model utilising tissue-engineered arterial constructs: A method to reduce and replace mice used in thrombosis and haemostasis research. F1000Res 2025; 14:110. [PMID: 40191150 PMCID: PMC11971621 DOI: 10.12688/f1000research.158910.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 04/09/2025] Open
Abstract
The study of in vivo thrombus formation has principally been performed using intravital microscopy in mice and other species. These have allowed us to visualise the molecular and cellular processes that regulate thrombus formation inside the body. However current in vivo arterial thrombosis models are difficult to standardise between labs and frequently produce results that do not reliably translate successfully in human clinical trials. Here we provide a step-by-step description with accompanying video tutorials to demonstrate how to produce a 3D humanised thrombus-on-a-chip model, which uses perfusion of fluorescently-labelled human blood over a mechanically-injured human tissue engineered arterial construct (TEAC) within a 3D printed microfluidic flow chamber to replicate thrombus formation within a healthy artery. We also provide a written methodology on how to use 3D printing to produce a mechanical injury press that can reproducibly damage the TEAC as a stimulus for thrombus formation as part of a mechanical injury model. Perfusion of the uninjured TEAC with whole human blood containing DiOC6-labelled platelets without initiating notable thrombus formation. The mechanical injury press was shown to induce a reproducible puncture wound in the TEAC. Fluorescence microscopy was used to demonstrate that thrombus formation could be observed reproducibly around sites of injury. This humanised thrombosis-on-a-chip model can replace the use of animals in in vivo thrombosis models for preclinical assessment of anti-thrombotic therapies. This method also offers multiple scientific advantages: allowing new drugs to be directly tested on human blood from a diverse array of donors, facilitating use of a realistic and reproducible injury modality as well as removing the potential confounding effects of general anaesthetics in animal studies. The use of human thrombus-on-a-chip models combining TEACs offers a new methodology to reduce animal use whilst improving the predictive capabilities of preclinical trials of anti-thrombotic therapies.
Collapse
Affiliation(s)
- Jacob Ranjbar
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular & Metabolic Research, University of Reading School of Biological Sciences, Reading, England, RG6 6EX, UK
| | - Jordan Roe
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Ying Yang
- School of Life Sciences, Keele University, Keele, England, ST5 5BG, UK
| | - Alan G.S. Harper
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| |
Collapse
|
2
|
Shayor AA, Kabir ME, Rifath MSA, Rashid AB, Oh KW. A Synergistic Overview between Microfluidics and Numerical Research for Vascular Flow and Pathological Investigations. SENSORS (BASEL, SWITZERLAND) 2024; 24:5872. [PMID: 39338617 PMCID: PMC11435959 DOI: 10.3390/s24185872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Vascular diseases are widespread, and sometimes such life-threatening medical disorders cause abnormal blood flow, blood particle damage, changes to flow dynamics, restricted blood flow, and other adverse effects. The study of vascular flow is crucial in clinical practice because it can shed light on the causes of stenosis, aneurysm, blood cancer, and many other such diseases, and guide the development of novel treatments and interventions. Microfluidics and computational fluid dynamics (CFDs) are two of the most promising new tools for investigating these phenomena. When compared to conventional experimental methods, microfluidics offers many benefits, including lower costs, smaller sample quantities, and increased control over fluid flow and parameters. In this paper, we address the strengths and weaknesses of computational and experimental approaches utilizing microfluidic devices to investigate the rheological properties of blood, the forces of action causing diseases related to cardiology, provide an overview of the models and methodologies of experiments, and the fabrication of devices utilized in these types of research, and portray the results achieved and their applications. We also discuss how these results can inform clinical practice and where future research should go. Overall, it provides insights into why a combination of both CFDs, and experimental methods can give even more detailed information on disease mechanisms recreated on a microfluidic platform, replicating the original biological system and aiding in developing the device or chip itself.
Collapse
Affiliation(s)
- Ahmed Abrar Shayor
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Emamul Kabir
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Md Sartaj Ahamed Rifath
- Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Kwang W Oh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Jewell MP, Ashour Z, Baird CH, Manco Johnson M, Warren BB, Wufsus AR, Pallini C, Dockal M, Kjalke M, Neeves KB. Concizumab improves clot formation in hemophilia A under flow. J Thromb Haemost 2024; 22:2438-2448. [PMID: 38815755 PMCID: PMC11343664 DOI: 10.1016/j.jtha.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Inhibition of tissue factor pathway inhibitor (TFPI) is an emerging therapeutic strategy for treatment of hemophilia. Concizumab is a monoclonal antibody that binds TFPI and blocks its inhibition of factor (F)Xa thereby extending the initiation of coagulation and compensating for lack of FVIII or FIX. OBJECTIVES The objective of this in vitro study was to evaluate how concizumab affects clot formation in hemophilia A under flow. METHODS Blood was collected from normal controls or people with hemophilia A. An anti-FVIII antibody was added to normal controls to simulate hemophilia A with inhibitory antibodies to FVIII. Whole blood and recombinant activated FVII (rFVIIa, 25 nM) or concizumab (200, 1000, and 4000 ng/mL) were perfused at 100 s-1 over a surface micropatterned with tissue factor (TF) and collagen-related peptide. Platelet and fibrin(ogen) accumulation were measured by confocal microscopy. Static thrombin generation in plasma was measured in response to rFVIIa and concizumab. RESULTS Concizumab (1000 and 4000 ng/mL) and rFVIIa both rescued (93%-101%) total platelet accumulation, but only partially rescued (53%-63%) fibrin(ogen) incorporation to normal control levels in simulated hemophilia A. Results using congenital hemophilia A blood confirmed effects of rFVIIa and concizumab. While these 2 agents had similar effect on clot formation under flow, concizumab enhanced thrombin generation in plasma under static conditions to a greater extent than rFVIIa. CONCLUSION TFPI inhibition by concizumab enhanced activation and aggregation of platelets and fibrin clot formation in hemophilia A to levels comparable with that of rFVIIa.
Collapse
Affiliation(s)
- Megan P Jewell
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zaina Ashour
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine H Baird
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marilyn Manco Johnson
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Beth Boulden Warren
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam R Wufsus
- Rare Blood Disorders, Medical Affairs Rare Disease, Novo Nordisk Inc, Plainsboro, New Jersey, USA
| | - Chiara Pallini
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Michael Dockal
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Marianne Kjalke
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Keith B Neeves
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Bavinck AP, Heerde WV, Schols SEM. Point-of-Care Testing in Patients with Hereditary Disorders of Primary Hemostasis: A Narrative Review. Semin Thromb Hemost 2024. [PMID: 38950596 DOI: 10.1055/s-0044-1787976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Inherited disorders of primary hemostasis, such as von Willebrand disease and congenital platelet disorders, can cause extensive, typically mucocutaneous bleeding. Assays to diagnose and monitor these disorders, such as von Willebrand factor activity assays and light transmission aggregometry, are performed in specialized hemostasis laboratories but are commonly not available in local hospitals. Due to the complexity and relative scarcity of these conventional assays, point-of-care tests (POCT) might be an attractive alternative in patients with hereditary bleeding disorders. POCTs, such as thromboelastography, are increasingly used to assess hemostasis in patients with acquired hemostatic defects, aiding clinical decision-making in critical situations, such as during surgery or childbirth. In comparison, the use of these assays in patients with hereditary hemostasis defects remains relatively unexplored. This review aims to give an overview of point-of-care hemostasis tests in patients with hereditary disorders of primary hemostasis. A summary of the literature reporting on the performance of currently available and experimental POCTs in these disorders is given, and the potential utility of the assays in various use scenarios is discussed. Altogether, the studies included in this review reveal that several POCTs are capable of identifying and monitoring severe defects in the primary hemostasis, while a POCT that can reliably detect milder defects of primary hemostasis is currently lacking. A better understanding of the strengths and limitations of POCTs in assessing hereditary defects of primary hemostasis is needed, after which these tests may become available for clinical practice, potentially targeting a large group of patients with milder defects of primary hemostasis.
Collapse
Affiliation(s)
- Aernoud P Bavinck
- Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Waander van Heerde
- Department of Hematology, Radboud University Medical Centre, Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
| | - Saskia E M Schols
- Department of Hematology, Radboud University Medical Centre, Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Ranjbar J, Yang Y, Harper AGS. Developing human tissue engineered arterial constructs to simulate human in vivo thrombus formation. Platelets 2023; 34:2153823. [PMID: 36550074 DOI: 10.1080/09537104.2022.2153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombus formation is highly dependent upon the physico-chemical environment in which it is triggered. Our ability to understand how thrombus formation is initiated, regulated, and resolved in the human body is dependent upon our ability to replicate the mechanical and biological properties of the arterial wall. Current in vitro thrombosis models principally use reductionist approaches to model the complex biochemical and cellular milieu present in the arterial wall, and so researcher have favored the use of in vivo models. The field of vascular tissue engineering has developed a range of techniques for culturing artificial human arteries for use as vascular grafts. These techniques therefore provide a basis for developing more sophisticated 3D replicas of the arterial wall that can be used in in vitro thrombosis models. In this review, we consider how tissue engineering approaches can be used to generate 3D models of the arterial wall that improve upon current in vivo and in vitro approaches. We consider the current benefits and limitations of reported 3D tissue engineered models and consider what additional evidence is required to validate them as alternatives to current in vivo models.
Collapse
Affiliation(s)
| | - Ying Yang
- School of Pharmacy & Bioengineering, Keele University, Keele, UK
| | | |
Collapse
|
6
|
Whyte CS, Mutch NJ. "Going with the flow" in modeling fibrinolysis. Front Cardiovasc Med 2022; 9:1054541. [PMID: 36531720 PMCID: PMC9755328 DOI: 10.3389/fcvm.2022.1054541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
The formation of thrombi is shaped by intravascular shear stress, influencing both fibrin architecture and the cellular composition which has downstream implications in terms of stability against mechanical and fibrinolytic forces. There have been many advancements in the development of models that incorporate flow rates akin to those found in vivo. Both thrombus formation and breakdown are simultaneous processes, the balance of which dictates the size, persistence and resolution of thrombi. Therefore, there is a requirement to have models which mimic the physiological shear experienced within the vasculature which in turn influences the fibrinolytic degradation of the thrombus. Here, we discuss various assays for fibrinolysis and importantly the development of novel models that incorporate physiological shear rates. These models are essential tools to untangle the molecular and cellular processes which govern fibrinolysis and can recreate the conditions within normal and diseased vessels to determine how these processes become perturbed in a pathophysiological setting. They also have utility to assess novel drug targets and antithrombotic drugs that influence thrombus stability.
