1
|
Batdorf HM, Lawes LDL, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Noland RC, Burke SJ, Collier JJ. NOD mice have distinct metabolic and immunologic profiles when compared with genetically similar MHC-matched ICR mice. Am J Physiol Endocrinol Metab 2023; 325:E336-E345. [PMID: 37610410 PMCID: PMC10642984 DOI: 10.1152/ajpendo.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.
Collapse
Affiliation(s)
- Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Luz de Luna Lawes
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jeremy T Richardson
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - David H Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
2
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Pan X, Kaminga AC, Kinra S, Wen SW, Liu H, Tan X, Liu A. Chemokines in Type 1 Diabetes Mellitus. Front Immunol 2022; 12:690082. [PMID: 35242125 PMCID: PMC8886728 DOI: 10.3389/fimmu.2021.690082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies suggested that chemokines may play an important role in the formation and mediation of immune microenvironments of patients affected by Type 1 Diabetes Mellitus (T1DM). The aim of this study was to summarise available evidence on the associations of different chemokines with T1DM. METHODS Following PRISMA guidelines, we systematically searched in PubMed, Web of Science, Embase and Cochrane Library databases for studies on the associations of different chemokines with T1DM. The effect size of the associations were the standardized mean differences (SMDs) with corresponding 95% confidence intervals (CIs) of the chemokines concentrations, calculated as group differences between the T1DM patients and the controls. These were summarized using network meta-analysis, which was also used to rank the chemokines by surface under cumulative ranking curve (SUCRA) probabilities. RESULTS A total of 32 original studies on the association of different chemokines with T1DM were identified. Fifteen different chemokine nodes were compared between 15,683 T1DM patients and 15,128 controls, and 6 different chemokine receptor nodes were compared between 463 T1DM patients and 460 controls. Circulating samples (blood, serum, and plasma) showed that concentrations of CCL5 and CXCL1 were significantly higher in the T1DM patients than in the controls (SMD of 3.13 and 1.50, respectively). On the other hand, no significant difference in chemokine receptors between T1DM and controls was observed. SUCRA probabilities showed that circulating CCL5 had the highest rank in T1DM among all the chemokines investigated. CONCLUSION The results suggest that circulating CCL5 and CXCL1 may be promising novel biomarkers of T1DM. Future research should attempt to replicate these findings in longitudinal studies and explore potential mechanisms underlying this association.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C. Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Sanjay Kinra
- Departmentof Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shi Wu Wen
- Ottawa Hospital Research Institute (OMNI) Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynaecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Hongying Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinrui Tan
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Badal D, Dayal D, Singh G, Sachdeva N. Role of DNA-LL37 complexes in the activation of plasmacytoid dendritic cells and monocytes in subjects with type 1 diabetes. Sci Rep 2020; 10:8896. [PMID: 32483133 PMCID: PMC7264208 DOI: 10.1038/s41598-020-65851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
Initiation of type 1 diabetes (T1D) is marked by the infiltration of plasmacytoid dendritic cells (pDCs) and monocytes in pancreatic islets. Dying beta cells release self-DNA, which forms complexes with antimicrobial peptide, LL37, and its delayed clearance can activate pDCs and monocytes. Here, we studied the phenotypic effects of DNA-LL37 complexes on pDCs and monocytes in 55 recently diagnosed T1D and 25 healthy control (HC) subjects. Following in vitro stimulation with DNA-LL37 complexes, T1D group demonstrated higher frequency and mean fluorescence intensity (MFI) of pDCs expressing IFN-α. Similarly, the monocytes in T1D group showed an increase in MFI of IFN-α. Post-stimulation, an increase in the antigen presentation and co-stimulatory ability of pDCs and monocytes was observed in T1D group, as indicated by higher expression of HLA-DR, CD80 and CD86. Upon co-culture, the stimulated monocytes and pDCs, particularly in the T1D group were able to further activate autologous CD4 + T cells, with increase in expression of CD69 and CD71. Finally, in a transwell assay, the stimulated pDCs and monocytes induced an increase in apoptosis of 1.1B4 beta cells. Additionally, we observed reduced expression of indoleamine 2,3-dioxygenase 1 (IDO1) in pDCs and monocytes of T1D subjects. Our results suggest that DNA-LL37 complexes activate pDCs and monocytes towards a proinflammatory phenotype during pathogenesis of T1D.
