1
|
Barkan E, Duran M, Lammers N, Tresenrider A, Jackson D, Lee H, Haagen B, Saunders L, Abitua P, Kimelman D, Trapnell C. Embryo-scale single-cell chemical transcriptomics reveals dependencies between cell types and signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646423. [PMID: 40235986 PMCID: PMC11996465 DOI: 10.1101/2025.04.03.646423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Organogenesis is a highly organized process that is conserved across vertebrates and is heavily dependent on intercellular signaling to achieve cell type identity. We lack a comprehensive understanding of how developing cell types in each organ and tissue depend on developmental signaling pathways. To address this gap in knowledge, we captured the molecular consequences of inhibiting each of the seven major developmental signaling pathways in zebrafish, using large-scale whole embryo single cell RNA-seq from over two million cells. This approach allowed us to detect signaling pathway regulation even in very rare cell types. By focusing on the development of the pectoral fin, we uncovered two new cell types (distal mesenchyme and tenocytes) and multiple novel signaling dependencies during pectoral fin development. This resource serves as a valuable tool for investigators seeking to rapidly assess the role of the major signaling pathways during the formation of their tissue of interest.
Collapse
|
2
|
Cortés-González V, Rodriguez-Morales M, Ataliotis P, Mayer C, Plaisancié J, Chassaing N, Lee H, Rozet JM, Cavodeassi F, Fares Taie L. Homozygosity for a hypomorphic mutation in frizzled class receptor 5 causes syndromic ocular coloboma with microcornea in humans. Hum Genet 2024; 143:1509-1521. [PMID: 39503780 PMCID: PMC11576812 DOI: 10.1007/s00439-024-02712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Ocular coloboma (OC) is a congenital disorder caused by the incomplete closure of the embryonic ocular fissure. OC can present as a simple anomaly or, in more complex forms, be associated with additional ocular abnormalities. It can occur in isolation or as part of a broader syndrome, exhibiting considerable genetic heterogeneity. Diagnostic yield for OC remains below 30%, indicating the need for further genetic exploration. Mutations in the Wnt receptor FZD5, which is expressed throughout eye development, have been linked to both isolated and complex forms of coloboma. These mutations often result in a dominant-negative effect, where the mutated FZD5 protein disrupts WNT signaling by sequestering WNT ligands. Here, we describe a case of syndromic bilateral OC with additional features such as microcornea, bone developmental anomalies, and mild intellectual disability. Whole exome sequencing revealed a homozygous rare missense variant in FZD5. Consistent with a loss-of-function effect, overexpressing of fzd5 mRNA harboring the missense variant in zebrafish embryos does not influence embryonic development, whereas overexpression of wild-type fzd5 mRNA results in body axis duplications. However, in vitro TOPFlash assays revealed that the missense variant only caused partial loss-of-function, behaving as a hypomorphic mutation. We further showed that the mutant protein still localized to the cell membrane and maintained proper conformation when modeled in silico, suggesting that the impairment lies in signal transduction. This hypothesis is further supported by the fact that the variant affects a highly conserved amino acid known to be crucial for protein-protein interactions.
Collapse
Affiliation(s)
- Vianney Cortés-González
- Departamento de Genética, Asociación Para Evitar la Ceguera en México, Vicente García Torres No. 46 Barrio San Lucas, Coyoacán, Mexico City, C.P. 04030, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Rodriguez-Morales
- Departamento de Genética, Asociación Para Evitar la Ceguera en México, Vicente García Torres No. 46 Barrio San Lucas, Coyoacán, Mexico City, C.P. 04030, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paris Ataliotis
- School of Health and Medical Sciences, City St. George's University of London, London, SW17 0RE, UK
| | - Claudine Mayer
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Faculté des Sciences, Université Paris Cité, UFR Sciences du Vivant, Paris, 75013, France
| | - Julie Plaisancié
- Laboratoire de Référence (LBMR) des Anomalies Malformatives de l'oeil, Institut Fédératif de Biologie (IFB), CHU Toulouse, Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique, CARGO, site constitutif, CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Laboratoire de Référence (LBMR) des Anomalies Malformatives de l'oeil, Institut Fédératif de Biologie (IFB), CHU Toulouse, Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique, CARGO, site constitutif, CHU Toulouse, Toulouse, France
| | - Hane Lee
- 3billion Inc., Seoul, South Korea
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, 75015, France
| | - Florencia Cavodeassi
- School of Health and Medical Sciences, City St. George's University of London, London, SW17 0RE, UK.
| | - Lucas Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, Paris, 75015, France.