Collapse
Affiliation(s)
- Claire S. Whyte
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
7
|
Jones WL, Ramos CR, Banerjee A, Moore EE, Hansen KC, Coleman JR, Kelher M, Neeves KB, Silliman CC, Di Paola J, Branchford BR. Apolipoprotein A-I, elevated in trauma patients, inhibits platelet activation and decreases clot strength. Platelets 2022; 33:1119-1131. [PMID: 35659185 PMCID: PMC9547822 DOI: 10.1080/09537104.2022.2078488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is elevated in the plasma of a subgroup of trauma patients with systemic hyperfibrinolysis. We hypothesize that apoA-I inhibits platelet activation and clot formation. The effects of apoA-I on human platelet activation and clot formation were assessed by whole blood thrombelastography (TEG), platelet aggregometry, P-selectin surface expression, microfluidic adhesion, and Akt phosphorylation. Mouse models of carotid artery thrombosis and pulmonary embolism were used to assess the effects of apoA-I in vivo. The ApoA-1 receptor was investigated with transgenic mice knockouts (KO) for the scavenger receptor class B member 1 (SR-BI). Compared to controls, exogenous human apoA-I inhibited arachidonic acid and collagen-mediated human and mouse platelet aggregation, decreased P-selectin surface expression and Akt activation, resulting in diminished clot strength and increased clot lysis by TEG. ApoA-I also decreased platelet aggregate size formed on a collagen surface under flow. In vivo, apoA-I delayed vessel occlusion in an arterial thrombosis model and conferred a survival advantage in a pulmonary embolism model. SR-BI KO mice significantly reduced apoA-I inhibition of platelet aggregation versus wild-type platelets. Exogenous human apoA-I inhibits platelet activation, decreases clot strength and stability, and protects mice from arterial and venous thrombosis via the SR-BI receptor.
Collapse
Affiliation(s)
- Wilbert L Jones
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Christopher R. Ramos
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Anirban Banerjee
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Ernest E. Moore
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Dept. of Surgery, Denver Health Medical Center, Denver CO
| | - Kirk C. Hansen
- Department of Biochemistry/Molecular Genetics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Julia R. Coleman
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Marguerite Kelher
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Vitalant Research Institute, Denver, CO
| | - Keith B. Neeves
- Department of Pediatrics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Department of Bioengineering, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Christopher C. Silliman
- Department of Surgery, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
- Vitalant Research Institute, Denver, CO
| | - Jorge Di Paola
- Dept. of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
8
|
Heubel-Moenen FCJI, Brouns SLN, Herfs L, Boerenkamp LS, Jooss NJ, Wetzels RJH, Verhezen PWM, Machiels P, Megy K, Downes K, Heemskerk JWM, Beckers EAM, Henskens YMC. Multiparameter platelet function analysis of bleeding patients with a prolonged platelet function analyser closure time. Br J Haematol 2022; 196:1388-1400. [PMID: 35001370 PMCID: PMC9303561 DOI: 10.1111/bjh.18003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
Patients referred for evaluation of bleeding symptoms occasionally have a prolonged platelet function analyser (PFA) closure time, without evidence for von Willebrand disease or impaired platelet aggregation. The aim of this study was to establish a shear‐dependent platelet function defect in these patients. Patients were included based on high bleeding score and prior PFA prolongation. Common tests of von Willebrand factor (VWF) and platelet function and exome sequencing were performed. Microfluidic analysis of shear‐dependent collagen‐induced whole‐blood thrombus formation was performed. In 14 PFA‐only patients, compared to healthy volunteers, microfluidic tests showed significantly lower platelet adhesion and thrombus formation parameters. This was accompanied by lower integrin activation, phosphatidylserine exposure and P‐selectin expression. Principal components analysis indicated VWF as primary explaining variable of PFA prolongation, whereas conventional platelet aggregation primarily explained the reduced thrombus parameters under shear. In five patients with severe microfluidic abnormalities, conventional platelet aggregation was in the lowest range of normal. No causal variants in Mendelian genes known to cause bleeding or platelet disorders were identified. Multiparameter assessment of whole‐blood thrombus formation under shear indicates single or combined effects of low–normal VWF and low–normal platelet aggregation in these patients, suggesting a shear‐dependent platelet function defect, not detected by static conventional haemostatic tests.
Collapse
Affiliation(s)
- Floor C J I Heubel-Moenen
- Department of Hematology, Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Linda Herfs
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Flowchamber, Maastricht, The Netherlands
| | - Lara S Boerenkamp
- Department of Hematology, Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Natalie J Jooss
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Rick J H Wetzels
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Paul W M Verhezen
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Karyn Megy
- Department of Hematology, University of Cambridge and National Institute for Health Research (NIHR) BioResource, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Kate Downes
- Department of Hematology, University of Cambridge and National Institute for Health Research (NIHR) BioResource, Cambridge University Hospitals, Cambridge, United Kingdom.,East Genomic Laboratory Hub, Cambridge University Hospitals Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Flowchamber, Maastricht, The Netherlands
| | - Erik A M Beckers
- Department of Hematology, Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
9
|
Banka AL, Eniola-Adefeso O. Method article: an in vitro blood flow model to advance the study of platelet adhesion utilizing a damaged endothelium. Platelets 2021; 33:692-699. [PMID: 34927530 DOI: 10.1080/09537104.2021.1988550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In vitro flow assays utilizing microfluidic devices are often used to study human platelets as an alternative to the costly animal models of hemostasis and thrombosis that may not accurately represent human platelet behavior in vivo. Here, we present a tunable in vitro model to study platelet behavior in human whole blood flow that includes both an inflamed, damaged endothelium and exposed extracellular matrix. We demonstrate that the model is adaptable across various anticoagulants, shear rates, and proteins for endothelial cell culture without the need for a complicated, custom-designed device. Furthermore, we verified the ability of this 'damaged endothelium' model as a screening method for potential anti-platelet or anti-thrombotic compounds using a P2Y12 receptor antagonist (ticagrelor), a pan-selectin inhibitor (Bimosiamose), and a histamine receptor antagonist (Cimetidine). These compounds significantly decreased platelet adhesion to the damaged endothelium, highlighting that this model can successfully screen anti-platelet compounds that target platelets directly or the endothelium indirectly.
Collapse
Affiliation(s)
- Alison Leigh Banka
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| |
Collapse
|
10
|
Berry J, Peaudecerf FJ, Masters NA, Neeves KB, Goldstein RE, Harper MT. An "occlusive thrombosis-on-a-chip" microfluidic device for investigating the effect of anti-thrombotic drugs. LAB ON A CHIP 2021; 21:4104-4117. [PMID: 34523623 PMCID: PMC8547327 DOI: 10.1039/d1lc00347j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 05/03/2023]
Abstract
Cardiovascular disease remains one of the world's leading causes of death. Myocardial infarction (heart attack) is triggered by occlusion of coronary arteries by platelet-rich thrombi (clots). The development of new anti-platelet drugs to prevent myocardial infarction continues to be an active area of research and is dependent on accurately modelling the process of clot formation. Occlusive thrombi can be generated in vivo in a range of species, but these models are limited by variability and lack of relevance to human disease. Although in vitro models using human blood can overcome species-specific differences and improve translatability, many models do not generate occlusive thrombi. In those models that do achieve occlusion, time to occlusion is difficult to measure in an unbiased and objective manner. In this study we developed a simple and robust approach to determine occlusion time of a novel in vitro microfluidic assay. This highlighted the potential for occlusion to occur in thrombosis microfluidic devices through off-site coagulation, obscuring the effect of anti-platelet drugs. We therefore designed a novel occlusive thrombosis-on-a-chip microfluidic device that reliably generates occlusive thrombi at arterial shear rates by quenching downstream coagulation. We further validated our device and methods by using the approved anti-platelet drug, eptifibatide, recording a significant difference in the "time to occlude" in treated devices compared to control conditions. These results demonstrate that this device can be used to monitor the effect of antithrombotic drugs on time to occlude, and, for the first time, delivers this essential data in an unbiased and objective manner.
Collapse
Affiliation(s)
- Jess Berry
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - François J Peaudecerf
- Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicole A Masters
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Keith B Neeves
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
11
|
Clavería V, Yang PJ, Griffin MT, Ku DN. Global Thrombosis Test: Occlusion by Coagulation or SIPA? TH OPEN 2021; 5:e400-e410. [PMID: 34553123 PMCID: PMC8450046 DOI: 10.1055/s-0041-1732341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
The global thrombosis test (GTT) is a point of care device that tests thrombotic and thrombolytic status. The device exposes whole blood flow to a combination of both high and low shear stress past and between ball bearings potentially causing thrombin and fibrin formation. The question arises as to whether thrombosis in the GTT is dominated by coagulation-triggered red clot or high shear-induced white clot. We investigated the nature of the thrombus formed in the GTT, the device efficacy, human factors use, and limitations. The GTT formed clots that were histologically fibrin-rich with trapped red blood cells. The occlusion time (OT) was more consistent with coagulation than high shear white clot and was strongly lengthened by heparin and citrate, two common anticoagulants. The clot was lysed by tissue plasminogen activator (tPA), also consistent with a fibrin-rich red clot. Changing the bead to a collagen-coated surface and eliminating the low shear zone between the beads induced a rapid OT consistent with a platelet-rich thrombus that was relatively resistant to heparin or tPA. The evidence points to the GTT as occluding primarily due to fibrin-rich red clot from coagulation rather than high shear platelet aggregation and occlusion associated with arterial thrombosis.