Collapse
Affiliation(s)
- Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Gunjan Singh
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
5
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
6
|
Mbongue JC, Nieves HA, Torrez TW, Langridge WHR. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. Front Immunol 2017; 8:327. [PMID: 28396662 PMCID: PMC5366789 DOI: 10.3389/fimmu.2017.00327] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/07/2017] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the dominant class of antigen-presenting cells in humans and are largely responsible for the initiation and guidance of innate and adaptive immune responses involved in maintenance of immunological homeostasis. Immature dendritic cells (iDCs) phagocytize pathogens and toxic proteins and in endosomal vesicles degrade them into small fragments for presentation on major histocompatibility complex (MHC) II receptor molecules to naïve cognate T cells (Th0). In addition to their role in stimulation of immunity, DCs are involved in the induction and maintenance of immune tolerance toward self-antigens. During activation, the iDCs become mature. Maturation begins when the DCs cease taking up antigens and begin to migrate from their location in peripheral tissues to adjacent lymph nodes or the spleen where during their continued maturation the DCs present stored antigens on surface MHCII receptor molecules to naive Th0 cells. During antigen presentation, the DCs upregulate the biosynthesis of costimulatory receptor molecules CD86, CD80, CD83, and CD40 on their plasma membrane. These activated DC receptor molecules bind cognate CD28 receptors presented on the Th0 cell membrane, which triggers DC secretion of IL-12 or IL-10 cytokines resulting in T cell differentiation into pro- or anti-inflammatory T cell subsets. Although basic concepts involved in the process of iDC activation and guidance of Th0 cell differentiation have been previously documented, they are poorly defined. In this review, we detail what is known about the process of DC maturation and its role in the induction of insulin-dependent diabetes mellitus autoimmunity.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University , Loma Linda, CA , USA
| | - Hector A Nieves
- Ponce Health Sciences University School of Medicine , Ponce , Puerto Rico
| | - Timothy W Torrez
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University , Loma Linda, CA , USA
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University , Loma Linda, CA , USA
| |
Collapse
|
7
|
Hansen L, Schmidt-Christensen A, Gupta S, Fransén-Pettersson N, Hannibal TD, Reizis B, Santamaria P, Holmberg D. E2-2 Dependent Plasmacytoid Dendritic Cells Control Autoimmune Diabetes. PLoS One 2015; 10:e0144090. [PMID: 26624013 PMCID: PMC4666626 DOI: 10.1371/journal.pone.0144090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diabetes is a consequence of immune-cell infiltration and destruction of pancreatic β-cells in the islets of Langerhans. We analyzed the cellular composition of the insulitic lesions in the autoimmune-prone non-obese diabetic (NOD) mouse and observed a peak in recruitment of plasmacytoid dendritic cells (pDCs) to NOD islets around 8–9 weeks of age. This peak coincides with increased spontaneous expression of type-1-IFN response genes and CpG1585 induced production of IFN-α from NOD islets. The transcription factor E2-2 is specifically required for the maturation of pDCs, and we show that knocking out E2-2 conditionally in CD11c+ cells leads to a reduced recruitment of pDCs to pancreatic islets and reduced CpG1585 induced production of IFN-α during insulitis. As a consequence, insulitis has a less aggressive expression profile of the Th1 cytokine IFN-γ and a markedly reduced diabetes incidence. Collectively, these observations demonstrate a disease-promoting role of E2-2 dependent pDCs in the pancreas during autoimmune diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Lisbeth Hansen
- Department of Immunology and Microbiology, University of Copenhagen, Copehagen, Denmark
- Department of Experimental Medical Science, Section of Immunology, Lund University, Lund, Sweden
| | - Anja Schmidt-Christensen
- Department of Experimental Medical Science, Section of Immunology, Lund University, Lund, Sweden
| | - Shashank Gupta
- Department of Immunology and Microbiology, University of Copenhagen, Copehagen, Denmark
- Department of Experimental Medical Science, Section of Immunology, Lund University, Lund, Sweden
| | - Nina Fransén-Pettersson
- Department of Immunology and Microbiology, University of Copenhagen, Copehagen, Denmark
- Department of Experimental Medical Science, Section of Immunology, Lund University, Lund, Sweden
| | - Tine D. Hannibal