| |
Collapse
|
3
|
Fenner JL, Newberry C, Todd C, Range RC. Anterior-Posterior Wnt Signaling Network Conservation between Indirect Developing Sea Urchin and Hemichordate Embryos. Integr Comp Biol 2024; 64:1214-1225. [PMID: 38769605 PMCID: PMC11579615 DOI: 10.1093/icb/icae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
How animal body plans evolved and diversified is a major question in evolutionary developmental biology. To address this question, it is important to characterize the exact molecular mechanisms that establish the major embryonic axes that give rise to the adult animal body plan. The anterior-posterior (AP) axis is the first axis to be established in most animal embryos, and in echinoderm sea urchin embryos its formation is governed by an integrated network of three different Wnt signaling pathways: Wnt/β-catenin, Wnt/JNK, and Wnt/PKC pathways. The extent to which this embryonic patterning mechanism is conserved among deuterostomes, or more broadly in metazoans, is an important open question whose answers could lead to a deeper appreciation of the evolution of the AP axis. Because Ambulacrarians (echinoderms and hemichordates) reside in a key phylogenetic position as the sister group to chordates, studies in these animals can help inform on how chordate body plans may have evolved. Here, we assayed the spatiotemporal gene expression of a subset of sea urchin AP Wnt patterning gene orthologs in the hemichordate, Schizocardium californicum. Our results show that positioning of the anterior neuroectoderm (ANE) to a territory around the anterior pole during early AP formation is spatially and temporally similar between indirect developing hemichordates and sea urchins. Furthermore, we show that the expression of wnt8 and frizzled5/8, two known drivers of ANE patterning in sea urchins, is similar in hemichordate embryos. Lastly, our results highlight divergence in embryonic expression of several early expressed Wnt genes (wnt1, wnt2, and wnt4). These results suggest that expression of the sea urchin AP Wnt signaling network is largely conserved in indirect developing hemichordates setting the foundation for future functional studies in S. californicum.
Collapse
Affiliation(s)
- Jennifer L Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Callum Newberry
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Callie Todd
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Meserve JH, Navarro MF, Ortiz EA, Granato M. Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit. PLoS Genet 2024; 20:e1011415. [PMID: 39432544 PMCID: PMC11527297 DOI: 10.1371/journal.pgen.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/31/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024] Open
Abstract
In the developing brain, groups of neurons organize into functional circuits that direct diverse behaviors. One such behavior is the evolutionarily conserved acoustic startle response, which in zebrafish is mediated by a well-defined hindbrain circuit. While numerous molecular pathways that guide neurons to their synaptic partners have been identified, it is unclear if and to what extent distinct neuron populations in the startle circuit utilize shared molecular pathways to ensure coordinated development. Here, we show that the planar cell polarity (PCP)-associated atypical cadherins Celsr3 and Celsr2, as well as the Celsr binding partner Frizzled 3a/Fzd3a, are critical for axon guidance of two neuron types that form synapses with each other: the command-like neuron Mauthner cells that drive the acoustic startle escape response, and spiral fiber neurons which provide excitatory input to Mauthner cells. We find that Mauthner axon growth towards synaptic targets is vital for Mauthner survival. We also demonstrate that symmetric spiral fiber input to Mauthner cells is critical for escape direction, which is necessary to respond to directional threats. Moreover, we identify distinct roles for Celsr3 and Celsr2, as Celsr3 is required for startle circuit development while Celsr2 is dispensable, though Celsr2 can partially compensate for loss of Celsr3 in Mauthner cells. This contrasts with facial branchiomotor neuron migration in the hindbrain, which requires Celsr2 while we find that Celsr3 is dispensable. Combined, our data uncover critical and distinct roles for individual PCP components during assembly of the acoustic startle hindbrain circuit.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria F. Navarro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elelbin A. Ortiz
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Meserve JH, Navarro MF, Ortiz EA, Granato M. Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583806. [PMID: 38496637 PMCID: PMC10942420 DOI: 10.1101/2024.03.07.583806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the developing brain, groups of neurons organize into functional circuits that direct diverse behaviors. One such behavior is the evolutionarily conserved acoustic startle response, which in zebrafish is mediated by a well-defined hindbrain circuit. While numerous molecular pathways that guide neurons to their synaptic partners have been identified, it is unclear if and to what extent distinct neuron populations in the startle circuit utilize shared molecular pathways to ensure coordinated development. Here, we show that the planar cell polarity (PCP)-associated atypical cadherins Celsr3 and Celsr2, as well as the Celsr binding partner Frizzled 3a/Fzd3a, are critical for axon guidance of two neuron types that form synapses with each other: the command-like neuron Mauthner cells that drive the acoustic startle escape response, and spiral fiber neurons which provide excitatory input to Mauthner cells. We find that Mauthner axon growth towards synaptic targets is vital for Mauthner survival. We also demonstrate that symmetric spiral fiber input to Mauthner cells is critical for escape direction, which is necessary to respond to directional threats. Moreover, we identify distinct roles for Celsr3 and Celsr2, as Celsr3 is required for startle circuit development while Celsr2 is dispensable, though Celsr2 can partially compensate for loss of Celsr3 in Mauthner cells. This contrasts with facial branchiomotor neuron migration in the hindbrain, which requires Celsr2 while we find that Celsr3 is dispensable. Combined, our data uncover critical and distinct roles for individual PCP components during assembly of the acoustic startle hindbrain circuit.
Collapse
Affiliation(s)
- Joy H Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria F Navarro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elelbin A Ortiz
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Gautam S, Fenner JL, Wang B, Range RC. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos. iScience 2024; 27:108616. [PMID: 38179064 PMCID: PMC10765061 DOI: 10.1016/j.isci.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Studies across a diverse group of metazoan embryos indicate that Wnt signaling often activates the transcription factor Sp5, forming a signaling 'cassette' that plays critical roles in many developmental processes. This study explores the role of Wnt/Sp5 signaling during the specification and patterning of the primary germ layers during early anterior-posterior axis formation in the deuterostome sea urchin embryo. Our functional analyses show that Sp5 is critical for endomesoderm specification downstream of Wnt/β-catenin in posterior cells as well as anterior neuroectoderm patterning downstream of non-canonical Wnt/JNK signaling in anterior cells. Interestingly, expression and functional data comparisons show that Wnt/Sp5 signaling often plays similar roles in posterior endomesoderm as well as neuroectoderm patterning along the AP axis of several deuterostome embryos, including vertebrates. Thus, our findings provide strong support for the idea that Wnt-Sp5 signaling cassettes were critical for the establishment of early germ layers in the common deuterostome ancestor.
