1
|
Hajizadeh M, Ben Mansour K, Gibbs AJ. A Genetic Study of Spillovers in the Bean Common Mosaic Subgroup of Potyviruses. Viruses 2024; 16:1351. [PMID: 39339828 PMCID: PMC11436247 DOI: 10.3390/v16091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Nine viruses of the bean common mosaic virus subgroup of potyviruses are major international crop pathogens, but their phylogenetically closest relatives from non-crop plants have mostly been found only in SE Asia and Oceania, which is thus likely to be their "centre of emergence". We have compared over 700 of the complete genomic ORFs of the crop pandemic and the non-crop viruses in various ways. Only one-third of crop virus genomes are non-recombinant, but more than half the non-crop virus genomes are. Four of the viruses were from crops domesticated in the Old World (Africa to SE Asia), and the other five were from New World crops. There was a temporal signal in only three of the crop virus datasets, but it confirmed that the most recent common ancestors of all the crop viruses were before inter-continental marine trade started after 1492 CE, whereas all the crown clusters of the phylogenies are from after that date. The non-crop virus datasets are genetically more diverse than those of the crop viruses, and Tajima's D analyses showed that their populations were contracting, and only one of the crop viruses had a significantly expanding population. dN/dS analyses showed that most of the genes and codons in all the viruses were under significant negative selection, and the few that were under significant positive selection were mostly in the PIPO-encoding region of the P3 protein, or the PIPO protein itself. Interestingly, more positively selected codons were found in non-crop than in crop viruses, and, as the hosts of the former were taxonomically more diverse than the latter, this may indicate that the positively selected codons are involved in host range determination; AlphaFold3 modelling was used to investigate this possibility.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Karima Ben Mansour
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Mbewe W, Mukasa S, Ochwo-Ssemakula M, Sseruwagi P, Tairo F, Ndunguru J, Duffy S. Cassava brown streak virus evolves with a nucleotide-substitution rate that is typical for the family Potyviridae. Virus Res 2024; 346:199397. [PMID: 38750679 PMCID: PMC11145536 DOI: 10.1016/j.virusres.2024.199397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The ipomoviruses (family Potyviridae) that cause cassava brown streak disease (cassava brown streak virus [CBSV] and Uganda cassava brown streak virus [UCBSV]) are damaging plant pathogens that affect the sustainability of cassava production in East and Central Africa. However, little is known about the rate at which the viruses evolve and when they emerged in Africa - which inform how easily these viruses can host shift and resist RNAi approaches for control. We present here the rates of evolution determined from the coat protein gene (CP) of CBSV (Temporal signal in a UCBSV dataset was not sufficient for comparable analysis). Our BEAST analysis estimated the CBSV CP evolves at a mean rate of 1.43 × 10-3 nucleotide substitutions per site per year, with the most recent common ancestor of sampled CBSV isolates existing in 1944 (95% HPD, between years 1922 - 1963). We compared the published measured and estimated rates of evolution of CPs from ten families of plant viruses and showed that CBSV is an average-evolving potyvirid, but that members of Potyviridae evolve more quickly than members of Virgaviridae and the single representatives of Betaflexiviridae, Bunyaviridae, Caulimoviridae and Closteroviridae.
Collapse
Affiliation(s)
- Willard Mbewe
- Department of Biological Sciences, Malawi University of Science and Technology, P. O. Box 5196, Limbe, Malawi.
| | - Settumba Mukasa
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Mildred Ochwo-Ssemakula
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
3
|
Song Z, Seo EY, Hu WX, Kim JK, Kang JS, Lee SE, Hammond J, Lim HS. Evaluation of a Series of Turnip Mosaic Virus Chimeric Clones Reveals Two Amino Acid Sites Critical for Systemic Infection in Chinese Cabbage. PHYTOPATHOLOGY 2023; 113:2006-2013. [PMID: 37260102 DOI: 10.1094/phyto-01-23-0013-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two infectious clones of turnip mosaic virus (TuMV), pKBC-1 and pKBC-8, with differential infectivity in Chinese cabbage (Brassica rapa subsp. pekinensis), were obtained. Both infected Nicotiana benthamiana systemically, inducing similar symptoms, whereas only virus KBC-8 infected Chinese cabbage systemically. To identify the determinants affecting infectivity on Chinese cabbage, chimeric clones were constructed by restriction fragment exchange between the parental clones and tested on several Chinese cabbage cultivars. Chimeric clones p1N8C and p8N1C demonstrated that the C-terminal portion of the polyprotein determines systemic infection of Chinese cabbage despite only three amino acid differences in this region, in the cylindrical inclusion (CI), viral protein genome-linked (VPg), and coat protein (CP). A second pair of hybrid constructs, pHindIII-1N8C and pHindIII-8N1C, failed to infect cultivars CR Victory and Jinseonnorang systemically, yet pHindIII-1N8C caused hypersensitive response-like lesions on inoculated leaves of these cultivars, and could systemically infect cultivars CR Chusarang and Jeongsang; this suggests that R genes effective against TuMV may exist in the first two cultivars but not the latter two. Constructs with single amino acid changes in both VPg (K2045E) and CP (Y3095H) failed to infect Chinese cabbage, implying that at least one of these two amino acid substitutions is essential for successful infection on Chinese cabbage. Successful infection by mutant KBC-8-CP-H and delayed infection with mutant HJY1-VPg-E following mutation or reversion suggested that VPg (2045K) is the residue required for infection of Chinese cabbage and involved in the interaction between VPg and eukaryotic initiation factor eIF(iso)4E, confirmed by yeast two-hybrid assay.