- Department of Immunology and Microbiology, University of Copenhagen, Copehagen, Denmark
- Department of Experimental Medical Science, Section of Immunology, Lund University, Lund, Sweden
| | - Boris Reizis
- Department of Microbiology and Immunology, Columbia Medical Center, Columbia University, New York, NY, United States of America
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, AB T2N 1N4, Canada
- Institut D’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Dan Holmberg
- Department of Immunology and Microbiology, University of Copenhagen, Copehagen, Denmark
- Department of Experimental Medical Science, Section of Immunology, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
8
|
Marroqui L, Dos Santos RS, Fløyel T, Grieco FA, Santin I, Op de Beeck A, Marselli L, Marchetti P, Pociot F, Eizirik DL. TYK2, a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells. Diabetes 2015; 64:3808-17. [PMID: 26239055 DOI: 10.2337/db15-0362] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cells are destroyed by an autoimmune attack in type 1 diabetes. Linkage and genome-wide association studies point to >50 loci that are associated with the disease in the human genome. Pathway analysis of candidate genes expressed in human islets identified a central role for interferon (IFN)-regulated pathways and tyrosine kinase 2 (TYK2). Polymorphisms in the TYK2 gene predicted to decrease function are associated with a decreased risk of developing type 1 diabetes. We presently evaluated whether TYK2 plays a role in human pancreatic β-cell apoptosis and production of proinflammatory mediators. TYK2-silenced human β-cells exposed to polyinosinic-polycitidilic acid (PIC) (a mimick of double-stranded RNA produced during viral infection) showed less type I IFN pathway activation and lower production of IFNα and CXCL10. These cells also had decreased expression of major histocompatibility complex (MHC) class I proteins, a hallmark of early β-cell inflammation in type 1 diabetes. Importantly, TYK2 inhibition prevented PIC-induced β-cell apoptosis via the mitochondrial pathway of cell death. The present findings suggest that TYK2 regulates apoptotic and proinflammatory pathways in pancreatic β-cells via modulation of IFNα signaling, subsequent increase in MHC class I protein, and modulation of chemokines such as CXCL10 that are important for recruitment of T cells to the islets.
Collapse
Affiliation(s)
- Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Tina Fløyel
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium Endocrinology and Diabetes Research Group, BioCruces Health Research Institute and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barakaldo, Spain
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, Pisa, Italy
| | - Flemming Pociot
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Dong MB, Rahman MJ, Tarbell KV. Flow cytometric gating for spleen monocyte and DC subsets: differences in autoimmune NOD mice and with acute inflammation. J Immunol Methods 2015; 432:4-12. [PMID: 26344574 DOI: 10.1016/j.jim.2015.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 01/10/2023]
Abstract
The role of antigen presenting cells (APCs) in the pathogenesis of autoimmune and other inflammatory diseases is now better understood due to advances in multicolor flow cytometry, gene expression analysis of APC populations, and functional correlation of mouse to human APC populations. A simple but informative nomenclature of conventional and plasmacytoid dendritic cell subsets (cDC1, cDC2, pDC) and monocyte-derived populations incorporates these advances, but accurate subset identification is critical. Ambiguous gating schemes and alterations of cell surface markers in inflammatory condition can make comparing results between studies difficult. Both acute inflammation, such as TLR-ligand stimulation, and chronic inflammation as found in mouse models of autoimmunity can alter DC subset gating. Here, we address these issues using in vivo CpG stimulation as an example of acute inflammation and the non-obese diabetic (NOD) mouse as a model of chronic inflammation.We provide a flow cytometric antibody panel and gating scheme that differentiate 2 monocytic and 3DC subsets in the spleen both at steady state and after CpG stimulation. Using this method, we observed differences in the composition of NOD DCs that have been previously reported, and newly identified increases in the number of NOD monocyte-derived DCs. Finally, we established a protocol for DC phosphoflow to measure the phosphorylation state of intracellular proteins, and use it to confirm functional differences in the identified subsets. Therefore, we present optimized methods for distinguishing monocytic and DC populations with and without inflammation and/or autoimmunity associated with NOD mice.