Collapse
Affiliation(s)
- Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer L. Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Boyuan Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C. Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Baldera D, Baxendale S, van Hateren NJ, Marzo M, Glendenning E, Geng F, Yokoya K, Knight RD, Whitfield TT. Enhancer trap lines with GFP driven by smad6b and frizzled1 regulatory sequences for the study of epithelial morphogenesis in the developing zebrafish inner ear. J Anat 2023; 243:78-89. [PMID: 36748120 PMCID: PMC10273346 DOI: 10.1111/joa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Live imaging in the zebrafish embryo using tissue-specific expression of fluorescent proteins can yield important insights into the mechanisms that drive sensory organ morphogenesis and cell differentiation. Morphogenesis of the semicircular canal ducts of the vertebrate inner ear requires a complex rearrangement of epithelial cells, including outgrowth, adhesion, fusion and perforation of epithelial projections to generate pillars of tissue that form the hubs of each canal. We report the insertion sites and expression patterns of two enhancer trap lines in the developing zebrafish embryo, each of which highlight different aspects of epithelial cell morphogenesis in the inner ear. A membrane-linked EGFP driven by smad6b regulatory sequences is expressed throughout the otic epithelium, most strongly on the lateral side of the ear and in the sensory cristae. A second enhancer trap line, with cytoplasmic EGFP driven by frizzled1 (fzd1) regulatory sequences, specifically marks cells of the ventral projection and pillar in the developing ear, and marginal cells in the sensory cristae, together with variable expression in the retina and epiphysis, and neurons elsewhere in the developing central nervous system. We have used a combination of methods to identify the insertion sites of these two transgenes, which were generated through random insertion, and show that Targeted Locus Amplification is a rapid and reliable method for the identification of insertion sites of randomly inserted transgenes.
Collapse
Affiliation(s)
- Davide Baldera
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Present address:
CeSASt, University of CagliariCagliariItaly
| | | | | | - Mar Marzo
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Fan‐Suo Geng
- Brain and Mind Research Institute, University of SydneySydneyNew South WalesAustralia
- Present address:
Data Science Institute, The University of Technology SydneySydneyAustralia
| | - Kazutomo Yokoya
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | | |
Collapse
|
8
|
Sutton G, Kelsh RN, Scholpp S. Review: The Role of Wnt/β-Catenin Signalling in Neural Crest Development in Zebrafish. Front Cell Dev Biol 2021; 9:782445. [PMID: 34912811 PMCID: PMC8667473 DOI: 10.3389/fcell.2021.782445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field's potential future directions.
Collapse
Affiliation(s)
- Gemma Sutton
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Creighton JH, Jessen JR. Core pathway proteins and the molecular basis of planar polarity in the zebrafish gastrula. Semin Cell Dev Biol 2021; 125:17-25. [PMID: 34635444 DOI: 10.1016/j.semcdb.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
The planar polarization of cells and subcellular structures is critical for embryonic development. Coordination of this polarity can provide cells a sense of direction in relation to the anterior-posterior and dorsal-ventral body axes. Fly epithelia use a core pathway comprised of transmembrane (Van Gogh/Strabismus, Frizzled, and Flamingo/Starry night) and cytoplasmic (Prickle or Spiny-legs, Dishevelled, and Diego) proteins to communicate directional information between cells and thereby promote the uniform orientation of structures such as hairs. In the zebrafish gastrula, planar polarity underlies complex cellular processes, including directed migration and intercalation, that are required to shape the embryo body. Like other vertebrates, the zebrafish genome encodes homologs of each core protein, and it is well-established that polarized gastrula cell behaviors are regulated by some of them. However, it is unknown whether a conserved six-member core protein pathway regulates planar polarity during zebrafish gastrulation. Here, we review our current understanding of core protein function as it relates to two specific examples of planar polarity, the dorsal convergence of lateral gastrula cells and the mediolateral intercalation of midline cells. We consider the hallmarks of fly planar polarity and discuss data regarding asymmetric protein localization and function, and the intercellular communication of polarity information.
Collapse
Affiliation(s)
- Joy H Creighton
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
10
|
Sharma S, Kumar M, Kumar J, Srivastava N, Hussain MA, Shelly A, Mazumder S. M. fortuitum-induced CNS-pathology: Deciphering the role of canonical Wnt signaling, blood brain barrier components and cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104111. [PMID: 33933535 DOI: 10.1016/j.dci.2021.104111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Molecular underpinning of mycobacteria-induced CNS-pathology is not well understood. In the present study, zebrafish were infected with Mycobacterium fortuitum and the prognosis of CNS-pathogenesis studied. We observed M. fortuitum triggers extensive brain-pathology. Evans blue extravasation demonstrated compromised blood-brain barrier (BBB) integrity. Further, decreased expression in tight-junction (TJ) and adherens junction complex (AJC) genes were noted in infected brain. Wnt-signaling has emerged as a major player in host-mycobacterial immunity but its involvement/role in brain-infection is not well studied. Sustained expression of wnt2, wnt3a, fzd5, lrp5/6 and β-catenin, with concordant decline in degradation complex components axin, gsk3β and β-catenin regulator capn2a were observed. The surge in ifng1 and tnfa expression preceding il10 and il4 suggested cytokine-interplay critical in M. fortuitum-induced brain-pathology. Therefore, we suggest adult zebrafish as a viable model for studying CNS-pathology and using the same, conclude that M. fortuitum infection is associated with repressed TJ-AJC gene expression and compromised BBB permeability. Our results implicate Wnt/β-catenin pathway in M. fortuitum-induced CNS-pathology wherein Th1-type signals facilitate bacterial clearance and Th2-type signals prevent the disease sequel.