Collapse
Affiliation(s)
- Zhengxing Song
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun-Young Seo
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wen-Xing Hu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jung-Kyu Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun-Seong Kang
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung-Eun Lee
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - John Hammond
- U.S. Department of Agriculture-Agricultural Research Service, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705
| | - Hyoun-Sub Lim
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Lombardi EM, Peters J, Jacob L, Power AG. Wild and weedy Hesperis matronalis hosts turnip mosaic virus across heterogeneous landscapes in upstate New York. Virus Res 2023; 323:199011. [PMID: 36511291 DOI: 10.1016/j.virusres.2022.199011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
Abstract
Turnip mosaic virus (TuMV) is a widespread and economically important pathogen in agricultural crops and has the widest known host range in the virus family Potyviridae. While management of the virus and its aphid vectors in agricultural fields decreases virus incidence, many alternative wild hosts for TuMV may serve as source populations for crop infection through spillover. Over thirty years ago, research demonstrated that the introduced brassica, Dame's Rocket (Hesperis matronalis) hosts several viruses, including TuMV. Here, we use both enzyme-linked immunosorbent assays (ELISA) and next generation sequencing to document the frequent infection by TuMV of Dame's Rocket, which is common and widespread in disturbed areas around crop fields in upstate New York. Deep sequencing of multiple tissue types of symptomatic hosts indicate that the infection is systemic and causes diagnostic, visible symptoms. In a common garden experiment using host populations from across upstate New York, we found evidence for genetic tolerance to TuMV infection in H. matronalis. Field surveys show that TuMV prevalence varies across populations, but is generally higher in agricultural areas. Examining disease dynamics in this and other common alternative hosts will enhance our understanding of TuMV epidemiology and, more broadly, virus distribution in wild plants.
Collapse
Affiliation(s)
- Elizabeth M Lombardi
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA.
| | - Jasmine Peters
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| | - Lukin Jacob
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| | - Alison G Power
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| |
Collapse
|
5
|
Tsarmpopoulos I, Marais A, Faure C, Theil S, Candresse T. A new potyvirus from hedge mustard (Sisymbrium officinale (L.) Scop.) sheds light on the evolutionary history of turnip mosaic virus. Arch Virol 2022; 168:14. [PMID: 36576617 DOI: 10.1007/s00705-022-05682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022]
Abstract
A novel potyvirus was identified in symptomatic hedge mustard (Sisymbrium officinale (L.) Scop.) and wild radish (Raphanus raphanistrum L.) in France. The nearly complete genome sequence of hedge mustard mosaic virus (HMMV) was determined, demonstrating that it belongs to a sister species to turnip mosaic virus (TuMV). HMMV readily infected several other members of the family Brassicaceae, including turnip, shepherd's purse (Capsella bursa-pastoris), and arabidopsis. The identification of HMMV as a Brassicaceae-infecting virus closely related to TuMV leads us to question the current scenario of TuMV evolution and suggests a possible alternative one in which transition from a monocot-adapted ancestral lifestyle to a Brassicaceae-adapted one could have occurred earlier than previously recognized.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.all OK.
Collapse
Affiliation(s)
- Iason Tsarmpopoulos
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Chantal Faure
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Sébastien Theil
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France
- INRAE, UMRF, Aurillac, France
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR BFP, CS 20032, 33882, Villenave d'Ornon Cedex, France.
| |
Collapse
|
6
|
Qin L, Ding S, Wang Z, Jiang R, He Z. Host Plants Shape the Codon Usage Pattern of Turnip Mosaic Virus. Viruses 2022; 14:v14102267. [PMID: 36298822 PMCID: PMC9607058 DOI: 10.3390/v14102267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Turnip mosaic virus (TuMV), an important pathogen that causes mosaic diseases in vegetable crops worldwide, belongs to the genus Potyvirus of the family Potyviridae. Previously, the areas of genetic variation, population structure, timescale, and migration of TuMV have been well studied. However, the codon usage pattern and host adaptation analysis of TuMV is unclear. Here, compositional bias and codon usage of TuMV were performed using 184 non-recombinant sequences. We found a relatively stable change existed in genomic composition and a slightly lower codon usage choice displayed in TuMV protein-coding sequences. Statistical analysis presented that the codon usage patterns of TuMV protein-coding sequences were mainly affected by natural selection and mutation pressure, and natural selection was the key influencing factor. The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) revealed that TuMV genes were strongly adapted to Brassica oleracea from the present data. Similarity index (SiD) analysis also indicated that B. oleracea is potentially the preferred host of TuMV. Our study provides the first insights for assessing the codon usage bias of TuMV based on complete genomes and will provide better advice for future research on TuMV origins and evolution patterns.