Collapse
Affiliation(s)
- Matthew B Dong
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Price JD, Tarbell KV. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases. Front Immunol 2015; 6:288. [PMID: 26124756 PMCID: PMC4466467 DOI: 10.3389/fimmu.2015.00288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Price
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Kristin V Tarbell
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
11
|
Pane JA, Coulson BS. Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia 2015; 58:1149-59. [PMID: 25794781 DOI: 10.1007/s00125-015-3562-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/04/2015] [Indexed: 02/07/2023]
Abstract
Viruses are considered to be potential key modulators of type 1 diabetes mellitus, with several possible mechanisms proposed for their modes of action. Here we discuss the evidence for virus involvement, including pancreatic infection and the induction of T cell-mediated molecular mimicry. A particular focus of this review is the further possibility that virus infection triggers bystander activation of pre-existing autoreactive lymphocytes. In this scenario, the virus triggers dendritic cell maturation and proinflammatory cytokine secretion by engaging pattern recognition receptors. These proinflammatory cytokines provoke bystander autoreactive lymphocyte activation in the presence of cognate autoantigen, which leads to enhanced beta cell destruction. Importantly, this mechanism does not necessarily involve pancreatic virus infection, and its virally non-specific nature suggests that it might represent a means commonly employed by multiple viruses. The ability of viruses specifically associated with type 1 diabetes, including group B coxsackievirus, rotavirus and influenza A virus, to induce these responses is also examined. The elucidation of a mechanism shared amongst several viruses for accelerating progression to type 1 diabetes would facilitate the identification of important targets for disease intervention.
Collapse
Affiliation(s)
- Jessica A Pane
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia
| | | |
Collapse
|
12
|
The role of dendritic cells in tissue-specific autoimmunity. J Immunol Res 2014; 2014:857143. [PMID: 24877157 PMCID: PMC4022068 DOI: 10.1155/2014/857143] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 01/24/2023] Open
Abstract
In this review, we explore the role of dendritic cell subsets in the development of tissue-specific autoimmune diseases. From the increasing list of dendritic cell subclasses, it is becoming clear that we are only at the beginning of understanding the role of these antigen presenting cells in mediating autoimmunity. Emerging research areas for the study of dendritic cell involvement in the onset and inhibition of tissue-specific autoimmunity are presented. Further, we compare tissue specific to systemic autoimmunity to demonstrate how development of dendritic cell-based therapies may be broadly applicable to both classes of autoimmunity. Continued development of these research areas will lead us closer to clinical assessment of novel immunosuppressive therapy for the reversal and prevention of tissue-specific autoimmunity. Through description of dendritic cell functions in the modulation of tissue-specific autoimmunity, we hope to stimulate a greater appreciation and understanding of the role dendritic cells play in the development and treatment of autoimmunity.
Collapse
|
13
|
Antonelli A, Ferrari SM, Corrado A, Ferrannini E, Fallahi P. CXCR3, CXCL10 and type 1 diabetes. Cytokine Growth Factor Rev 2014; 25:57-65. [PMID: 24529741 DOI: 10.1016/j.cytogfr.2014.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes (T1D) is due to antigen-specific assaults on the insulin producing pancreatic β-cells by diabetogenic T-helper (Th)1 cells. (C-X-C motif) ligand (CXCL)10, an interferon-γ inducible Th1 chemokine, and its receptor, (C-X-C motif) receptor (CXCR)3, have an important role in different autoimmune diseases. High circulating CXCL10 levels were detected in new onset T1D patients, in association with a Th1 autoimmune response. Furthermore β-cells produce CXCL10, under the influence of Th1 cytokines, that suppresses their proliferation. Viral β-cells infections induce cytokines and CXCL10 expression, inducing insulin-producing cell failure in T1D. CXCL10/CXCR3 system plays a critical role in the autoimmune process and in β-cells destruction in T1D. Blocking CXCL10 in new onset diabetes seems a possible approach for T1D treatment.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Alda Corrado
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Ele Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| |
Collapse
|
14
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
15
|
Bodin J, Bølling AK, Becher R, Kuper F, Løvik M, Nygaard UC. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 2013; 137:311-23. [PMID: 24189131 DOI: 10.1093/toxsci/kft242] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.
Collapse
Affiliation(s)
- Johanna Bodin
- * Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
16
|
Guerder S, Joncker N, Mahiddine K, Serre L. Dendritic cells in tolerance and autoimmune diabetes. Curr Opin Immunol 2013; 25:670-5. [PMID: 24168964 DOI: 10.1016/j.coi.2013.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes is a T cell mediated autoimmune disease where both central and peripheral mechanisms effect T cell tolerance induction. Dendritic cells (DCs) are key regulators of innate and adaptive immune responses. They significantly contribute to central and peripheral T cell tolerance and, following maturation, induce the activation and differentiation of naïve T cells into effector and memory cells. DCs are also major actors in inflammation. Given these multiple effects on immune responses, DCs are suspected to contribute to autoimmune diseases. In this review we discuss how some specific features of DC may contribute to type 1 diabetes.
Collapse
Affiliation(s)
- Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; CNRS, UMR5282, Toulouse F-31300, France.
| | | | | | | |
Collapse
|