1
|
DHCR24, a Key Enzyme of Cholesterol Synthesis, Serves as a Marker Gene of the Mouse Adrenal Gland Inner Cortex. Int J Mol Sci 2023; 24:ijms24020933. [PMID: 36674444 PMCID: PMC9867314 DOI: 10.3390/ijms24020933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Steroid hormones are synthesized through enzymatic reactions using cholesterol as the substrate. In steroidogenic cells, the required cholesterol for steroidogenesis can be obtained from blood circulation or synthesized de novo from acetate. One of the key enzymes that control cholesterol synthesis is 24-dehydrocholesterol reductase (encoded by DHCR24). In humans and rats, DHCR24 is highly expressed in the adrenal gland, especially in the zona fasciculata. We recently reported that DHCR24 was expressed in the mouse adrenal gland's inner cortex and also found that thyroid hormone treatment significantly upregulated the expression of Dhcr24 in the mouse adrenal gland. In the present study, we showed the cellular expression of DHCR24 in mouse adrenal glands in early postnatal stages. We found that the expression pattern of DHCR24 was similar to the X-zone marker gene 20αHSD in most developmental stages. This finding indicates that most steroidogenic adrenocortical cells in the mouse adrenal gland do not synthesize cholesterol locally. Unlike the 20αHSD-positive X-zone regresses during pregnancy, some DHCR24-positive cells remain present in parous females. Conditional knockout mice showed that the removal of Dhcr24 in steroidogenic cells did not affect the overall development of the adrenal gland or the secretion of corticosterone under acute stress. Whether DHCR24 plays a role in conditions where a continuous high amount of corticosterone production is needed requires further investigation.
Collapse
|
2
|
Otero-Rodiño C, Rocha A, Álvarez-Otero R, Ceinos RM, López-Patiño MA, Míguez JM, Cerdá-Reverter JM, Soengas JL. Glucosensing capacity of rainbow trout telencephalon. J Neuroendocrinol 2018; 30:e12583. [PMID: 29427522 DOI: 10.1111/jne.12583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/28/2022]
Abstract
To assess the hypothesis of glucosensing systems present in fish telencephalon, we first demonstrated in rainbow trout, by in situ hybridisation, the presence of glucokinase (GK). Then, we assessed the response of glucosensing markers in rainbow trout telencephalon 6 hours after i.c.v. treatment with glucose or 2-deoxyglucose (inducing glucoprivation). We evaluated the response of parameters related to the mechanisms dependent on GK, liver X receptor (LXR), mitochondrial activity, sweet taste receptor and sodium-glucose linked transporter 1 (SGLT-1). We also assessed mRNA abundance of neuropeptides involved in the metabolic control of food intake (agouti-related protein, neuropeptide Y, pro-opiomelanocortin, and cocaine- and amphetamine-related transcript), as well as the abundance and phosphorylation status of proteins possibly involved in linking glucosensing with neuropeptide expression, such as protein kinase B (AkT), AMP-activated protein kinase (AMPK), mechanistic target of rapamycin and cAMP response element-binding protein (CREB). The responses obtained support the presence in the telencephalon of a glucosensing mechanism based on GK and maybe one based on LXR, although they do not support the presence of mechanisms dependent on mitochondrial activity and SGLT-1. The mechanism based on sweet taste receptor responded to glucose but in a converse way to that characterised previously in the hypothalamus. In general, systems responded only to glucose but not to glucoprivation. Neuropeptides did not respond to glucose or glucoprivation. By contrast, the presence of glucose activates Akt and inhibits AMPK, CREB and forkhead box01. This is the first study in any vertebrate species in which the response to glucose of putative glucosensing mechanisms is demonstrated in the telencephalon. Their role might relate to processes other than homeostatic control of food intake, such as the hedonic and reward system.
Collapse
Affiliation(s)
- C Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - A Rocha
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - R Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - R M Ceinos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - M A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - J M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - J M Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - J L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
3
|
Regulation of type 1 iodothyronine deiodinase by LXRα. PLoS One 2017; 12:e0179213. [PMID: 28617824 PMCID: PMC5472309 DOI: 10.1371/journal.pone.0179213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/25/2017] [Indexed: 11/24/2022] Open
Abstract
The iodothyronine deiodinases are selenoenzymes that regulate the activity of thyroid hormone via specific inner- or outer-ring deiodination. In humans, type 1 deiodinase (D1) is highly expressed in the liver, but the mechanism by which its gene expression is regulated remains to be elucidated. Liver X receptor α (LXRα), a transcription factor of the nuclear receptor superfamily, is highly expressed in the liver, where it functions as a sensor for excess intracellular oxysterols. LXRα interacts with other nuclear receptors on promoters of genes that contain a binding core sequence for nuclear receptors. In addition, it is reported that the promoter of the gene encoding human D1 (hDIO1) contains the core sequence for one of nuclear receptors, thyroid hormone receptor (TR). We investigated the involvement of LXRα in the regulation of hDIO1, in the liver. We performed hDIO1 promoter–reporter assays using a synthetic LXR agonist, T0901317, and compared promoter activity between a human liver carcinoma cell line, HepG2, and a clone of human embryonic kidney cells, TSA201. We defined the region between nucleotides −131 and −114, especially nucleotides −126 and −125, of the hDIO1 promoter as critical for basal and LXRα-mediated specific transcriptional activation in HepG2 cells. An increase in hDIO1 expression was observed in LXRα-stimulated cells, but absent in cycloheximide-treated cells, indicating that new protein synthesis is required for LXRα-mediated regulation of hDIO1. On the other hand, electrophoretic mobility shift assays revealed that LXRα and RXRα bound to the hDIO1 promoter. We also demonstrated that LXRα and TRβ compete with each other on this specific region of the promoter. In conclusion, our results indicated that LXRα plays a specific and important role in activation of TH by regulating D1, and that LXRα binds to and regulates the hDIO1 promoter, competing with TRβ on specific sequences within the promoter.