Collapse
Affiliation(s)
- Lang Qin
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Shiwen Ding
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Zhilei Wang
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Runzhou Jiang
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
| | - Zhen He
- College of Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
7
|
Singhal P, Baranwal VK, Prajapati MR, Singh J. High throughput
RNA
sequencing and genetic structure studies of turnip mosaic virus infecting black and yellow mustard revealing emergence of
world‐B3
pathotype in India. J Appl Microbiol 2022; 133:2618-2630. [DOI: 10.1111/jam.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Pankhuri Singhal
- Division of Plant Pathology, ICAR‐Indian Agricultural Research Institute New Delhi India
| | | | - Malyaj R. Prajapati
- College of Biotechnology Sardar Vallabhbhai Patel University of Agriculture and Technology Meerut India
| | - Jitender Singh
- College of Biotechnology Sardar Vallabhbhai Patel University of Agriculture and Technology Meerut India
| |
Collapse
|
8
|
Narcissus Plants: A Melting Pot of Potyviruses. Viruses 2022; 14:v14030582. [PMID: 35336988 PMCID: PMC8949890 DOI: 10.3390/v14030582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Our paper presents detailed evolutionary analyses of narcissus viruses from wild and domesticated Narcissus plants in Japan. Narcissus late season yellows virus (NLSYV) and narcissus degeneration virus (NDV) are major viruses of Narcissus plants, causing serious disease outbreaks in Japan. In this study, we collected Narcissus plants showing mosaic or striped leaves along with asymptomatic plants in Japan for evolutionary analyses. Our findings show that (1) NLSYV is widely distributed, whereas the distribution of NDV is limited to the southwest parts of Japan; (2) the genomes of NLSYV isolates share nucleotide identities of around 82%, whereas those of NDV isolates are around 94%; (3) three novel recombination type patterns were found in NLSYV; (4) NLSYV comprises at least five distinct phylogenetic groups whereas NDV has two; and (5) infection with narcissus viruses often occur as co-infection with different viruses, different isolates of the same virus, and in the presence of quasispecies (mutant clouds) of the same virus in nature. Therefore, the wild and domesticated Narcissus plants in Japan are somewhat like a melting pot of potyviruses and other viruses.
Collapse
|
9
|
Song ZX, Seo EY, Hu WX, Jeong JH, Moon JS, Kim KH, Eom WS, Cho IS, Hammond J, Lim HS. Construction of full-length infectious cDNA clones of two Korean isolates of turnip mosaic virus breaking resistance in Brassica napus. Arch Virol 2022; 167:1157-1162. [PMID: 35258648 DOI: 10.1007/s00705-022-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022]
Abstract
In this work, two new turnip mosaic virus (TuMV) strains (Canola-12 and Canola-14) overcoming resistance in canola (Brassica napus) were isolated from a B. napus sample that showed typical TuMV-like symptoms and was collected in the city of Gimcheon, South Korea, in 2020. The complete genome sequence was determined and an infectious clone was made for each isolate. Phylogenetic analysis indicated that the strains isolated from canola belonged to the World-B group. Both infectious clones, which used 35S and T7 promoters to drive expression, induced systemic symptoms in Nicotiana benthamiana and B. napus. To our knowledge, this is the first report of TuMV infecting B. napus in South Korea.
Collapse
Affiliation(s)
- Zheng-Xing Song
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Young Seo
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Wen-Xing Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong-Hyeon Jeong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kang-Hee Kim
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Won-Seob Eom
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In-Sook Cho
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - John Hammond
- United States Department of Agriculture-Agricultural Research Service, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD, 20705, USA.
| | - Hyoun-Sub Lim
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea. .,Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
10
|
Ohshima K, Kawakubo S, Muraoka S, Gao F, Ishimaru K, Kayashima T, Fukuda S. Genomic Epidemiology and Evolution of Scallion Mosaic Potyvirus From Asymptomatic Wild Japanese Garlic. Front Microbiol 2021; 12:789596. [PMID: 34956155 PMCID: PMC8692251 DOI: 10.3389/fmicb.2021.789596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Scallion mosaic virus (ScaMV) belongs to the turnip mosaic virus phylogenetic group of potyvirus and is known to infect domestic scallion plants (Allium chinense) in China and wild Japanese garlic (Allium macrostemon Bunge) in Japan. Wild Japanese garlic plants showing asymptomatic leaves were collected from different sites in Japan during 2012–2015. We found that 73 wild Japanese garlic plants out of 277 collected plants were infected with ScaMV, identified by partial genomic nucleotide sequences of the amplified RT-PCR products using potyvirus-specific primer pairs. Sixty-three ScaMV isolates were then chosen, and those full genomic sequences were determined. We carried out evolutionary analyses of the complete polyprotein-coding sequences and four non-recombinogenic regions of partial genomic sequences. We found that 80% of ScaMV samples have recombination-like genome structure and identified 12 recombination-type patterns in the genomes of the Japanese ScaMV isolates. Furthermore, we found two non-recombinant-type patterns in the Japanese population. Because the wild plants and weeds may often serve as reservoirs of viruses, it is important to study providing the exploratory investigation before emergence in the domestic plants. This is possibly the first epidemiological and evolutionary study of a virus from asymptomatic wild plants.