Collapse
Affiliation(s)
- Viviana Clavería
- GWW School of Mechanical Engineering, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Patricia J. Yang
- GWW School of Mechanical Engineering, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Michael T. Griffin
- GWW School of Mechanical Engineering, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - David N. Ku
- GWW School of Mechanical Engineering, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Neeves KB. A tail of two ITAMs: GPVI/FcRγ and FcγRIIa's role in platelet activation and thrombus stability. Res Pract Thromb Haemost 2021; 5:e12564. [PMID: 34263108 PMCID: PMC8265783 DOI: 10.1002/rth2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Keith B. Neeves
- Department of BioengineeringDepartment of PediatricsSection of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis CenterUniversity of Colorado DenverAnschutz Medical CampusAuroraCOUSA
| |
Collapse
|
13
|
Caruso C, Lam WA. Point-of-Care Diagnostic Assays and Novel Preclinical Technologies for Hemostasis and Thrombosis. Semin Thromb Hemost 2021; 47:120-128. [PMID: 33636744 DOI: 10.1055/s-0041-1723798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hemostasis is a complex wound-healing process involving numerous mechanical and biochemical mechanisms and influenced by many factors including platelets, coagulation factors, and endothelial components. Slight alterations in these mechanisms can lead to either prothrombotic or bleeding consequences, and such hemostatic imbalances can lead to significant clinical consequences with resultant morbidity and mortality. An ideal hemostasis assay would not only address all the unique processes involved in clot formation and resolution but also take place under flow conditions to account for endothelial involvement. Global assays do exist; however, these assays are not flow based. Flow-based assays have been limited secondary to their large blood volume requirements and low throughput, limiting potential clinical applications. Microfluidic-based assays address the aforementioned limitations of both global and flow-based assays by utilizing standardized devices that require low blood volumes, offer reproducible analysis, and have functionality under a range of shear stresses and flow conditions. While still largely confined to the preclinical space, here we aim to discuss these novel technologies and potential clinical implications, particularly in comparison to the current, commercially available point-of-care assays.
Collapse
Affiliation(s)
- Christina Caruso
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Wilbur A Lam
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
14
|
van Rooij BJM, Závodszky G, Hoekstra AG, Ku DN. Haemodynamic flow conditions at the initiation of high-shear platelet aggregation: a combined in vitro and cellular in silico study. Interface Focus 2021; 11:20190126. [PMID: 33335707 PMCID: PMC7739908 DOI: 10.1098/rsfs.2019.0126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The influence of the flow environment on platelet aggregation is not fully understood in high-shear thrombosis. The objective of this study is to investigate the role of a high shear rate in initial platelet aggregation. The haemodynamic conditions in a microfluidic device are studied using cell-based blood flow simulations. The results are compared with in vitro platelet aggregation experiments performed with porcine whole blood (WB) and platelet-rich-plasma (PRP). We studied whether the cell-depleted layer in combination with high shear and high platelet flux can account for the distribution of platelet aggregates. High platelet fluxes at the wall were found in silico. In WB, the platelet flux was about twice as high as in PRP. Additionally, initial platelet aggregation and occlusion were observed in vitro in the stenotic region. In PRP, the position of the occlusive thrombus was located more downstream than in WB. Furthermore, the shear rates and stresses in cell-based and continuum simulations were studied. We found that a continuum simulation is a good approximation for PRP. For WB, it cannot predict the correct values near the wall.
Collapse
Affiliation(s)
- B J M van Rooij
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - G Závodszky
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - A G Hoekstra
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - D N Ku
- Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Zheng Y, Montague SJ, Lim YJ, Xu T, Xu T, Gardiner EE, Lee WM. Label-free multimodal quantitative imaging flow assay for intrathrombus formation in vitro. Biophys J 2021; 120:791-804. [PMID: 33513336 DOI: 10.1016/j.bpj.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
Microfluidics in vitro assays recapitulate a blood vessel microenvironment using surface-immobilized agonists under biofluidic flows. However, these assays do not quantify intrathrombus mass and activities of adhesive platelets at the agonist margin and use fluorescence labeling, therefore limiting clinical translation potential. Here, we describe a label-free multimodal quantitative imaging flow assay that combines rotating optical coherent scattering microscopy and quantitative phase microscopy. The combined imaging platform enables real-time evaluation of membrane fluctuations of adhesive-only platelets and total intrathrombus mass under physiological flow rates in vitro. We call this multimodal quantitative imaging flow assay coherent optical scattering and phase interferometry (COSI). COSI records intrathrombus mass to picogram accuracy and shape changes to a platelet membrane with high spatial-temporal resolution (0.4 μm/s) under physiological and pathophysiological fluid shear stress (1800 and 7500 s-1). With COSI, we generate an axial slice of 4 μm from the coverslip surface, approximately equivalent to the thickness of a single platelet, which permits nanoscale quantification of membrane fluctuation (activity) of adhesive platelets during initial adhesion, spreading, and recruitment into a developing thrombus (mass). Under fluid shear, pretreatment with a broad range metalloproteinase inhibitor (250 μM GM6001) blocked shedding of platelet adhesion receptors that shown elevated adhesive platelet activity at average of 42.1 μm/s and minimal change in intrathrombus mass.
Collapse
Affiliation(s)
- Yujie Zheng
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Samantha J Montague
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Yean J Lim
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research; ACRF Centre for Intravital Imaging of Niches for Cancer Immune Therapy
| | - Tao Xu
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Tienan Xu
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Woei Ming Lee
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research; ACRF Centre for Intravital Imaging of Niches for Cancer Immune Therapy; The ARC Centre of Excellence in Advanced Molecular Imaging, The Australian National University, Canberra, Australia.
| |
Collapse
|
16
|
Patel P, Shaik NF, Zhou Y, Golla K, McKenzie SE, Naik UP. Apoptosis signal-regulating kinase 1 regulates immune-mediated thrombocytopenia, thrombosis, and systemic shock. J Thromb Haemost 2020; 18:3013-3028. [PMID: 32767736 PMCID: PMC7831975 DOI: 10.1111/jth.15049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Immune complexes (ICs) bind to and activate platelets via FcγRIIA, causing patients to experience thrombocytopenia, as well as an increased risk of forming occlusive thrombi. Although platelets have been shown to mediate IC-induced pathologies, the mechanisms involved have yet to be fully elucidated. We identified that apoptosis signal-regulating kinase 1 (ASK1) is present in both human and mouse platelets and potentiates many platelet functions. OBJECTIVES Here we set out to study ASK1's role in regulating IC-mediated platelet functions in vitro and IC-induced pathologies using an in vivo mouse model. METHODS Using human platelets treated with an ASK1-specific inhibitor and platelets from FCGR2A/Ask1-/- transgenic mice, we examined various platelet functions induced by model ICs in vitro and in vivo. RESULTS We found that ASK1 was activated in human platelets following cross-linking of FcγRIIA using either anti-hCD9 or IV.3 + goat-anti-mouse. Although genetic deletion or inhibition of ASK1 significantly attenuated anti-CD9-induced platelet aggregation, activation of the canonical FcγRIIA signaling targets Syk and PLCγ2 was unaffected. We further found that anti-mCD9-induced cPla2 phosphorylation and TxA2 generation is delayed in Ask1 null transgenic mouse platelets leading to diminished δ-granule secretion. In vivo, absence of Ask1 protected FCGR2A transgenic mice from thrombocytopenia, thrombosis, and systemic shock following injection of anti-mCD9. In whole blood microfluidics, platelet adhesion and thrombus formation on fibrinogen was enhanced by Ask1. CONCLUSIONS These findings suggest that ASK1 inhibition may be a potential target for the treatment of IC-induced shock and other immune-mediated thrombotic disorders.
Collapse
Affiliation(s)
- Pravin Patel
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Noor F. Shaik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Yuhang Zhou
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
- Dell Children’s Hospital, University of Texas, Austin, TX
| | - Kalyan Golla
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
- Center for Blood Research, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Steven E. McKenzie
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Ulhas P. Naik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
17
|
Oseev A, Lecompte T, Remy-Martin F, Mourey G, Chollet F, de Boiseaumarie BLR, Rouleau A, Bourgeois O, de Maistre E, Elie-Caille C, Manceau JF, Boireau W, Leblois T. Assessment of Shear-Dependent Kinetics of Primary Haemostasis With a Microfluidic Acoustic Biosensor. IEEE Trans Biomed Eng 2020; 68:2329-2338. [PMID: 33055022 DOI: 10.1109/tbme.2020.3031542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primary haemostasis is a complex dynamic process, which involves in-flow interactions between platelets and sub-endothelial matrix at the area of the damaged vessel wall. It results in a first haemostatic plug, which stops bleeding, before coagulation ensues and consolidates it. The diagnosis of primary haemostasis defect would benefit from evaluation of the whole sequence of mechanisms involved in platelet plug formation in flow. This work proposes a new approach that is based on characterization of the shear-dependent kinetics that enables the evaluation of the early stages of primary haemostasis. We used a label-free method with a quartz crystal microbalance (QCM) biosensor to measure the platelet deposits over time onto covalently immobilized type I fibrillar collagen. We defined three metrics: total frequency shift, lag time, and growth rate. The measurement was completed at four predefined shear rates prevailing in small vessels (500, 770, 1000 and 1500 s-1) during five minutes of perfusion with anticoagulated normal whole blood. The rate of the frequency shift over the first five minutes was strongly influenced by shear rate conditions, presenting a maximum around 770 s-1, and varying by a factor larger than three in the studied shear rate range. To validate the biosensor signal, the total frequency shift was compared to results obtained by atomic force microscopy (AFM) on final platelet deposits. The results show that shear-dependent kinetic assays are promising as an advanced method for screening of primary haemostasis.
Collapse
|
18
|
Hu X, Li Y, Li J, Chen H. Effects of altered blood flow induced by the muscle pump on thrombosis in a microfluidic venous valve model. LAB ON A CHIP 2020; 20:2473-2481. [PMID: 32543635 DOI: 10.1039/d0lc00287a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Deep vein thrombosis (DVT) often occurs in the lower limb veins of bedridden patients and greatly reduces the quality of life. The altered blood flow in venous valves induced by the insufficient efficacy of the muscle pump is commonly considered as a main factor. However, it is still a great challenge to observe the altered blood flow in real time, and its role in the formation of thrombi is poorly understood. Here we make a microfluidic venous valve model with flexible leaflets in a deformable channel that can mimic the motion of valves and the compression of vessels by muscle contraction, and identify the stasis and intermittent reflux in the valve pocket generated by the muscle pump. A thrombus forms in the stasis flow, while the intermittent reflux removes the fibrin and inhibits the growth of the thrombus. A flexible microfluidic device that can mimic the motion of valves and the contraction of vessels would have wide applications in the research on cardiovascular diseases.