Collapse
Affiliation(s)
- Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Department of Zoology, School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, 174103, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, 110021, India.
| |
Collapse
|
11
|
Peron M, Dinarello A, Meneghetti G, Martorano L, Facchinello N, Vettori A, Licciardello G, Tiso N, Argenton F. The stem-like Stat3-responsive cells of zebrafish intestine are Wnt/β-catenin dependent. Development 2020; 147:dev.188987. [PMID: 32467235 PMCID: PMC7328161 DOI: 10.1242/dev.188987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
The transcription factor Stat3 is required for proliferation and pluripotency of embryonic stem cells; we have prepared and characterized fluorescent Stat3-reporter zebrafish based on repeats of minimal responsive elements. These transgenic lines mimic in vivo Stat3 expression patterns and are responsive to exogenous Stat3; notably, fluorescence is inhibited by both stat3 knockout and IL6/Jak/STAT inhibitors. At larval stages, Stat3 reporter activity correlates with proliferating regions of the brain, haematopoietic tissue and intestine. In the adult gut, the reporter is active in sparse proliferating cells, located at the base of intestinal folds, expressing the stemness marker sox9b and having the morphology of mammalian crypt base columnar cells; noteworthy, zebrafish stat3 mutants show defects in intestinal folding. Stat3 reporter activity in the gut is abolished with mutation of T cell factor 4 (Tcf7l2), the intestinal mediator of Wnt/β-catenin-dependent transcription. The Wnt/β-catenin dependence of Stat3 activity in the gut is confirmed by abrupt expansion of Stat3-positive cells in intestinal adenomas of apc heterozygotes. Our findings indicate that Jak/Stat3 signalling is needed for intestinal stem cell maintenance and possibly crucial in controlling Wnt/β-catenin-dependent colorectal cancer cell proliferation. Summary: Using a fluorescent reporter for Stat3 activity, we have identified the stem cells of zebrafish intestine and characterized their Wnt requirements and responsiveness.
Collapse
Affiliation(s)
- Margherita Peron
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Alberto Dinarello
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Giacomo Meneghetti
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Laura Martorano
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Nicola Facchinello
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Andrea Vettori
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Giorgio Licciardello
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Natascia Tiso
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| | - Francesco Argenton
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| |
Collapse
|
12
|
Alrefaei AF, Münsterberg AE, Wheeler GN. FZD10 regulates cell proliferation and mediates Wnt1 induced neurogenesis in the developing spinal cord. PLoS One 2020; 15:e0219721. [PMID: 32531778 PMCID: PMC7292682 DOI: 10.1371/journal.pone.0219721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Wnt/FZD signalling activity is required for spinal cord development, including the dorsal-ventral patterning of the neural tube, where it affects proliferation and specification of neurons. Wnt ligands initiate canonical, β -catenin-dependent, signaling by binding to Frizzled receptors. However, in many developmental contexts the cognate FZD receptor for a particular Wnt ligand remains to be identified. Here, we characterized FZD10 expression in the dorsal neural tube where it overlaps with both Wnt1 and Wnt3a, as well as markers of dorsal progenitors and interneurons. We show FZD10 expression is sensitive to Wnt1, but not Wnt3a expression, and FZD10 plays a role in neural tube patterning. Knockdown approaches show that Wnt1 induced ventral expansion of dorsal neural markes, Pax6 and Pax7, requires FZD10. In contrast, Wnt3a induced dorsalization of the neural tube is not affected by FZD10 knockdown. Gain of function experiments show that FZD10 is not sufficient on its own to mediate Wnt1 activity in vivo. Indeed excess FZD10 inhibits the dorsalizing activity of Wnt1. However, addition of the Lrp6 co-receptor dramatically enhances the Wnt1/FZD10 mediated activation of dorsal markers. This suggests that the mechanism by which Wnt1 regulates proliferation and patterning in the neural tube requires both FZD10 and Lrp6.
Collapse
Affiliation(s)
- Abdulmajeed Fahad Alrefaei
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, England, United Kingdom
| | - Andrea E. Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, England, United Kingdom
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, England, United Kingdom
| |
Collapse
|
13
|
Wnt-PLC-IP 3-Connexin-Ca 2+ axis maintains ependymal motile cilia in zebrafish spinal cord. Nat Commun 2020; 11:1860. [PMID: 32312952 PMCID: PMC7170879 DOI: 10.1038/s41467-020-15248-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Ependymal cells (ECs) are multiciliated neuroepithelial cells that line the ventricles of the brain and the central canal of the spinal cord (SC). How ependymal motile cilia are maintained remains largely unexplored. Here we show that zebrafish embryos deficient in Wnt signaling have defective motile cilia, yet harbor intact basal bodies. With respect to maintenance of ependymal motile cilia, plcδ3a is a target gene of Wnt signaling. Lack of Connexin43 (Cx43), especially its channel function, decreases motile cilia and intercellular Ca2+ wave (ICW) propagation. Genetic ablation of cx43 in zebrafish and mice diminished motile cilia. Finally, Cx43 is also expressed in ECs of the human SC. Taken together, our findings indicate that gap junction mediated ICWs play an important role in the maintenance of ependymal motile cilia, and suggest that the enhancement of functional gap junctions by pharmacological or genetic manipulations may be adopted to ameliorate motile ciliopathy. Ependymal cells are supporting cells in the central nervous system. Here the authors elucidate a signalling axis in zebrafish spinal cord ependymal cells that is important for motile cilia assembly and maintenance, demonstrating that it depends on intercellular propagation of calcium ions via connexin 43.