Collapse
Affiliation(s)
- Kazusato Ohshima
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan.,Institute of Wild Onion Science, Saga University, Saga, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Shusuke Kawakubo
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Satoshi Muraoka
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Fangluan Gao
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kanji Ishimaru
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan.,Institute of Wild Onion Science, Saga University, Saga, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Kayashima
- Institute of Wild Onion Science, Saga University, Saga, Japan.,Department of School Education Course, Faculty of Education, Saga University, Saga, Japan
| | - Shinji Fukuda
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan.,Institute of Wild Onion Science, Saga University, Saga, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.,Saga University Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, Saga, Japan
| |
Collapse
|
11
|
Valouzi H, Shahmohammadi N, Golnaraghi A, Moosavi MR, Ohshima K. Genetic diversity and evolutionary analyses of potyviruses infecting narcissus in Iran. JOURNAL OF PLANT PATHOLOGY : AN INTERNATIONAL JOURNAL OF THE ITALIAN PHYTOPATHOLOGICAL SOCIETY 2021; 104:237-250. [PMID: 34866893 PMCID: PMC8628840 DOI: 10.1007/s42161-021-00985-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Potyviruses are among the most important pathogens of dicotyledonous and monocotyledonous ornamentals and crop plants. In this study, leaf samples were collected from symptomatic narcissus plants and weeds in Fars and Tehran provinces of Iran. Enzyme-linked immunosorbent assay using broad-spectrum potyvirus antibodies gave a positive reaction with 38 out of 61 narcissus samples tested (62.3%); the results were confirmed by reverse-transcription polymerase chain reaction using universal NIb primers, and for thirty samples, by sequencing and phylogenetic studies. The results suggested the infection of almost all positive samples with narcissus yellow stripe virus (NYSV); only one sample seemed to be infected with narcissus late season yellows virus (NLSYV). The 3'-end of the genome of the NLSYV isolate and six NYSV isolates, encompassing the complete coat protein gene, was amplified and sequenced using species-specific and universal potyvirus primers. Sequence analysis indicated the presence of NLSYV and NYSV, not previously identified from Western Asia. No evidence of recombination was found in Iranian isolates. Based on phylogenetic analyses, isolates of NLSYV and NYSV clustered into five and three phylogroups, respectively, where all the Iranian isolates fell into distinct subpopulations in groups NLSYV-I and NYSV-II. Multiple sequence alignments showed some phylogroup-specific amino acid substitutions for both viruses. Phylogroup IV and II populations had higher nucleotide diversities as compared with other populations of NLSYV and NYSV, respectively. Our findings revealed the presence of negative selection in the populations of both viruses. Almost no statistically significant gene flow was found between populations of these viruses. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42161-021-00985-0.
Collapse
Affiliation(s)
- Hajar Valouzi
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niayesh Shahmohammadi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Alireza Golnaraghi
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Biodiversity, BoomZista Institute, Vancouver, British Columbia Canada
| | - Mohammad Reza Moosavi
- Department of Plant Pathology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, 1-banchi, Honjo-manchi, Saga, 804-8502 Japan
| |
Collapse
|
12
|
Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proc Natl Acad Sci U S A 2021; 118:2021221118. [PMID: 33741737 PMCID: PMC8000540 DOI: 10.1073/pnas.2021221118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Our article presents the most comprehensive reconstruction of the evolutionary and phylogeographic history of a major plant pathogen of brassica vegetables in Eurasia. Sampling across such a large landmass poses considerable challenges, and our study attempts to describe the spatial and temporal patterns of migration for a plant pathogen on a large scale. Our phylogeographic and molecular clock analyses show that the migration pathways of turnip mosaic potyvirus retrace some of the historical trade arteries of the Silk Road. This study demonstrates how a comprehensive genetic analysis can provide a large-scale view of the epidemiology and human-mediated spread of a plant pathogen across centuries of evolutionary history. Plant pathogens have agricultural impacts on a global scale and resolving the timing and route of their spread can aid crop protection and inform control strategies. However, the evolutionary and phylogeographic history of plant pathogens in Eurasia remains largely unknown because of the difficulties in sampling across such a large landmass. Here, we show that turnip mosaic potyvirus (TuMV), a significant pathogen of brassica crops, spread from west to east across Eurasia from about the 17th century CE. We used a Bayesian phylogenetic approach to analyze 579 whole genome sequences and up to 713 partial sequences of TuMV, including 122 previously unknown genome sequences from isolates that we collected over the past five decades. Our phylogeographic and molecular clock analyses showed that TuMV isolates of the Asian-Brassica/Raphanus (BR) and basal-BR groups and world-Brassica3 (B3) subgroup spread from the center of emergence to the rest of Eurasia in relation to the host plants grown in each country. The migration pathways of TuMV have retraced some of the major historical trade arteries in Eurasia, a network that formed the Silk Road, and the regional variation of the virus is partly characterized by different type patterns of recombinants. Our study presents a complex and detailed picture of the timescale and major transmission routes of an important plant pathogen.