Collapse
Affiliation(s)
- Xiangyu Hu
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing, 100084, China.
| | | | | | | |
Collapse
|
19
|
Oshinowo O, Lambert T, Sakurai Y, Copeland R, Hansen CE, Lam WA, Myers DR. Getting a good view: in vitro imaging of platelets under flow. Platelets 2020; 31:570-579. [PMID: 32106734 PMCID: PMC7332395 DOI: 10.1080/09537104.2020.1732320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023]
Abstract
As the anucleate cells responsible for hemostasis and thrombosis, platelets are exposed to a myriad of biophysical and biochemical stimuli within vasculature and heterogeneous blood clots. Highly controlled, reductionist in vitro imaging studies have been instrumental in providing a detailed and quantitative understanding of platelet biology and behavior, and have helped elucidate some surprising functions of platelets. In this review, we highlight the tools and approaches that enable visualization of platelets in conjunction with precise control over the local biofluidic and biochemical microenvironment. We also discuss next generation tools that add further control over microenvironment cell stiffness or enable visualization of the interactions between platelets and endothelial cells. Throughout the review, we include pragmatic knowledge on imaging systems, experimental conditions, and approaches that have proved to be useful to our in vitro imaging studies of platelets under flow.
Collapse
Affiliation(s)
- Oluwamayokun Oshinowo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Tamara Lambert
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Yumiko Sakurai
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Renee Copeland
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Caroline E. Hansen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Wilbur A. Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - David R. Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
20
|
Tortuosity-powered microfluidic device for assessment of thrombosis and antithrombotic therapy in whole blood. Sci Rep 2020; 10:5742. [PMID: 32238835 PMCID: PMC7113244 DOI: 10.1038/s41598-020-62768-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
Accurate assessment of blood thrombosis and antithrombotic therapy is essential for the management of patients in a variety of clinical conditions, including surgery and on extracorporeal life support. However, current monitoring devices do not measure the effects of hemodynamic forces that contribute significantly to coagulation, platelet function and fibrin formation. This limits the extent to which current assays can predict clotting status in patients. Here, we demonstrate that a biomimetic microfluidic device consisting stenosed and tortuous arteriolar vessels would analyze blood clotting under flow, while requiring a small blood volume. When the device is connected to an inline pressure sensor a clotting time analysis is applied, allowing for the accurate measurement of coagulation, platelets and fibrin content. Furthermore, this device detects a prolonged clotting time in clinical blood samples drawn from pediatric patients on extracorporeal membrane oxygenation receiving anticoagulant therapy. Thus, this tortuosity activated microfluidic device could lead to a more quantitative and rapid assessment of clotting disorders and their treatment.
Collapse
|
21
|
Mangin PH, Gardiner EE, Nesbitt WS, Kerrigan SW, Korin N, Lam WA, Panteleev MA. In vitro flow based systems to study platelet function and thrombus formation: Recommendations for standardization: Communication from the SSC on Biorheology of the ISTH. J Thromb Haemost 2020; 18:748-752. [PMID: 32112535 DOI: 10.1111/jth.14717] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Experimental videomicroscopic in vitro assays of thrombus formation based on blood perfusion are instrumental in a wide range of basic studies in thrombosis, screening for hereditary or acquired plateletrelated pathologies, and assessing the effectiveness of novel anti-platelet therapies. Here, we discuss application of the broadly used "in vitro thrombosis model": a frequently used assay to study the formation of 3D aggregates under flow, which involves perfusing anticoagulated whole blood over fibrillar collagen in a flow geometry of rectangular cross-section, such as glass microcapillaries or parallel-plate flow chambers. Major advantaged of this assay are simplicity and ability to reproduce the four main stages of platelet thrombus formation, i.e. platelet tethering, adhesion, activation and aggregation under a wide range of hemodynamic conditions. On the other hand, these devices represent, at best, simple reductive models of thrombosis. We also describe how blood flow assays can be used to study various aspects of platelet function on adhesive proteins and discuss the relevance of such flow models. Finally, we propose recommendations for standardization related to the use of this assay that cover collagen source, coating methods, micropatterning, sample composition, anticoagulation, choice of flow device, hemodynamic conditions, quantification challenges, variability, pre-analytical conditions and other issues.
Collapse
Affiliation(s)
- Pierre H Mangin
- INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Warwick S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Steven W Kerrigan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Netanel Korin
- Faculty of Biomedical Engineering, Techion-Israel Institute of Technology, Haifa, Israel
| | - Wilbur A Lam
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, USA
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
The effect of platelet storage temperature on haemostatic, immune, and endothelial function: potential for personalised medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 17:321-330. [PMID: 31385802 DOI: 10.2450/2019.0095-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Reports from both adult and paediatric populations indicate that approximately two-thirds of platelet transfusions are used prophylactically to prevent bleeding, while the remaining one-third are used therapeutically to manage active bleeding. These two indications, prophylactic and therapeutic, serve two very distinct purposes and therefore will have two different functional requirements. In addition, disease aetiology in a given patient may require platelets with different functional characteristics. These characteristics can be derived from the various manufacturing methods used in platelet product production, including collection methods, processing methods, and storage options. The iterative combinations of manufacturing methods can result in a number of unique platelet products with different efficacy and safety profiles, which could potentially be used to benefit patient populations by meeting diverse clinical needs. In particular, cold storage of platelet products causes many biochemical and functional changes, of which the most notable characterised to date include increased haemostatic activity and altered expression of molecules inherent to platelet:leucocyte interactions. The in vivo consequences, both short- and long-term, of these molecular and cellular cold-storage-induced changes have yet to be clearly defined. Elucidation of these mechanisms would potentially reveal unique biologies that could be harnessed to provide more targeted therapies. To this end, in this new era of personalised medicine, perhaps there is an opportunity to provide individual patients with platelet products that are tailored to their clinical condition and the specific indication for transfusion.
Collapse
|
23
|
Platelet Adhesion and Thrombus Formation in Microchannels: The Effect of Assay-Dependent Variables. Int J Mol Sci 2020; 21:ijms21030750. [PMID: 31979370 PMCID: PMC7037340 DOI: 10.3390/ijms21030750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Microfluidic flow chambers (MFCs) allow the study of platelet adhesion and thrombus formation under flow, which may be influenced by several variables. We developed a new MFC, with which we tested the effects of different variables on the results of platelet deposition and thrombus formation on a collagen-coated surface. Methods: Whole blood was perfused in the MFC over collagen Type I for 4 min at different wall shear rates (WSR) and different concentrations of collagen-coating solutions, keeping blood samples at room temperature or 37 °C before starting the experiments. In addition, we tested the effects of the antiplatelet agent acetylsalicylic acid (ASA) (antagonist of cyclooxygenase-1, 100 µM) and cangrelor (antagonist of P2Y12, 1 µM). Results: Platelet deposition on collagen (I) was not affected by the storage temperature of the blood before perfusion (room temperature vs. 37 °C); (II) was dependent on a shear rate in the range between 300/s and 1700/s; and (III) was influenced by the collagen concentration used to coat the microchannels up to a value of 10 µg/mL. ASA and cangrelor did not cause statistically significant inhibition of platelet accumulation, except for ASA at low collagen concentrations. Conclusions: Platelet deposition on collagen-coated surfaces is a shear-dependent process, not influenced by the collagen concentration beyond a value of 10 µg/mL. However, the inhibitory effect of antiplatelet drugs is better observed using low concentrations of collagen.
Collapse
|
24
|
Zwifelhofer NMJ, Bercovitz RS, Cole R, Yan K, Simpson PM, Moroi A, Newman PJ, Niebler RA, Scott JP, Stuth EAD, Woods RK, Benson DW, Newman DK. Platelet Function Changes during Neonatal Cardiopulmonary Bypass Surgery: Mechanistic Basis and Lack of Correlation with Excessive Bleeding. Thromb Haemost 2019; 120:94-106. [PMID: 31752040 DOI: 10.1055/s-0039-1700517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombocytopenia and platelet dysfunction induced by extracorporeal blood circulation are thought to contribute to postsurgical bleeding complications in neonates undergoing cardiac surgery with cardiopulmonary bypass (CPB). In this study, we examined how changes in platelet function relate to changes in platelet count and to excessive bleeding in neonatal CPB surgery. Platelet counts and platelet P-selectin exposure in response to agonist stimulation were measured at four times before, during, and after CPB surgery in neonates with normal versus excessive levels of postsurgical bleeding. Relative to baseline, platelet counts were reduced in patients while on CPB, as was platelet activation by the thromboxane A2 analog U46619, thrombin receptor activating peptide (TRAP), and collagen-related peptide (CRP). Platelet activation by adenosine diphosphate (ADP) was instead reduced after platelet transfusion. We provide evidence that thrombocytopenia is a likely contributor to CPB-associated defects in platelet responsiveness to U46619 and TRAP, CPB-induced collagen receptor downregulation likely contributes to defective platelet responsiveness to CRP, and platelet transfusion may contribute to defective platelet responses to ADP. Platelet transfusion restored to baseline levels platelet counts and responsiveness to all agonists except ADP but did not prevent excessive bleeding in all patients. We conclude that platelet count and function defects are characteristic of neonatal CPB surgery and that platelet transfusion corrects these defects. However, since CPB-associated coagulopathy is multifactorial, platelet transfusion alone is insufficient to treat bleeding events in all patients. Therefore, platelet transfusion must be combined with treatment of other factors that contribute to the coagulopathy to prevent excessive bleeding.