Collapse
|
14
|
Wu Y, Li W, Yuan M, Liu X. The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134870. [PMID: 31726413 DOI: 10.1016/j.scitotenv.2019.134870] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Deltamethrin (DM) is a widely used insecticide and reveals neural, cardiovascular and reproductive toxicity to various aquatic organisms. It has been known that DM negatively affects motion of zebrafish (Danio rerio). However, little is known in relation to the impacts of DM on development of swim bladder, which is a key organ for motion. In the present study, zebrafish embryos were exposed to 20 and 40 µg/L DM. The changes of swim bladder morphology were observed and transcription levels of key genes were compared between DM treatments and the control. The results showed that DM treatments significantly blocked the formation of progenitor and tissue layers in swim bladder of zebrafish embryos, leading to failed inflation of swim bladder. Compared with the control, the key genes (pbx1, foxA3, mnx1, has2, anxa5b, hprt1l and elovl1a) responsible for swim bladder development also showed decreased levels in response to DM treatments, suggesting that DM might specifically affect swim bladder development. Moreover, transcription levels of genes in the Wnt (wnt5b, tcf3a, wnt1, wnt9b, fzd1, fzd3 and fzd5) and Hedgehog (ihhb, ptc1 and ptc2) signaling pathways all decreased significantly in response to DM treatments, compared with the control. Considering the importance of Wnt and Hedgehog pathways in development of swim bladder, these results suggested that DM might affect swim bladder development through inhibiting the Wnt and Hedgehog pathways. Overall, the present study reported that swim bladder might be a potential target organ of DM toxicity in zebrafish, which contributed more information to the evaluation of DM's environmental risks.
Collapse
Affiliation(s)
- Yaqin Wu
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Wenhua Li
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Mingrui Yuan
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Xuan Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Provincial Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
15
|
Caceres L, Prykhozhij SV, Cairns E, Gjerde H, Duff NM, Collett K, Ngo M, Nasrallah GK, McMaster CR, Litvak M, Robitaille JM, Berman JN. Frizzled 4 regulates ventral blood vessel remodeling in the zebrafish retina. Dev Dyn 2019; 248:1243-1256. [PMID: 31566834 DOI: 10.1002/dvdy.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a rare congenital disorder characterized by a lack of blood vessel growth to the periphery of the retina with secondary fibrovascular proliferation at the vascular-avascular junction. These structurally abnormal vessels cause leakage and hemorrhage, while the fibroproliferative scarring results in retinal dragging, detachment and blindness. Mutations in the FZD4 gene represent one of the most common causes of FEVR. METHODS A loss of function mutation resulting from a 10-nucleotide insertion into exon 1 of the zebrafish fzd4 gene was generated using transcription activator-like effector nucleases (TALENs). Structural and functional integrity of the retinal vasculature was examined by fluorescent microscopy and optokinetic responses. RESULTS Zebrafish retinal vasculature is asymmetrically distributed along the dorsoventral axis, with active vascular remodeling on the ventral surface of the retina throughout development. fzd4 mutants exhibit disorganized ventral retinal vasculature with discernable tubular fusion by week 8 of development. Furthermore, fzd4 mutants have impaired optokinetic responses requiring increased illumination. CONCLUSION We have generated a visually impaired zebrafish FEVR model exhibiting abnormal retinal vasculature. These fish provide a tractable system for studying vascular biology in retinovascular disorders, and demonstrate the feasibility of using zebrafish for evaluating future FEVR genes identified in humans.
Collapse
Affiliation(s)
- Lucia Caceres
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth Cairns
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Harald Gjerde
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicole M Duff
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Keon Collett
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mike Ngo
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Matthew Litvak
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Johane M Robitaille
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nat Commun 2019; 10:3993. [PMID: 31488837 PMCID: PMC6728366 DOI: 10.1038/s41467-019-12005-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Planar cell polarity (PCP) plays crucial roles in developmental processes such as gastrulation, neural tube closure and hearing. Wnt pathway mutants are often classified as PCP mutants due to similarities between their phenotypes. Here, we show that in the zebrafish lateral line, disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in the PCP genes vangl2 and scrib cause random orientations of hair cells, mutations in wnt11f1, gpc4 and fzd7a/b induce hair cells to adopt a concentric pattern. This concentric pattern is not caused by defects in PCP but is due to misaligned support cells. The molecular basis of the support cell defect is unknown but we demonstrate that the PCP and Wnt pathways work in parallel to establish proper hair cell orientation. Consequently, hair cell orientation defects are not solely explained by defects in PCP signaling, and some hair cell phenotypes warrant re-evaluation. Planar cell polarity (PCP) regulates hair cell orientation in the zebrafish lateral line. Here, the authors show that mutating Wnt pathway genes (wnt11f1, fzd7a/b, and gpc4) causes concentric hair cell patterns not regulated by PCP, thus showing PCP/Wnt pathway genes have different consequences on hair cell orientation.