Collapse
|
13
|
Reuper H, Krenz B. Comparison of two Turnip mosaic virus P1 proteins in their ability to co-localize with the Arabidopsis thaliana G3BP-2 protein. Virus Genes 2021; 57:233-237. [PMID: 33599903 PMCID: PMC7985126 DOI: 10.1007/s11262-021-01829-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Turnip mosaic virus (TuMV), belonging to the genus Potyvirus (family Potyviridae), has a large host range and consists of a single-stranded positive sense RNA genome encoding 12 proteins, including the P1 protease. This protein which is separated from the polyprotein by cis cleavage at its respective C-terminus, has been attributed with different functions during potyviral infection of plants. P1 of Turnip mosaic virus (P1-TuMV) harbors an FGSF-motif and FGSL-motif at its N-terminus. This motif is predicted to be a binding site for the host Ras GTPase-activating protein-binding protein (G3BP), which is a key factor for stress granule (SG) formation in mammalian systems and often targeted by viruses to inhibit SG formation. We therefore hypothesized that P1-TuMV might interact with G3BP to control and regulate plant SGs to optimize cellular conditions for the production of viral proteins. Here, we analyzed the co-localization of the Arabidopsis thaliana G3BP-2 with the P1 of two TuMV isolates, namely UK 1 and DEU 2. Surprisingly, P1-TuMV-DEU 2 co-localized with AtG3BP-2 under abiotic stress conditions, whereas P1-TuMV-UK 1 did not. AtG3BP-2::RFP showed strong SGs formation after stress, while P1-UK 1::eGFP maintained a chloroplastic signal under stress conditions, the signal of P1-DEU 2::eGFP co-localized with that of AtG3BP-2::RFP. This indicates a specific interaction between P1-DEU 2 and the AtG3BP family which is not solely based on the canonical interaction motifs.
Collapse
Affiliation(s)
- Hendrik Reuper
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124, Braunschweig, Germany
| | - Björn Krenz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124, Braunschweig, Germany.
| |
Collapse
|
14
|
Palukaitis P, Kim S. Resistance to Turnip Mosaic Virus in the Family Brassicaceae. THE PLANT PATHOLOGY JOURNAL 2021; 37:1-23. [PMID: 33551693 PMCID: PMC7847761 DOI: 10.5423/ppj.rw.09.2020.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women’s University, Seoul 0797, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| | - Su Kim
- Institute of Plant Analysis Technology Development, The Saeron Co., Suwon 16648, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| |
Collapse
|
15
|
He Z, Dong Z, Qin L, Gan H. Phylodynamics and Codon Usage Pattern Analysis of Broad Bean Wilt Virus 2. Viruses 2021; 13:v13020198. [PMID: 33525612 PMCID: PMC7912035 DOI: 10.3390/v13020198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Broad bean wilt virus 2 (BBWV-2), which belongs to the genus Fabavirus of the family Secoviridae, is an important pathogen that causes damage to broad bean, pepper, yam, spinach and other economically important ornamental and horticultural crops worldwide. Previously, only limited reports have shown the genetic variation of BBWV2. Meanwhile, the detailed evolutionary changes, synonymous codon usage bias and host adaptation of this virus are largely unclear. Here, we performed comprehensive analyses of the phylodynamics, reassortment, composition bias and codon usage pattern of BBWV2 using forty-two complete genome sequences of BBWV-2 isolates together with two other full-length RNA1 sequences and six full-length RNA2 sequences. Both recombination and reassortment had a significant influence on the genomic evolution of BBWV2. Through phylogenetic analysis we detected three and four lineages based on the ORF1 and ORF2 nonrecombinant sequences, respectively. The evolutionary rates of the two BBWV2 ORF coding sequences were 8.895 × 10−4 and 4.560 × 10−4 subs/site/year, respectively. We found a relatively conserved and stable genomic composition with a lower codon usage choice in the two BBWV2 protein coding sequences. ENC-plot and neutrality plot analyses showed that natural selection is the key factor shaping the codon usage pattern of BBWV2. Strong correlations between BBWV2 and broad bean and pepper were observed from similarity index (SiD), codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analyses. Our study is the first to evaluate the phylodynamics, codon usage patterns and adaptive evolution of a fabavirus, and our results may be useful for the understanding of the origin of this virus.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.D.); (L.Q.); (H.G.)
| |
Collapse
|
16
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
17
|
Ágoston J, Almási A, Salánki K, Palkovics L. Genetic Diversity of Potyviruses Associated with Tulip Breaking Syndrome. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1807. [PMID: 33352796 PMCID: PMC7766433 DOI: 10.3390/plants9121807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Tulip breaking is economically the most important viral disease of modern-day tulip growing. It is characterized by irregular flame and feather-like patterns in the flowers and mosaic on the foliage. Thirty-two leaf samples were collected from cultivated tulip plants showing tulip breaking syndrome from Hungary in 2017 and 2018. Virus identification was performed by serological (ELISA) and molecular (RT-PCR) methods. All samples proved to be infected with a potyvirus and evidence was provided that three potyvirus species could be identified in the samples: Lily mottle virus (LMoV), Tulip breaking virus (TBV) and Rembrandt tulip-breaking virus (ReTBV). Recombination prediction accomplished with Recombination Detection Program (RDP) v4.98 revealed potential intraspecies recombination in the case of TBV and LMoV. Phylogenetic analyses of the coat protein (CP) regions proved the monophyletic origin of these viruses and verified them as three different species according to current International Committee on Taxonomy of Viruses (ICTV) species demarcation criteria. Based on these results, we analyzed taxonomic relations concerning potyviruses associated with tulip breaking syndrome. We propose the elevation of ReTBV to species level, and emergence of two new subgroups in ReTBV.