Collapse
Affiliation(s)
| | - Rachel S Bercovitz
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Regina Cole
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ke Yan
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pippa M Simpson
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alyssa Moroi
- Versiti-Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Peter J Newman
- Versiti-Blood Research Institute, Milwaukee, Wisconsin, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert A Niebler
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John P Scott
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eckehard A D Stuth
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ronald K Woods
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - D Woodrow Benson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Debra K Newman
- Versiti-Blood Research Institute, Milwaukee, Wisconsin, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
25
|
Provenzale I, Brouns SLN, van der Meijden PEJ, Swieringa F, Heemskerk JWM. Whole Blood Based Multiparameter Assessment of Thrombus Formation in Standard Microfluidic Devices to Proxy In Vivo Haemostasis and Thrombosis. MICROMACHINES 2019; 10:mi10110787. [PMID: 31744132 PMCID: PMC6915499 DOI: 10.3390/mi10110787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Microfluidic assays are versatile tests which, using only small amounts of blood, enable high throughput analyses of platelet function in several minutes. In combination with fluorescence microscopy, these flow tests allow real-time visualisation of platelet activation with the possibility of examining combinatorial effects of wall shear rate, coagulation and modulation by endothelial cells. In particular, the ability to use blood and blood cells from healthy subjects or patients makes this technology promising, both for research and (pre)clinical diagnostic purposes. In the present review, we describe how microfluidic devices are used to assess the roles of platelets in thrombosis and haemostasis. We place emphasis on technical aspects and on experimental designs that make the concept of "blood-vessel-component-on-a-chip" an attractive, rapidly developing technology for the study of the complex biological processes of blood coagulability in the presence of flow.
Collapse
Affiliation(s)
- Isabella Provenzale
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| | | | | | | | - Johan W. M. Heemskerk
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| |
Collapse
|
26
|
Albers HJ, Passier R, van den Berg A, van der Meer AD. Automated Analysis of Platelet Aggregation on Cultured Endothelium in a Microfluidic Chip Perfused with Human Whole Blood. MICROMACHINES 2019; 10:E781. [PMID: 31739604 PMCID: PMC6915557 DOI: 10.3390/mi10110781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Organ-on-a-chip models with incorporated vasculature are becoming more popular to study platelet biology. A large variety of image analysis techniques are currently used to determine platelet coverage, ranging from manually setting thresholds to scoring platelet aggregates. In this communication, an automated methodology is introduced, which corrects misalignment of a microfluidic channel, automatically defines regions of interest and utilizes a triangle threshold to determine platelet coverages and platelet aggregate size distributions. A comparison between the automated methodology and manual identification of platelet aggregates shows a high accuracy of the triangle methodology. Furthermore, the image analysis methodology can determine platelet coverages and platelet size distributions in microfluidic channels lined with either untreated or activated endothelium used for whole blood perfusion, proving the robustness of the method.
Collapse
Affiliation(s)
- Hugo J. Albers
- BIOS Lab-on-a-Chip Group, University of Twente, 7522 NH Enschede, The Netherlands
- Applied Stem Cell Technologies Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, University of Twente, 7522 NH Enschede, The Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies Group, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
27
|
Griffin MT, Kim D, Ku DN. Shear-induced platelet aggregation: 3D-grayscale microfluidics for repeatable and localized occlusive thrombosis. BIOMICROFLUIDICS 2019; 13:054106. [PMID: 31592301 PMCID: PMC6773594 DOI: 10.1063/1.5113508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Atherothrombosis leads to complications of myocardial infarction and stroke as a result of shear-induced platelet aggregation (SIPA). Clinicians and researchers may benefit from diagnostic and benchtop microfluidic assays that assess the thrombotic activity of an individual. Currently, there are several different proposed point-of-care diagnostics and microfluidic thrombosis assays with different design parameters and end points. The microfluidic geometry, surface coatings, and anticoagulation may strongly influence the precision of these assays. Variability in selected end points also persists, leading to ambiguous results. This study aims to assess the effects of three physiologically relevant extrinsic design factors on the variability of a single end point to provide a quantified rationale for design parameter and end-point standardization. Using a design of experiments approach, we show that the methods of channel fabrication and collagen surface coating significantly impact the variability of occlusion time from porcine whole blood, while anticoagulant selection between heparin and citrate did not significantly impact the variability. No factor was determined to significantly impact the mean occlusion time within the assay. Occlusive thrombus was found to consistently form in the first third (333 μm) of the high shear zone and not in the shear gradient regions. The selection of these factors in the design of point-of-care diagnostics and experimental SIPA assays may lead to increased precision and specificity in high shear thrombosis studies.
Collapse
Affiliation(s)
| | - Dongjune Kim
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | - David N. Ku
- Author to whom correspondence should be addressed:
| |
Collapse
|
28
|
The Impact of Erythrocytes Injury on Blood Flow in Bionic Arteriole with Stenosis Segment. Processes (Basel) 2019. [DOI: 10.3390/pr7060372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ventricular assist device (VAD) implantation is an effective treatment for patients with end-stage heart failure. However, patients who undergo long-term application of VADs experience a series of VAD-related adverse effects including pump thrombosis, which is induced by rotate impeller-caused blood cell injury and hemolysis. Blood cell trauma-related flow patterns are the key mechanism for understanding thrombus formation. In this study, we established a new method to evaluate the blood cell damage and investigate the real-time characteristics of blood flow patterns in vitro using rheometer and bionic microfluidic devices. The variation of plasma free hemoglobin (PFH) and lactic dehydrogenase (LDH) in the rheometer test showed that high shear stress was the main factor causing erythrocyte membrane injury, while the long-term exposure of high shear stress further aggravated this trauma. Following this rheometer test, the damaged erythrocytes were collected and injected into a bionic microfluidic device. The captured images of bionic microfluidic device tests showed that with the increase of shear stress suffered by the erythrocyte, the migration rate of damaged erythrocyte in bionic microchannel significantly decreased and, meanwhile, aggregation of erythrocyte was clearly observed. Our results indicate that mechanical shear stress caused by erythrocyte injury leads to thrombus formulation and adhesion in arterioles.
Collapse
|
29
|
Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear. Biomech Model Mechanobiol 2019; 18:1461-1474. [PMID: 31055691 PMCID: PMC6748893 DOI: 10.1007/s10237-019-01154-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The ability of a blood clot to modulate blood flow is determined by the clot’s resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain—and, therefore, clot occlusivity—was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner “core” region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.
Collapse
|
30
|
Baaten CCFMJ, Meacham S, de Witt SM, Feijge MAH, Adams DJ, Akkerman JWN, Cosemans JMEM, Grassi L, Jupe S, Kostadima M, Mattheij NJA, Prins MH, Ramirez-Solis R, Soehnlein O, Swieringa F, Weber C, White JK, Ouwehand WH, Heemskerk JWM. A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding. Blood 2018; 132:e35-e46. [PMID: 30275110 PMCID: PMC6293874 DOI: 10.1182/blood-2018-02-831982] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stuart Meacham
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Susanne M de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marion A H Feijge
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - David J Adams
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jan-Willem N Akkerman
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Steve Jupe
- EMBL-European Bioinformatics Institute, Cambridge, United Kingdom
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Nadine J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin H Prins
- Department of Clinical Epidemiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
- Department of Pathology, AMC, Amsterdam, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
| | | | - Willem H Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
31
|
van Geffen JP, Brouns SLN, Batista J, McKinney H, Kempster C, Nagy M, Sivapalaratnam S, Baaten CCFMJ, Bourry N, Frontini M, Jurk K, Krause M, Pillitteri D, Swieringa F, Verdoold R, Cavill R, Kuijpers MJE, Ouwehand WH, Downes K, Heemskerk JWM. High-throughput elucidation of thrombus formation reveals sources of platelet function variability. Haematologica 2018; 104:1256-1267. [PMID: 30545925 PMCID: PMC6545858 DOI: 10.3324/haematol.2018.198853] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023] Open
Abstract
In combination with microspotting, whole-blood microfluidics can provide high-throughput information on multiple platelet functions in thrombus formation. Based on assessment of the inter- and intra-subject variability in parameters of microspot-based thrombus formation, we aimed to determine the platelet factors contributing to this variation. Blood samples from 94 genotyped healthy subjects were analyzed for conventional platelet phenotyping: i.e. hematologic parameters, platelet glycoprotein (GP) expression levels and activation markers (24 parameters). Furthermore, platelets were activated by ADP, CRP-XL or TRAP. Parallel samples were investigated for whole-blood thrombus formation (6 microspots, providing 48 parameters of adhesion, aggregation and activation). Microspots triggered platelet activation through GP Ib-V-IX, GPVI, CLEC-2 and integrins. For most thrombus parameters, inter-subject variation was 2-4 times higher than the intra-subject variation. Principal component analyses indicated coherence between the majority of parameters for the GPVI-dependent microspots, partly linked to hematologic parameters, and glycoprotein expression levels. Prediction models identified parameters per microspot that were linked to variation in agonist-induced αIIbβ3 activation and secretion. Common sequence variation of GP6 and FCER1G, associated with GPVI-induced αIIbβ3 activation and secretion, affected parameters of GPVI-and CLEC-2-dependent thrombus formation. Subsequent analysis of blood samples from patients with Glanzmann thrombasthenia or storage pool disease revealed thrombus signatures of aggregation-dependent parameters that were subject-dependent, but not linked to GPVI activity. Taken together, this high-throughput elucidation of thrombus formation revealed patterns of inter-subject differences in platelet function, which were partly related to GPVI-induced activation and common genetic variance linked to GPVI, but also included a distinct platelet aggregation component.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,The Royal London Haemophilia Centre, London, UK
| | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Nikki Bourry
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Remco Verdoold
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Rachel Cavill
- Department of Data Science & Knowledge Engineering, Faculty of Humanities and Sciences, Maastricht University, the Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Cambridge University Hospitals, Cambridge Biomedical Campus, UK.,NIHR BioResource, University of Cambridge, Cambridge Biomedical Campus, UK.,Department of Human Genetics, The Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK .,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, University of Cambridge, Cambridge Biomedical Campus, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
32
|
Tunströmer K, Faxälv L, Boknäs N, Lindahl TL. Quantification of Platelet Contractile Movements during Thrombus Formation. Thromb Haemost 2018; 118:1600-1611. [PMID: 30112750 PMCID: PMC6298232 DOI: 10.1055/s-0038-1668151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Imaging methods based on time-lapse microscopy are important tools for studying the dynamic events that shape thrombus formation upon vascular injury. However, there is a lack of methods to translate the vast amount of visual data generated in such experiments into quantitative variables describing platelet movements that can be subjected to systematic analysis. In this study, we developed experimental and computational protocols allowing for a detailed mathematical analysis of platelet movements within a developing thrombus. We used a flow chamber-based model of thrombosis wherein a collagen strip was used to initiate platelet adhesion and activation. Combining the use of a platelet staining protocol, designed to enable identification of individual platelets, and image processing, we tracked the movements of a large number of individual platelets during thrombus formation and consolidation. These data were then processed to generate aggregate measures describing the heterogeneous movements of platelets in different areas of the thrombus and at different time points. Applying this model and its potential, to a comparative analysis on a panel of platelet inhibitors, we found that total platelet intra-thrombus movements are only slightly reduced by blocking the interactions between glycoproteins IIb/IIIa and Ib and their ligands or by inhibiting thromboxane synthesis or P2Y12 signalling. In contrast, whereas 30 to 40% of the platelets movements (for the CD42a-labelled platelets) and 20% (for the pro-coagulant platelets), within a thrombus, are contractile, i.e., towards the centre of the thrombus, this contractile component is almost totally abolished in the presence of agents inhibiting these pathways.