Collapse
|
17
|
Duncan JS, Fritzsch B, Houston DW, Ketchum EM, Kersigo J, Deans MR, Elliott KL. Topologically correct central projections of tetrapod inner ear afferents require Fzd3. Sci Rep 2019; 9:10298. [PMID: 31311957 PMCID: PMC6635624 DOI: 10.1038/s41598-019-46553-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022] Open
Abstract
Inner ear sensory afferent connections establish sensory maps between the inner ear hair cells and the vestibular and auditory nuclei to allow vestibular and sound information processing. While molecular guidance of sensory afferents to the periphery has been well studied, molecular guidance of central projections from the ear is only beginning to emerge. Disorganized central projections of spiral ganglion neurons in a Wnt/PCP pathway mutant, Prickle1, suggest the Wnt/PCP pathway plays a role in guiding cochlear afferents to the cochlear nuclei in the hindbrain, consistent with known expression of the Wnt receptor, Frizzled3 (Fzd3) in inner ear neurons. We therefore investigated the role of Wnt signaling in central pathfinding in Fzd3 mutant mice and Fzd3 morpholino treated frogs and found aberrant central projections of vestibular afferents in both cases. Ear transplantations from knockdown to control Xenopus showed that it is the Fzd3 expressed within the ear that mediates this guidance. Also, cochlear afferents of Fzd3 mutant mice lack the orderly topological organization observed in controls. Quantification of Fzd3 expression in spiral ganglion neurons show a gradient of expression with Fzd3 being higher in the apex than in the base. Together, these results suggest that a gradient of Fzd3 in inner ear afferents directs projections to the correct dorsoventral column within the hindbrain.
Collapse
Affiliation(s)
- Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Elizabeth M Ketchum
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | | | - Michael R Deans
- Department of Surgery, Division of Otolaryngology, and Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
18
|
Williams MLK, Sawada A, Budine T, Yin C, Gontarz P, Solnica-Krezel L. Gon4l regulates notochord boundary formation and cell polarity underlying axis extension by repressing adhesion genes. Nat Commun 2018; 9:1319. [PMID: 29615614 PMCID: PMC5882663 DOI: 10.1038/s41467-018-03715-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/06/2018] [Indexed: 01/15/2023] Open
Abstract
Anteroposterior (AP) axis extension during gastrulation requires embryonic patterning and morphogenesis to be spatiotemporally coordinated, but the underlying genetic mechanisms remain poorly understood. Here we define a role for the conserved chromatin factor Gon4l, encoded by ugly duckling (udu), in coordinating tissue patterning and axis extension during zebrafish gastrulation through direct positive and negative regulation of gene expression. Although identified as a recessive enhancer of impaired axis extension in planar cell polarity (PCP) mutants, udu functions in a genetically independent, partially overlapping fashion with PCP signaling to regulate mediolateral cell polarity underlying axis extension in part by promoting notochord boundary formation. Gon4l limits expression of the cell–cell and cell–matrix adhesion molecules EpCAM and Integrinα3b, excesses of which perturb the notochord boundary via tension-dependent and -independent mechanisms, respectively. By promoting formation of this AP-aligned boundary and associated cell polarity, Gon4l cooperates with PCP signaling to coordinate morphogenesis along the AP embryonic axis. Anteroposterior axis extension during gastrulation is dynamically coordinated, but how this is regulated at a molecular level is unclear. Here, the authors show in zebrafish that the chromatin factor Gon4l, encoded by ugly duckling, coordinates axis extension by modulating EpCAM and Integrinα3b expression.
Collapse
Affiliation(s)
- Margot L K Williams
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Atsushi Sawada
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Terin Budine
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Chunyue Yin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA. .,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
19
|
Xu J, Zhang R, Zhang T, Zhao G, Huang Y, Wang H, Liu JX. Copper impairs zebrafish swimbladder development by down-regulating Wnt signaling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:155-164. [PMID: 28957717 DOI: 10.1016/j.aquatox.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Copper nanoparticles (CuNPs) are used widely in different fields due to their attractive and effective abilities in inhibiting bacteria and fungi, but little information is available about their biological effects and potential molecular mechanisms on fish development. Here, CuNPs and copper (II) ions (Cu2+) were revealed to inhibit the specification and formation of three layers of zebrafish embryonic posterior swimbladder and impair its inflation in a stage-specific manner. CuNPs and Cu2+ were also revealed to down-regulate Wnt signaling in embryos. Furthermore, Wnt agonist 6-Bromoindirubin-3'-oxime (BIO) was found to neutralize the inhibiting effects of CuNPs or Cu2+ or both on zebrafish swimbladder development. The integrated data here provide the first evidence that both CuNPs and Cu2+ act on the specification and growth of the three layers of swimbladder and inhibit its inflation by down-regulating Wnt signaling in a stage-specific manner during embryogenesis.