Collapse
Affiliation(s)
- János Ágoston
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary;
- Department of Agriculture, Faculty of Horticulture and Rural Development, John von Neumann University, 6000 Kecskemét, Hungary
| | - Asztéria Almási
- Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; (A.A.); (K.S.)
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; (A.A.); (K.S.)
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary;
| |
Collapse
|
18
|
Efficient Confirmation of Plant Viral Proteins and Identification of Specific Viral Strains by nanoLC-ESI-Q-TOF Using Single-Leaf-Tissue Samples. Pathogens 2020; 9:pathogens9110966. [PMID: 33228257 PMCID: PMC7699591 DOI: 10.3390/pathogens9110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/03/2022] Open
Abstract
Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456.
Collapse
|
19
|
Gibbs AJ, Hajizadeh M, Ohshima K, Jones RA. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses 2020; 12:E132. [PMID: 31979056 PMCID: PMC7077269 DOI: 10.3390/v12020132] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, encouraged by the dictum of Theodosius Dobzhansky that "Nothing in biology makes sense except in the light of evolution", we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, etc. of the potyvirids and, especially, its largest genus, the potyviruses. The potyvirids are a family of plant-infecting RNA-genome viruses. They had a single polyphyletic origin, and all share at least three of their genes (i.e., the helicase region of their CI protein, the RdRp region of their NIb protein and their coat protein) with other viruses which are otherwise unrelated. Potyvirids fall into 11 genera of which the potyviruses, the largest, include more than 150 distinct viruses found worldwide. The first potyvirus probably originated 15,000-30,000 years ago, in a Eurasian grass host, by acquiring crucial changes to its coat protein and HC-Pro protein, which enabled it to be transmitted by migrating host-seeking aphids. All potyviruses are aphid-borne and, in nature, infect discreet sets of monocotyledonous or eudicotyledonous angiosperms. All potyvirus genomes are under negative selection; the HC-Pro, CP, Nia, and NIb genes are most strongly selected, and the PIPO gene least, but there are overriding virus specific differences; for example, all turnip mosaic virus genes are more strongly conserved than those of potato virus Y. Estimates of dN/dS (ω) indicate whether potyvirus populations have been evolving as one or more subpopulations and could be used to help define species boundaries. Recombinants are common in many potyvirus populations (20%-64% in five examined), but recombination seems to be an uncommon speciation mechanism as, of 149 distinct potyviruses, only two were clear recombinants. Human activities, especially trade and farming, have fostered and spread both potyviruses and their aphid vectors throughout the world, especially over the past five centuries. The world distribution of potyviruses, especially those found on islands, indicates that potyviruses may be more frequently or effectively transmitted by seed than experimental tests suggest. Only two meta-genomic potyviruses have been recorded from animal samples, and both are probably contaminants.
Collapse
Affiliation(s)
- Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| | - Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-2410 Korimoto, Kagoshima 890-0065, Japan
| | - Roger A.C. Jones
- Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Moury B, Desbiez C. Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses 2020; 12:v12010111. [PMID: 31963241 PMCID: PMC7020010 DOI: 10.3390/v12010111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
Virus host range, i.e., the number and diversity of host species of viruses, is an important determinant of disease emergence and of the efficiency of disease control strategies. However, for plant viruses, little is known about the genetic or ecological factors involved in the evolution of host range. Using available genome sequences and host range data, we performed a phylogenetic analysis of host range evolution in the genus Potyvirus, a large group of plant RNA viruses that has undergone a radiative evolution circa 7000 years ago, contemporaneously with agriculture intensification in mid Holocene. Maximum likelihood inference based on a set of 59 potyviruses and 38 plant species showed frequent host range changes during potyvirus evolution, with 4.6 changes per plant species on average, including 3.1 host gains and 1.5 host loss. These changes were quite recent, 74% of them being inferred on the terminal branches of the potyvirus tree. The most striking result was the high frequency of correlated host gains occurring repeatedly in different branches of the potyvirus tree, which raises the question of the dependence of the molecular and/or ecological mechanisms involved in adaptation to different plant species.
Collapse
|
21
|
Complete genome sequence analysis of Narcissus yellow stripe virus infecting Narcissus tazetta in India. 3 Biotech 2019; 9:409. [PMID: 31692678 DOI: 10.1007/s13205-019-1939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022] Open
Abstract
The complete genome sequence of Narcissus yellow stripe potyvirus (NYSV) isolated from Narcissus tazetta cv. Paperwhite exhibiting leaf chlorotic stripe symptoms was determined for the first time from India. The viral genome sequence contained 9650 nucleotides that encode a large polyprotein (372.36 kDa) of 3103 amino acids. The comparison of the NYSV genome sequences with corresponding sequences of other potyviruses revealed 90-97% identities and closest phylogenetic relationships with NYSV-Zhangzhou-1 and -ZZ-2 isolates infecting N. tazetta reported from China. Therefore, the NYSV isolate understudy was considered as a new member of NYSV and designated as NYSV-NAR2.