Collapse
|
4
|
Ghaddab-Zroud R, Seugnet I, Steffensen KR, Demeneix BA, Clerget-Froidevaux MS. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status. PLoS One 2014; 9:e106983. [PMID: 25229406 PMCID: PMC4167690 DOI: 10.1371/journal.pone.0106983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/12/2014] [Indexed: 12/03/2022] Open
Abstract
Reversing the escalating rate of obesity requires increased knowledge of the molecular mechanisms controlling energy balance. Liver X receptors (LXRs) and thyroid hormone receptors (TRs) are key physiological regulators of energetic metabolism. Analysing interactions between these receptors in the periphery has led to a better understanding of the mechanisms involved in metabolic diseases. However, no data is available on such interactions in the brain. We tested the hypothesis that hypothalamic LXR/TR interactions could co-regulate signalling pathways involved in the central regulation of metabolism. Using in vivo gene transfer we show that LXR activation by its synthetic agonist GW3965 represses the transcriptional activity of two key metabolic genes, Thyrotropin-releasing hormone (Trh) and Melanocortin receptor type 4 (Mc4r) in the hypothalamus of euthyroid mice. Interestingly, this repression did not occur in hypothyroid mice but was restored in the case of Trh by thyroid hormone (TH) treatment, highlighting the role of the triiodothyronine (T3) and TRs in this dialogue. Using shLXR to knock-down LXRs in vivo in euthyroid newborn mice, not only abrogated Trh repression but actually increased Trh transcription, revealing a potential inhibitory effect of LXR on the Hypothalamic-Pituitary-Thyroid axis. In vivo chromatin immunoprecipitation (ChIP) revealed LXR to be present on the Trh promoter region in the presence of T3 and that Retinoid X Receptor (RXR), a heterodimerization partner for both TR and LXR, was never recruited simultaneously with LXR. Interactions between the TR and LXR pathways were confirmed by qPCR experiments. T3 treatment of newborn mice induced hypothalamic expression of certain key LXR target genes implicated in metabolism and inflammation. Taken together the results indicate that the crosstalk between LXR and TR signalling in the hypothalamus centres on metabolic and inflammatory pathways.
Collapse
Affiliation(s)
- Rym Ghaddab-Zroud
- CNRS UMR 7221-USM 501 « Evolution of Endocrine Regulations », « Regulations, Development and Molecular Diversity » department, Muséum National d’Histoire Naturelle, CP32, Paris, France
| | - Isabelle Seugnet
- CNRS UMR 7221-USM 501 « Evolution of Endocrine Regulations », « Regulations, Development and Molecular Diversity » department, Muséum National d’Histoire Naturelle, CP32, Paris, France
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Barbara A. Demeneix
- CNRS UMR 7221-USM 501 « Evolution of Endocrine Regulations », « Regulations, Development and Molecular Diversity » department, Muséum National d’Histoire Naturelle, CP32, Paris, France
| | - Marie-Stéphanie Clerget-Froidevaux
- CNRS UMR 7221-USM 501 « Evolution of Endocrine Regulations », « Regulations, Development and Molecular Diversity » department, Muséum National d’Histoire Naturelle, CP32, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Parikh M, Patel K, Soni S, Gandhi T. Liver X Receptor: A Cardinal Target for Atherosclerosis and Beyond. J Atheroscler Thromb 2014. [DOI: 10.5551/jat.19778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
6
|
Villanueva I, Alva-Sánchez C, Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:218145. [PMID: 24386502 PMCID: PMC3872098 DOI: 10.1155/2013/218145] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- I. Villanueva
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - C. Alva-Sánchez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - J. Pacheco-Rosado
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| |
Collapse
|
7
|
Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 2013; 52:666-80. [PMID: 24095826 DOI: 10.1016/j.plipres.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.
Collapse
|
8
|
Ishida E, Hashimoto K, Okada S, Satoh T, Yamada M, Mori M. Thyroid hormone receptor and liver X receptor competitively up-regulate human selective Alzheimer’s disease indicator-1 gene expression at the transcriptional levels. Biochem Biophys Res Commun 2013; 432:513-8. [DOI: 10.1016/j.bbrc.2013.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|