Collapse
Affiliation(s)
- Kjersti Tunströmer
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lars Faxälv
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Niklas Boknäs
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Haematology, Linköping University, Linköping, Sweden
| | - Tomas L Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Chemistry, Linköping University, Linköping, Sweden
| |
Collapse
|
33
|
Branchford BR, Stalker TJ, Law L, Acevedo G, Sather S, Brzezinski C, Wilson KM, Minson K, Lee-Sherick AB, Davizon-Castillo P, Ng C, Zhang W, Neeves KB, Lentz SR, Wang X, Frye SV, Shelton Earp H, DeRyckere D, Brass LF, Graham DK, Di Paola JA. The small-molecule MERTK inhibitor UNC2025 decreases platelet activation and prevents thrombosis. J Thromb Haemost 2018; 16:352-363. [PMID: 29045015 PMCID: PMC5858881 DOI: 10.1111/jth.13875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 02/06/2023]
Abstract
Essentials Signaling by Gas6 through Tyro3/Axl/Mer receptors is essential for stable platelet aggregation. UNC2025 is a small molecule inhibitor of the Mer tyrosine kinase. UNC2025 decreases platelet activation in vitro and thrombus formation in vivo. UNC2025's anti-platelet effect is synergistic with inhibition of the ADP receptor, P2Y12 . SUMMARY Background Growth arrest-specific protein 6 signals through the TAM (TYRO-3-AXL-MERTK) receptor family, mediating platelet activation and thrombus formation via activation of the aggregate-stabilizing αIIb β3 integrin. Objective To describe the antithrombotic effects mediated by UNC2025, a small-molecule MERTK tyrosine kinase inhibitor. Methods MERTK phosphorylation and downstream signaling were assessed by immunoblotting. Light transmission aggregometry, flow cytometry and microfluidic analysis were used to evaluate the impact of MERTK inhibition on platelet activation and stability of aggregates in vitro. The effects of MERTK inhibition on arterial and venous thrombosis, platelet accumulation at microvascular injury sites and tail bleeding times were determined with murine models. The effects of combined treatment with ADP-P2Y1&12 pathway antagonists and UNC2025 were also evaluated. Results and Conclusions Treatment with UNC2025 inhibited MERTK phosphorylation and downstream activation of AKT and SRC, decreased platelet activation, and protected animals from pulmonary embolism and arterial thrombosis without increasing bleeding times. The antiplatelet effect of UNC2025 was enhanced in combination with ADP-P2Y1&12 pathway antagonists, and a greater than additive effect was observed when these two agents with different mechanisms of inhibition were coadministered. TAM kinase signaling represents a potential therapeutic target, as inhibition of this axis, especially in combination with ADP-P2Y pathway antagonism, mediates decreased platelet activation, aggregate stability, and thrombus formation, with less hemorrhagic potential than current treatment strategies. The data presented here also demonstrate antithrombotic activity mediated by UNC2025, a novel translational agent, and support the development of TAM kinase inhibitors for clinical applications.
Collapse
Affiliation(s)
- B R Branchford
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
| | - T J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Law
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - G Acevedo
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - S Sather
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - C Brzezinski
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - K M Wilson
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K Minson
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Section of Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - A B Lee-Sherick
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - P Davizon-Castillo
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - C Ng
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
| | - W Zhang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - K B Neeves
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - S R Lentz
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - X Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - S V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D DeRyckere
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Section of Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - L F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D K Graham
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Section of Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - J A Di Paola
- Department of Pediatrics, Section of Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
- Graduate Program - Human Medical Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
34
|
Lehmann M, Ashworth K, Manco-Johnson M, Di Paola J, Neeves KB, Ng CJ. Evaluation of a microfluidic flow assay to screen for von Willebrand disease and low von Willebrand factor levels. J Thromb Haemost 2018; 16:104-115. [PMID: 29064615 PMCID: PMC5794217 DOI: 10.1111/jth.13881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 11/28/2022]
Abstract
Essentials von Willebrand factor (VWF) function is shear stress dependent. Platelet accumulation in a microfluidic assay correlates with VWF levels. The microfluidic assay discriminates type 1 von Willebrand disease from healthy controls. The microfluidic flow assay detects responses to therapeutic intervention (DDAVP). SUMMARY Background von Willebrand disease (VWD) is a mucocutaneous bleeding disorder with a reported prevalence of 1 in 10 000. von Willebrand factor (VWF) function and platelet adhesion are regulated by hemodynamic forces that are not integrated into most current clinical assays. Objective We evaluated whether a custom microfluidic flow assay (MFA) can screen for deficiencies in VWF in patients presenting with mucocutaneous bleeding. Methods Whole blood from individuals with mucocutaneous bleeding was assayed in a custom MFA. Results Thirty-two patients with type 1 VWD (10/32) or reported mucocutaneous bleeding were enrolled. The platelet adhesion velocity (r = 0.5978 for 750 s-1 and 0.6895 for 1500 s-1 ) and the maximum platelet surface area coverage (r = 0.5719 for 750 s-1 and 0.6633 for 1500 s-1 ) in the MFA correlated with VWF levels. Furthermore, the platelet adhesion velocity at 750 s-1 (type 1 VWD, mean 0.0009761, 95% confidence interval [CI] 0.0003404-0.001612; control, mean 0.003587, 95% CI 0.002455-0.004719) and at 1500 s-1 (type 1 VWD, mean 0.0003585, 95% CI 0.00003914-0.0006778; control, mean 0.003132, 95% CI 0.001565-0.004699) differentiated type 1 VWD from controls. Maximum platelet surface area coverage at 750 s-1 (type 1 VWD, mean 0.1831, 95% CI 0.03816-0.3281; control, mean 0.6755, 95% CI 0.471-0.88) and at 1500 s-1 (type 1 VWD, mean 0.07873, 95% CI 0.01689-0.1406; control, mean 0.6432, 95% CI 0.3607-0.9257) also differentiated type 1 VWD from controls. We also observed an improvement in platelet accumulation after 1-desamino-8-d-arginine vasopressin (DDAVP) treatment at 1500 s-1 (pre-DDAVP, mean 0.4784, 95% CI 0.1777-0.7791; post-DDAVP, mean 0.8444, 95% CI 0.7162-0.9726). Conclusions These data suggest that this approach can be used as a screening tool for VWD.
Collapse
Affiliation(s)
- Marcus Lehmann
- Chemical and Biological Engineering, Colorado School of Mines University of Colorado Denver, Aurora, CO, USA
| | | | - Marilyn Manco-Johnson
- Pediatrics, University of Colorado Denver University of Colorado Denver, Aurora, CO, USA
| | - Jorge Di Paola
- Pediatrics, University of Colorado Denver University of Colorado Denver, Aurora, CO, USA
- Human Medical Genetics and Genomics, University of Colorado Denver, Aurora, CO, USA
| | - Keith B. Neeves
- Chemical and Biological Engineering, Colorado School of Mines University of Colorado Denver, Aurora, CO, USA
- Pediatrics, University of Colorado Denver University of Colorado Denver, Aurora, CO, USA
| | - Christopher J. Ng
- Pediatrics, University of Colorado Denver University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
35
|
Dimasi A, Rasponi M, Consolo F, Fiore GB, Bluestein D, Slepian MJ, Redaelli A. Microfludic platforms for the evaluation of anti-platelet agent efficacy under hyper-shear conditions associated with ventricular assist devices. Med Eng Phys 2017; 48:31-38. [PMID: 28869117 PMCID: PMC5610105 DOI: 10.1016/j.medengphy.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023]
Abstract
Thrombus formation is a major adverse event affecting patients implanted with ventricular assist devices (VADs). Despite anti-thrombotic drug administration, thrombotic events remain frequent within the first year post-implantation. Platelet activation (PA) is an essential process underling thrombotic adverse events in VAD systems. Indeed, abnormal shear forces, correlating with specific flow trajectories of VADs, are strong agonists mediating PA. To date, the ability to determine efficacy of anti-platelet (AP) agents under shear stress conditions is limited. Here, we present a novel microfluidic platform designed to replicate shear stress patterns of a clinical VAD, and use it to compare the efficacy of two AP agents in vitro. Gel-filtered platelets were incubated with i) acetylsalicylic acid (ASA) and ii) ticagrelor, at two different concentrations (ASA: 125 and 250 µM; ticagrelor: 250 and 500 nM) and were circulated in the VAD-emulating microfluidic platform using a peristaltic pump. GFP was collected after 4 and 52 repetitions of exposure to the VAD shear pattern and tested for shear-mediated PA. ASA significantly inhibited PA only at 2-fold higher concentration (250 µM) than therapeutic dose (125 µM). The effect of ticagrelor was not dependent on drug concentration, and did not show significant inhibition with respect to untreated control. This study demonstrates the potential use of microfluidic platforms as means of testing platelet responsiveness and AP drug efficacy under complex and realistic VAD-like shear stress conditions.