Collapse
|
22
|
Kim IH, Ju HK, Gong J, Han JY, Seo EY, Cho SW, Hu WX, Choi SR, Lim YP, Domier LL, Hammond J, Lim HS. A Turnip Mosaic Virus Determinant of Systemic Necrosis in Nicotiana benthamiana and a Novel Resistance-Breaking Determinant in Chinese Cabbage Identified from Chimeric Infectious Clones. PHYTOPATHOLOGY 2019; 109:1638-1647. [PMID: 31044662 DOI: 10.1094/phyto-08-18-0323-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5', central, and 3' domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5' 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis 'Norang', which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.
Collapse
Affiliation(s)
- Ik-Hyun Kim
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Hye-Kyoung Ju
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Junsu Gong
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Jae-Yeong Han
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Eun-Young Seo
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Sang-Won Cho
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Wen-Xing Hu
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Su Ryun Choi
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - John Hammond
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture-Agriculture Research Service, Beltsville, MD, U.S.A
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
23
|
Hu WX, Kim BJ, Kwak Y, Seo EY, Kim JK, Han JY, Kim IH, Lim YP, Cho IS, Domier LL, Hammond J, Lim HS. Five Newly Collected Turnip Mosaic Virus (TuMV) Isolates from Jeju Island, Korea are Closely Related to Previously Reported Korean TuMV Isolates but Show Distinctive Symptom Development. THE PLANT PATHOLOGY JOURNAL 2019; 35:381-387. [PMID: 31481861 PMCID: PMC6706019 DOI: 10.5423/ppj.nt.11.2018.0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
For several years, temperatures in the Korean peninsula have gradually increased due to climate change, resulting in a changing environment for growth of crops and vegetables. An associated consequence is that emerging species of insect vector have caused increased viral transmission. In Jeju Island, Korea, occurrences of viral disease have increased. Here, we report characterization of five newly collected turnip mosaic virus (TuMV) isolates named KBJ1, KBJ2, KBJ3, KBJ4 and KBJ5 from a survey on Jeju Island in 2017. Full-length cDNAs of each isolate were cloned into the pJY vector downstream of cauliflower mosaic virus 35S and bacteriophage T7 RNA polymerase promoters. Their fulllength sequences share 98.9-99.9% nucleotide sequence identity and were most closely related to previously reported Korean TuMV isolates. All isolates belonged to the BR group and infected both Chinese cabbage and radish. Four isolates induced very mild symptoms in Nicotiana benthamiana but KBJ5 induced a hypersensitive response. Symptom differences may result from three amino acid differences uniquely present in KBJ5; Gly(382)Asp, Ile(891)Val, and Lys(2522)Glu in P1, P3, and NIb, respectively.
Collapse
Affiliation(s)
- Wen-Xing Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Byoung-Jo Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Younghwan Kwak
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Eun-Young Seo
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Jung-Kyu Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Jae-Yeong Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Ik-Hyun Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - In-Sook Cho
- National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Leslie L Domier
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801,
USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705,
USA
| | - Hyoun-Sub Lim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
24
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
25
|
Li D, Zhang H, Peng S, Pan S, Tan Z. Conserved microsatellites may contribute to stem-loop structures in 5', 3' terminals of Ebolavirus genomes. Biochem Biophys Res Commun 2019; 514:726-733. [PMID: 31078274 PMCID: PMC7092875 DOI: 10.1016/j.bbrc.2019.04.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022]
Abstract
Microsatellites (SSRs) are ubiquitous in coding and non-coding regions of the Ebolavirus genomes. We synthetically analyzed the microsatellites in whole-genome and terminal regions of 219 Ebolavirus genomes from five species. The Ebolavirus sequences were observed with small intraspecies variations and large interspecific variations, especially in the terminal non-coding regions. Only five conserved microsatellites were detected in the complete genomes, and four of them which well base-paired to help forming conserved stem-loop structures mainly appeared in the terminal non-coding regions. These results suggest that the conserved microsatellites may be evolutionary selected to form conserved secondary structures in 5′, 3′ terminals of Ebolavirus genomes. It may help to understand the biological significance of microsatellites in Ebolavirus and also other virus genomes. Conserved microsatellites mainly occurred in 5′, 3′ terminal non-coding regions. Conserved microsatellites may contribute to conserved stem-loop structures. Conserved microsatellites might be preserved under greater evolutionary pressure.