Collapse
Affiliation(s)
- JiangPing Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - RuiTao Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Huang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - HuanLing Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
20
|
Vibert L, Aquino G, Gehring I, Subkankulova T, Schilling TF, Rocco A, Kelsh RN. An ongoing role for Wnt signaling in differentiating melanocytes in vivo. Pigment Cell Melanoma Res 2017; 30:219-232. [PMID: 27977907 PMCID: PMC5360516 DOI: 10.1111/pcmr.12568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 11/30/2016] [Indexed: 12/29/2022]
Abstract
A role for Wnt signaling in melanocyte specification from neural crest is conserved across vertebrates, but possible ongoing roles in melanocyte differentiation have received little attention. Using a systems biology approach to investigate the gene regulatory network underlying stable melanocyte differentiation in zebrafish highlighted a requirement for a positive-feedback loop involving the melanocyte master regulator Mitfa. Here, we test the hypothesis that Wnt signaling contributes to that positive feedback. We show firstly that Wnt signaling remains active in differentiating melanocytes and secondly that enhanced Wnt signaling drives elevated transcription of mitfa. We show that chemical activation of the Wnt signaling pathway at early stages of melanocyte development enhances melanocyte specification as expected, but importantly that at later (differentiation) stages, it results in altered melanocyte morphology, although melanisation is not obviously affected. Downregulation of Wnt signaling also results in altered melanocyte morphology and organization. We conclude that Wnt signaling plays a role in regulating ongoing aspects of melanocyte differentiation in zebrafish.
Collapse
Affiliation(s)
- Laura Vibert
- Developmental Biology ProgrammeDepartment of Biology and BiochemistryCentre for Regenerative MedicineUniversity of BathBathUK
| | - Gerardo Aquino
- Department of Microbial and Cellular SciencesFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Ines Gehring
- Developmental and Cell Biology School of Biological SciencesUniversity of California, IrvineCAUSA
| | - Tatiana Subkankulova
- Developmental Biology ProgrammeDepartment of Biology and BiochemistryCentre for Regenerative MedicineUniversity of BathBathUK
| | - Thomas F. Schilling
- Developmental and Cell Biology School of Biological SciencesUniversity of California, IrvineCAUSA
| | - Andrea Rocco
- Department of Microbial and Cellular SciencesFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Robert N. Kelsh
- Developmental Biology ProgrammeDepartment of Biology and BiochemistryCentre for Regenerative MedicineUniversity of BathBathUK
| |
Collapse
|
21
|
Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance. BMC Neurosci 2016; 17:83. [PMID: 27955617 PMCID: PMC5154073 DOI: 10.1186/s12868-016-0318-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A fundamental feature of early nervous system development is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. Spinal commissural neurons are an attractive model to investigate the multiple guidance cues that control growth cone navigation both pre- and post-midline crossing, as well as along both the dorsal-ventral (D-V) and anterior-posterior (A-P) axes. Accumulating evidence suggests that guidance of spinal commissural axons along the A-P axis is dependent on components of the planar cell polarity (PCP) signaling pathway. In the zebrafish, the earliest born spinal commissural neuron to navigate the midline and turn rostrally is termed commissural primary ascending (CoPA). Unlike mammalian systems, CoPA axons cross the midline as a single axon and allow an analysis of the role of PCP components in anterior pathfinding in single pioneering axons. RESULTS Here, we establish CoPA cells in the zebrafish spinal cord as a model system for investigating the molecular function of planar cell polarity signaling in axon guidance. Using mutant analysis, we show that the functions of Fzd3a and Vangl2 in the anterior turning of commissural axons are evolutionarily conserved in teleosts. We extend our findings to reveal a role for the PCP gene scribble in the anterior guidance of CoPA axons. Analysis of single CoPA axons reveals that these commissural axons become responsive to PCP-dependent anterior guidance cues even prior to midline crossing. When midline crossing is prevented by dcc gene knockdown, ipsilateral CoPA axons still extend axons anteriorly in response to A-P guidance cues. We show that this ipsilateral anterior pathfinding that occurs in the absence of midline crossing is dependent on PCP signaling. CONCLUSION Our results demonstrate that anterior guidance decisions by CoPA axons are dependent on the function of planar cell polarity genes both prior to and after midline crossing.
Collapse
|
22
|
Hu Y, Xie S, Yao J. Identification of Novel Reference Genes Suitable for qRT-PCR Normalization with Respect to the Zebrafish Developmental Stage. PLoS One 2016; 11:e0149277. [PMID: 26891128 PMCID: PMC4758726 DOI: 10.1371/journal.pone.0149277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuying Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jihua Yao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
David AP, Margarit E, Domizi P, Banchio C, Armas P, Calcaterra NB. G-quadruplexes as novel cis-elements controlling transcription during embryonic development. Nucleic Acids Res 2016; 44:4163-73. [PMID: 26773060 PMCID: PMC4872077 DOI: 10.1093/nar/gkw011] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/05/2016] [Indexed: 01/06/2023] Open
Abstract
G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology.
Collapse
Affiliation(s)
- Aldana P David
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, (S2000EZP) Rosario, Argentina
| | - Ezequiel Margarit
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, (S2000EZP) Rosario, Argentina
| | - Pablo Domizi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, (S2000EZP) Rosario, Argentina
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, (S2000EZP) Rosario, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, (S2000EZP) Rosario, Argentina
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, (S2000EZP) Rosario, Argentina
| |
Collapse
|
24
|
Nagendran M, Arora P, Gori P, Mulay A, Ray S, Jacob T, Sonawane M. Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages. Development 2014; 142:320-30. [PMID: 25519245 PMCID: PMC4302845 DOI: 10.1242/dev.118703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The patterning and morphogenesis of body appendages – such as limbs and fins – is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage – the median fin in zebrafish – as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins – evolutionarily recent appendages that are homologous to tetrapod limbs. Highlighted article: In the zebrafish fin, a Wnt gradient dictates the expression of laminin α5, which signals via integrin α3 to control epithelial cell morphology.