Collapse
Affiliation(s)
- Annalisa Dimasi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy
| | - Filippo Consolo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy; Anesthesia and Cardiothoracic Intensive Care Unit. Università Vita Salute, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy
| | - Gianfranco B Fiore
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy
| | - Danny Bluestein
- Department of Biomedical Engineering, StonyBrook University, Stony Brook, NY, USA
| | - Marvin J Slepian
- Department of Biomedical Engineering, StonyBrook University, Stony Brook, NY, USA; Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, 1501 N Campbell Ave, 85724, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20133, Milano, Italy
| |
Collapse
|
36
|
Jain A, Barrile R, van der Meer AD, Mammoto A, Mammoto T, De Ceunynck K, Aisiku O, Otieno MA, Louden CS, Hamilton GA, Flaumenhaft R, Ingber DE. Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics. Clin Pharmacol Ther 2017; 103:332-340. [PMID: 28516446 DOI: 10.1002/cpt.742] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
Abstract
Pulmonary thrombosis is a significant cause of patient mortality; however, there are no effective in vitro models of thrombi formation in human lung microvessels that could also assess therapeutics and toxicology of antithrombotic drugs. Here, we show that a microfluidic lung alveolus-on-a-chip lined by human primary alveolar epithelium interfaced with endothelium and cultured under flowing whole blood can be used to perform quantitative analysis of organ-level contributions to inflammation-induced thrombosis. This microfluidic chip recapitulates in vivo responses, including platelet-endothelial dynamics and revealed that lipopolysaccharide (LPS) endotoxin indirectly stimulates intravascular thrombosis by activating the alveolar epithelium, rather than acting directly on endothelium. This model is also used to analyze inhibition of endothelial activation and thrombosis due to a protease activated receptor-1 (PAR-1) antagonist, demonstrating its ability to dissect complex responses and identify antithrombotic therapeutics. Thus, this methodology offers a new approach to study human pathophysiology of pulmonary thrombosis and advance drug development.
Collapse
Affiliation(s)
- A Jain
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, Texas, USA
| | - R Barrile
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - A D van der Meer
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - A Mammoto
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - T Mammoto
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - K De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - O Aisiku
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - M A Otieno
- Janssen Pharmaceutical Research and Development, Pre-Clinical Development and Safety, Spring House, Pennsylvania, USA
| | - C S Louden
- Janssen Pharmaceutical Research and Development, Pre-Clinical Development and Safety, Spring House, Pennsylvania, USA
| | | | - R Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - D E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
37
|
Affiliation(s)
- Lauren D.C. Casa
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;,
| | - David N. Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;,
| |
Collapse
|
38
|
Nagy M, Heemskerk JWM, Swieringa F. Use of microfluidics to assess the platelet-based control of coagulation. Platelets 2017; 28:441-448. [PMID: 28358995 DOI: 10.1080/09537104.2017.1293809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper provides an overview of the various types of microfluidic devices that are employed to study the complex processes of platelet activation and blood coagulation in whole blood under flow conditions. We elaborate on how these devices are used to detect impaired platelet-dependent fibrin formation in blood from mice or patients with specific bleeding disorders. We provide a practical guide on how to assess formation of a platelet-fibrin thrombus under flow, using equipment that is present in most laboratories. In addition, we describe current insights on how blood flow and shear rate alter the location of platelet populations, von Willebrand factor, coagulation factors, and fibrin in a growing thrombus. Finally, we discuss possibilities and limitations for the clinical use of microfluidic devices to evaluate a hemostatic or prothrombotic tendency in patient blood samples.
Collapse
Affiliation(s)
- Magdolna Nagy
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Johan W M Heemskerk
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Frauke Swieringa
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands.,b Department of Bioanalytics , Leibniz Institute for Analytical Sciences - ISAS- e.V. , Dortmund , Germany
| |
Collapse
|
39
|
Ask1 regulates murine platelet granule secretion, thromboxane A 2 generation, and thrombus formation. Blood 2016; 129:1197-1209. [PMID: 28028021 DOI: 10.1182/blood-2016-07-729780] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are expressed in platelets and are activated downstream of physiological agonists. Pharmacological and genetic evidence indicate that MAPKs play a significant role in hemostasis and thrombosis, but it is not well understood how MAPKs are activated upon platelet stimulation. Here, we show that apoptosis signal-regulating kinase 1 (ASK1), a member of the MAP3K family, is expressed in both human and murine platelets. ASK1 is rapidly and robustly activated upon platelet stimulation by physiological agonists. Disruption of Ask1 (Ask1-/- ) resulted in a marked functional defect in platelets. Ask1-/- platelets showed an impaired agonist-induced integrin αIIbβ3 activation and platelet aggregation. Although there was no difference in Ca2+ rise, platelet granule secretion and thromboxane A2 (TxA2) generation were significantly attenuated in Ask1-/- platelets. The defective granule secretion observed in Ask1-/- platelets was a consequence of impaired TxA2 generation. Biochemical studies showed that platelet agonists failed to activate p38 MAPK in Ask1-/- platelets. On the contrary, activation of c-Jun N-terminal kinases and extracellular signal-regulated kinase 1/2 MAPKs was augmented in Ask1-/- platelets. The defect in p38 MAPK results in failed phosphorylation of cPLA2 in Ask1-/- platelets and impaired platelet aggregate formation under flow. The absence of Ask1 renders mice defective in hemostasis as assessed by prolonged tail-bleeding times. Deletion of Ask1 also reduces thrombosis as assessed by delayed vessel occlusion of carotid artery after FeCl3-induced injury and protects against collagen/epinephrine-induced pulmonary thromboembolism. These results suggest that the platelet Ask1 plays an important role in regulation of hemostasis and thrombosis.
Collapse
|
40
|
Schoeman RM, Rana K, Danes N, Lehmann M, Di Paola JA, Fogelson AL, Leiderman K, Neeves KB. A microfluidic model of hemostasis sensitive to platelet function and coagulation. Cell Mol Bioeng 2016; 10:3-15. [PMID: 28529666 DOI: 10.1007/s12195-016-0469-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Hemostasis is the process of sealing a vascular injury with a thrombus to arrest bleeding. The type of thrombus that forms depends on the nature of the injury and hemodynamics. There are many models of intravascular thrombus formation whereby blood is exposed to prothrombotic molecules on a solid substrate. However, there are few models of extravascular thrombus formation whereby blood escapes into the extravascular space through a hole in the vessel wall. Here, we describe a microfluidic model of hemostasis that includes vascular, vessel wall, and extravascular compartments. Type I collagen and tissue factor, which support platelet adhesion and initiate coagulation, respectively, were adsorbed to the wall of the injury channel and act synergistically to yield a stable thrombus that stops blood loss into the extravascular compartment in ~7.5 min. Inhibiting factor VIII to mimic hemophilia A results in an unstable thrombus that was unable to close the injury. Treatment with a P2Y12 antagonist to reduce platelet activation prolonged the closure time two-fold compared to controls. Taken together, these data demonstrate a hemostatic model that is sensitive to both coagulation and platelet function and can be used to study coagulopathies and platelet dysfunction that result in excessive blood loss.
Collapse
Affiliation(s)
- R M Schoeman
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - K Rana
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - N Danes
- Applied Mathematics and Statistics Department, Colorado School of Mines, Golden, CO
| | - M Lehmann
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - J A Di Paola
- Department of Pediatrics, University of Colorado Denver, Aurora, CO
| | - A L Fogelson
- Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, Utah
| | - K Leiderman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO
| | - K B Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO.,Department of Pediatrics, University of Colorado Denver, Aurora, CO
| |
Collapse
|
41
|
Microfluidic approaches for the assessment of blood cell trauma: a focus on thrombotic risk in mechanical circulatory support devices. Int J Artif Organs 2016; 39:184-93. [PMID: 27034318 DOI: 10.5301/ijao.5000485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Mechanical circulatory support devices (MCSDs) are emerging as a valuable therapeutic option for the management of end-stage heart failure. However, although recipients are routinely administered with anti-thrombotic (AT) drugs, thrombosis persists as a severe post-implant complication. Conventional clinical assays and coagulation markers demonstrate partial ability in preventing the onset of thrombosis. Through years, different laboratory techniques have been proposed as potential tools for the evaluation of platelets' hemostatic response in MCSD recipients. Most rely on platelet aggregation tests; they are performed in static or low shear conditions, neglecting the prominent contribution of MCSD shear-induced mechanical load in enhancing platelet activation (PA). On the other hand, those tests able to account for shear-induced PA have limited possibility of effective clinical translation. AIMS AND METHODS Advances on this side have been addressed by microfluidic technology. Microfluidic devices have been developed for AT drug monitoring under flow, able to replicate physiological and/or constant shear flow conditions in vitro. In this paper, we present a newly developed microfluidic platform able to expose platelets to MCSD-specific dynamic shear stress patterns. We performed in vitro tests circulating human platelets in the microfluidic platform and quantifying the dynamics of PA by means of the Platelet Activity State (PAS) assay. RESULTS Our results prove the feasibility of using microfluidics for the diagnosis of MCSD-related thrombotic risk. This study paves the way for the development of a miniaturized point-of-care device for monitoring AT drug regimen. Such a system may have significant impact on limiting the incidence of thrombosis in MCSD recipients.
Collapse
|
42
|
Van Aelst B, Feys HB, Devloo R, Vandekerckhove P, Compernolle V. Microfluidic Flow Chambers Using Reconstituted Blood to Model Hemostasis and Platelet Transfusion In Vitro. J Vis Exp 2016. [PMID: 27023054 DOI: 10.3791/53823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Blood platelets prepared for transfusion gradually lose hemostatic function during storage. Platelet function can be investigated using a variety of (indirect) in vitro experiments, but none of these is as comprehensive as microfluidic flow chambers. In this protocol, the reconstitution of thrombocytopenic fresh blood with stored blood bank platelets is used to simulate platelet transfusion. Next, the reconstituted sample is perfused in microfluidic flow chambers which mimic hemostasis on exposed subendothelial matrix proteins. Effects of blood donation, transport, component separation, storage and pathogen inactivation can be measured in paired experimental designs. This allows reliable comparison of the impact every manipulation in blood component preparation has on hemostasis. Our results demonstrate the impact of temperature cycling, shear rates, platelet concentration and storage duration on platelet function. In conclusion, this protocol analyzes the function of blood bank platelets and this ultimately aids in optimization of the processing chain including phlebotomy, transport, component preparation, storage and transfusion.