Collapse
Affiliation(s)
- Monica Nagendran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Prateek Arora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Payal Gori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Aditya Mulay
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Shinjini Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Tressa Jacob
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
25
|
Song B, Zhang Q, Zhang Z, Wan Y, Jia Q, Wang X, Zhu X, Leung AYH, Cheng T, Fang X, Yuan W, Jia H. Systematic transcriptome analysis of the zebrafish model of diamond-blackfan anemia induced by RPS24 deficiency. BMC Genomics 2014; 15:759. [PMID: 25189322 PMCID: PMC4169864 DOI: 10.1186/1471-2164-15-759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diamond-Blackfan anemia (DBA) is a class of human diseases linked to defective ribosome biogenesis that results in clinical phenotypes. Genetic mutations in ribosome protein (RP) genes lead to DBA phenotypes, including hematopoietic defects and physical deformities. However, little is known about the global regulatory network as well as key miRNAs and gene pathways in the zebrafish model of DBA. RESULTS In this study, we establish the DBA model in zebrafish using an RPS24 morpholino and found that RPS24 is required for both primitive hematopoiesis and definitive hematopoiesis processes that are partially mediated by the p53 pathway. Several deregulated genes and miRNAs were found to be related to hematopoiesis, vascular development and apoptosis in RPS24-deficient zebrafish via RNA-seq and miRNA-seq data analysis, and a comprehensive regulatory network was first constructed to identify the mechanisms of key miRNAs and gene pathways in the model. Interestingly, we found that the central node genes in the network were almost all targeted by significantly deregulated miRNAs. Furthermore, the enforced expression of miR-142-3p, a uniquely expressed miRNA, causes a significant decrease in primitive erythrocyte progenitor cells and HSCs. CONCLUSIONS The present analyses demonstrate that the comprehensive regulatory network we constructed is useful for the functional prediction of new and important miRNAs in DBA and will provide insights into the pathogenesis of mutant rps24-mediated human DBA disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangdong Fang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | | | | |
Collapse
|
26
|
Alexander C, Piloto S, Le Pabic P, Schilling TF. Wnt signaling interacts with bmp and edn1 to regulate dorsal-ventral patterning and growth of the craniofacial skeleton. PLoS Genet 2014; 10:e1004479. [PMID: 25058015 PMCID: PMC4109847 DOI: 10.1371/journal.pgen.1004479] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/16/2014] [Indexed: 11/25/2022] Open
Abstract
Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC) cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D) and ventral (V) elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3), (Tg(hsp70I:tcf3-GFP), or the canonical Wnt inhibitor dickkopf1 (dkk1), (Tg(hsp70i:dkk1-GFP) after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe), and ventral cartilage differentiation (e.g. lower jaws). These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1) protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton. Craniofacial abnormalities are among the most common birth defects. Understanding the molecular mechanisms underlying craniofacial disorders is crucial for developing treatment strategies. Much of the craniofacial skeleton arises from specialized embryonic structures known as pharyngeal arches. Patterning of these arches requires precise spatial and temporal expression of multiple genes, which is coordinated between tissues by secreted signals. Wnts are secreted ligands expressed throughout the pharyngeal arches yet their role in craniofacial patterning remains unclear. In this study we examine the role of Wnts in craniofacial patterning using transgenic zebrafish to inhibit downstream Wnt signaling. We show that Wnt signaling deficient embryos have lower jaw specific defects, which strongly resembles loss-of-function phenotypes in both the Bmp and Edn1 signaling pathways. Through rescue experiments we find that Wnts are upstream regulators of both Bmp and Edn1 signaling. We thus have uncovered a crucial requirement for Wnt signaling in craniofacial patterning.
Collapse
Affiliation(s)
- Courtney Alexander
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Sarah Piloto
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Pierre Le Pabic
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Range R. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis 2014; 52:222-34. [PMID: 24549984 DOI: 10.1002/dvg.22759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 02/01/2023]
Abstract
The molecular mechanisms used by deuterostome embryos (vertebrates, urochordates, cephalochordates, hemichordates, and echinoderms) to specify and then position the anterior neuroectoderm (ANE) along the anterior-posterior axis are incompletely understood. Studies in several deuterostome embryos suggest that the ANE is initially specified by an early, broad regulatory state. Then, a posterior-to-anterior wave of respecification restricts this broad ANE potential to the anterior pole. In vertebrates, sea urchins and hemichordates a posterior-anterior gradient of Wnt/β-catenin signaling plays an essential and conserved role in this process. Recent data collected from the basal deuterostome sea urchin embryo suggests that positioning the ANE to the anterior pole involves more than the Wnt/β-catenin pathway, instead relying on the integration of information from the Wnt/β-catenin, Wnt/JNK, and Wnt/PKC pathways. Moreover, comparison of functional and expression data from the ambulacrarians, invertebrate chordates, and vertebrates strongly suggests that this Wnt network might be an ANE positioning mechanism shared by all deuterostomes.
Collapse
Affiliation(s)
- Ryan Range
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
28
|
Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis. Gene Expr Patterns 2013; 13:445-53. [DOI: 10.1016/j.gep.2013.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/09/2013] [Accepted: 08/28/2013] [Indexed: 01/02/2023]
|