Collapse
Affiliation(s)
| | - Hendrik B Feys
- Transfusion Research Center, Belgium Red Cross-Flanders;
| | | | - Philippe Vandekerckhove
- Blood Service, Belgium Red Cross-Flanders; Department of Public Health and Primary Care, Catholic University of Leuven; Faculty of Medicine and Health Sciences, University of Ghent
| | - Veerle Compernolle
- Transfusion Research Center, Belgium Red Cross-Flanders; Blood Service, Belgium Red Cross-Flanders; Faculty of Medicine and Health Sciences, University of Ghent
| |
Collapse
|
43
|
Shi X, Yang J, Huang J, Long Z, Ruan Z, Xiao B, Xi X. Effects of different shear rates on the attachment and detachment of platelet thrombi. Mol Med Rep 2016; 13:2447-56. [PMID: 26847168 PMCID: PMC4768970 DOI: 10.3892/mmr.2016.4825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
Thrombosis and hemostasis take place in flowing blood, which generates shear forces. The effect of different shear rates, particularly pathological forces, on platelet thrombus formation remains to be fully elucidated. The present study observed the morphological characteristics and hierarchical structure of thrombi on the collagen surface at a wide range of wall shear rates (WSRs) and examined the underlying mechanisms. Calcein AM‑labeled whole blood was perfused over a collagen‑coated surface at different shear rates set by a Bioflux 200 microfluidic device and the thrombi formed were assessed for area coverage, the height and the hierarchical structure defined by the extent of platelet activation and packing density. The factors that affect thrombus formation were also investigated. Platelet thrombus formation varied under different WSRs, for example, dispersed platelet adhesion mixed with erythrocytes was observed at 125‑250 s(‑1), extensive and thin platelet thrombi were observed at 500‑1,500 s(‑1), and sporadic, thick thrombi were observed at pathological WSRs of 2,500‑5,000 s(‑1), which showed a tendency to be shed. With increasing WSRs, the height of the thrombi showed an increasing linear trend, whereas the total fluorescence intensity and area of the thrombi exhibited a parabolic curve‑like change, with a turning point at a WSR of 2,500 s(‑1). The number of thrombi, the average fluorescence intensity and the area per thrombus showed similar trends, with an initial upwards incline followed by a decline. The thrombi formed at higher WSRs had a thicker shell, which led to a more densely packed core. Platelet thrombus formation under shear‑flow was regulated by the adhesive strength, which was mediated by receptor‑ligand interaction, the platelet deposition induced by shear rates and the detachment by the dynamic force of flow. This resulted in a balance between thrombus attachment, including adhesion and aggregation, and detachment. Collectively, compared with physiological low WSRs, pathological high WSRs caused thicker and more easily shed thrombi with more condensed cores, which was regulated by an attachment‑detachment balance. These results provide novel insights into the properties of thrombus formation on collagen at different WSRs, and offers possible explanations for certain clinical physiopathological phenomena, including physical hemostasis and pathological thrombosis.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Jichun Yang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Jiansong Huang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Zhangbiao Long
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Zheng Ruan
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Bing Xiao
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Xiaodong Xi
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
44
|
Jain A, Graveline A, Waterhouse A, Vernet A, Flaumenhaft R, Ingber DE. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat Commun 2016; 7:10176. [PMID: 26733371 PMCID: PMC4729824 DOI: 10.1038/ncomms10176] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic. The current hemostasis assays are unable to predict thrombotic or bleeding risk in clinics. Here, Jain et al. present a novel microfluidic device mimicking stenosed arterioles that determines clotting times in vitro and in extracorporeal circuits, offering a simple and reliable monitoring of blood homeostasis and platelet function.
Collapse
Affiliation(s)
- Abhishek Jain
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA.,Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.,Vascular Biology Program, Departments of Pathology and Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Anna Waterhouse
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA.,Vascular Biology Program, Departments of Pathology and Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
45
|
Lehmann M, Wallbank AM, Dennis KA, Wufsus AR, Davis KM, Rana K, Neeves KB. On-chip recalcification of citrated whole blood using a microfluidic herringbone mixer. BIOMICROFLUIDICS 2015; 9:064106. [PMID: 26634014 PMCID: PMC4654733 DOI: 10.1063/1.4935863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 05/20/2023]
Abstract
In vitro assays of platelet function and coagulation are typically performed in the presence of an anticoagulant. The divalent cation chelator sodium citrate is among the most common because its effect on coagulation is reversible upon reintroduction of divalent cations. Adding divalent cations into citrated blood by batch mixing leads to platelet activation and initiation of coagulation after several minutes, thus limiting the time blood can be used before spontaneously clotting. In this work, we describe a herringbone microfluidic mixer to continuously introduce divalent cations into citrated blood. The mixing ratio, defined as the ratio of the volumetric flow rates of citrated blood and recalcification buffer, can be adjusted by changing the relative inlet pressures of these two solutions. This feature is useful in whole blood assays in order to account for differences in hematocrit, and thus viscosity. The recalcification process in the herringbone mixer does not activate platelets. The advantage of this continuous mixing approach is demonstrated in microfluidic vascular injury model in which platelets and fibrin accumulate on a collagen-tissue factor surface under flow. Continuous recalcification with the herringbone mixer allowed for flow assay times of up to 30 min, more than three times longer than the time achieved by batch recalcification. This continuous mixer allows for measurements of thrombus formation, remodeling, and fibrinolysis in vitro over time scales that are relevant to these physiological processes.
Collapse
Affiliation(s)
- Marcus Lehmann
- Chemical and Biological Engineering Department, Colorado School of Mines , Golden, Colorado 80401, USA
| | - Alison M Wallbank
- Chemical and Biological Engineering Department, Colorado School of Mines , Golden, Colorado 80401, USA
| | - Kimberly A Dennis
- Chemical and Biological Engineering Department, Colorado School of Mines , Golden, Colorado 80401, USA
| | - Adam R Wufsus
- Chemical and Biological Engineering Department, Colorado School of Mines , Golden, Colorado 80401, USA
| | - Kara M Davis
- Chemical and Biological Engineering Department, Colorado School of Mines , Golden, Colorado 80401, USA
| | - Kuldeepsinh Rana
- Chemical and Biological Engineering Department, Colorado School of Mines , Golden, Colorado 80401, USA
| | - Keith B Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines , Golden, Colorado 80401, USA
| |
Collapse
|
46
|
Sylman JL, Artzer DT, Rana K, Neeves KB. A vascular injury model using focal heat-induced activation of endothelial cells. Integr Biol (Camb) 2015; 7:801-14. [PMID: 26087748 PMCID: PMC4494879 DOI: 10.1039/c5ib00108k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelial cells (EC) both inhibit and promote platelet function depending on their activation state. Quiescent EC inhibit platelet activation by constitutive secretion of platelet inhibitors. Activated EC promote platelet adhesion by secretion of von Willebrand factor (vWF). EC also secrete an extracellular matrix that support platelet adhesion when exposed following vascular injury. Previous studies of EC-platelet interactions under flow activate entire monolayers of cells by chemical activation. In this study, EC cultured in microfluidic channels were focally activated by heat from an underlying microelectrode. Based on finite element modeling, microelectrodes induced peak temperature increases of 10-40 °C above 37 °C after applying 5-9 V for 30 s resulting in three zones: (1) a quiescent zone corresponded to peak temperatures of less than 15 °C characterized by no EC activation or platelet accumulation. (2) An activation zone corresponding to an increase of 16-22 °C yielded EC that were viable, secreted elevated levels of vWF, and were P-selectin positive. Platelets accumulated in the retracted spaces between EC in the activation zone at a wall shear rate of 150 and 1500 s(-1). Experiments with blocking antibodies show that platelets adhere via GPIbα-vWF and α6β1-laminin interactions. (3) A kill zone corresponded to peak temperatures of greater than 23 °C where EC were not viable and did not support platelet adhesion. These data define heating conditions for the activation of EC, causing the secretion of vWF and the exposure of a subendothelial matrix that support platelet adhesion and aggregation. This model provides for spatially defined zones of EC activation that could be a useful tool for measuring the relative roles of anti- and prothrombotic roles of EC at the site of vascular injury.
Collapse
Affiliation(s)
- J L Sylman
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA.
| | | | | | | |
Collapse
|
47
|
Branchford BR, Ng CJ, Neeves KB, Di Paola J. Microfluidic technology as an emerging clinical tool to evaluate thrombosis and hemostasis. Thromb Res 2015; 136:13-9. [PMID: 26014643 DOI: 10.1016/j.thromres.2015.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
Assessment of platelet function and coagulation under flow conditions can augment traditional static assays used to evaluate patients with suspected hemostatic or thrombotic disorders. Among the available flow-based assays, microfluidic devices require the smallest blood volume and provide multiple output options. These assays are based on the presence of wall shear stress that mimics in vivo interactions between blood components and vessel walls. Microfluidic devices can generate essential information regarding homeostatic regulation of platelet activation and subsequent engagement of the coagulation cascade leading to fibrin deposition and clot formation. Emerging data suggest that microfluidic assays may also reveal consistent patterns of hemostatic or thrombotic pathology, and could aid in assessing and monitoring patient-specific effects of coagulation-modifying therapies.
Collapse
Affiliation(s)
- Brian R Branchford
- Dept. of Pediatrics - Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA; University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
| | - Christopher J Ng
- Dept. of Pediatrics - Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA; University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA
| | - Keith B Neeves
- Dept. of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Jorge Di Paola
- Dept. of Pediatrics - Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA; University of Colorado Hemophilia and Thrombosis Center, Aurora, CO, USA; Graduate Program- Human Medical Genetics and Genomics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
48
|
Casa LD, Deaton DH, Ku DN. Role of high shear rate in thrombosis. J Vasc Surg 2015; 61:1068-80. [DOI: 10.1016/j.jvs.2014.12.050] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
|
49
|
|
50
|
Abstract
Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.
Collapse
Affiliation(s)
- Aaron L. Fogelson
- Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Keith B. Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401
| |
Collapse
|