Collapse
Affiliation(s)
- Douyue Li
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China
| | - Hongxi Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China
| | - Shan Peng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China
| | - Saichao Pan
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China
| | - Zhongyang Tan
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
26
|
Gong J, Ju HK, Kim IH, Seo EY, Cho IS, Hu WX, Han JY, Kim JK, Choi SR, Lim YP, Hammond J, Lim HS. Sequence Variations Among 17 New Radish Isolates of Turnip mosaic virus Showing Differential Pathogenicity and Infectivity in Nicotiana benthamiana, Brassica rapa, and Raphanus sativus. PHYTOPATHOLOGY 2019; 109:904-912. [PMID: 30629482 DOI: 10.1094/phyto-12-17-0401-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Infectious clones were generated from 17 new Korean radish isolates of Turnip mosaic virus (TuMV). Phylogenetic analysis indicated that all new isolates, and three previously characterized Korean radish isolates, belong to the basal-BR group (indicating that the pathotype can infect both Brassica and Raphanus spp.). Pairwise analysis revealed genomic nucleotide and polyprotein amino acid identities of >87.9 and >95.7%, respectively. Five clones (HJY1, HJY2, KIH2, BE, and prior isolate R007) had lower sequence identities than other isolates and produced mild symptoms in Nicotiana benthamiana. These isolates formed three distinct sequence classes (HJY1/HJY2/R007, KIH2, and BE), and several differential amino acid residues (in P1, P3, 6K2, and VPg) were present only in mild isolates HJY1, HJY2, and R007. The remaining isolates all induced systemic necrosis in N. benthamiana. Four mild isolates formed a phylogenetic subclade separate from another subclade including all of the necrosis-inducing isolates plus mild isolate KIH2. Symptom severity in radish and Chinese cabbage genotypes was not correlated with pathogenicity in N. benthamiana; indeed, Chinese cabbage cultivar Norang was not infected by any isolate, whereas Chinese cabbage cultivar Chusarang was uniformly susceptible. Four isolates were unable to infect radish cultivar Iljin, but no specific amino acid residues were correlated with avirulence. These results may lead to the identification of new resistance genes against TuMV.
Collapse
Affiliation(s)
- Junsu Gong
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Hye-Kyoung Ju
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Ik-Hyun Kim
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Young Seo
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - In-Sook Cho
- 2 Rural Development Administration, National Institute of Horticultural and Herbal Science, 100 Jeollabuk-do, Korea
| | - Wen-Xing Hu
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Jae-Yeong Han
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Jung-Kyu Kim
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Su Ryun Choi
- 3 Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea; and
| | - Young Pyo Lim
- 3 Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea; and
| | - John Hammond
- 4 Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Hyoun-Sub Lim
- 1 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
27
|
Wainaina JM, Kubatko L, Harvey J, Ateka E, Makori T, Karanja D, Boykin LM, Kehoe MA. Evolutionary insights of Bean common mosaic necrosis virus and Cowpea aphid-borne mosaic virus. PeerJ 2019; 7:e6297. [PMID: 30783563 PMCID: PMC6377593 DOI: 10.7717/peerj.6297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plant viral diseases are one of the major limitations in legume production within sub-Saharan Africa (SSA), as they account for up to 100% in production losses within smallholder farms. In this study, field surveys were conducted in the western highlands of Kenya with viral symptomatic leaf samples collected. Subsequently, next-generation sequencing was carried out to gain insights into the molecular evolution and evolutionary relationships of Bean common mosaic necrosis virus (BCMNV) and Cowpea aphid-borne mosaic virus (CABMV) present within symptomatic common bean and cowpea. Eleven near-complete genomes of BCMNV and two for CABMV were obtained from western Kenya. Bayesian phylogenomic analysis and tests for differential selection pressure within sites and across tree branches of the viral genomes were carried out. Three well-supported clades in BCMNV and one supported clade for CABMNV were resolved and in agreement with individual gene trees. Selection pressure analysis within sites and across phylogenetic branches suggested both viruses were evolving independently, but under strong purifying selection, with a slow evolutionary rate. These findings provide valuable insights on the evolution of BCMNV and CABMV genomes and their relationship to other viral genomes globally. The results will contribute greatly to the knowledge gap involving the phylogenomic relationship of these viruses, particularly for CABMV, for which there are few genome sequences available, and inform the current breeding efforts towards resistance for BCMNV and CABMV.
Collapse
Affiliation(s)
- James M Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura Kubatko
- Ohio State University, Columbus, OH, United States of America
| | - Jagger Harvey
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, Kansas State University, Manhattan, KS, United States of America
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - David Karanja
- Kenya Agricultural and Livestock Research Organization (KARLO), Machakos, Kenya
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Monica A Kehoe
- Plant Pathology, Department of Primary Industries and Regional Development Diagnostic Laboratory Service, South Perth, Australia
| |
Collapse
|
28
|
Glasa M, Šoltys K, Predajňa L, Sihelská N, Nováková S, Šubr Z, Kraic J, Mihálik D. Molecular and Biological Characterisation of Turnip mosaic virus Isolates Infecting Poppy ( Papaversomniferum and P. rhoeas) in Slovakia. Viruses 2018; 10:E430. [PMID: 30110973 PMCID: PMC6116182 DOI: 10.3390/v10080430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.
Collapse
Affiliation(s)
- Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Katarína Šoltys
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia.
| | - Lukáš Predajňa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Nina Sihelská
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Slavomíra Nováková
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Zdeno Šubr
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Ján Kraic
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, 917 01 Trnava, Slovakia.
- National Agriculture and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany, Slovakia.
| | - Daniel Mihálik
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, 917 01 Trnava, Slovakia.
- National Agriculture and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany, Slovakia.
- Institute of High Mountain Biology, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia.
| |
Collapse
|
29
|
Abstract
Narcissus tazetta L. is a bulbous ornamental plant popular for its notable fragrant flowers which make it the plant of high importance. In spite of its economic value, narcissus is found to be susceptible for a number of diseases borne by fungi, bacteria, nematodes, and viruses. A potyvirus, Cyrtanthus elatus virus-A isolate NBRI16 (CEVA-NBRI16), associated with leaf chlorotic stripe disease of N. tazetta cv. Paperwhite was reported for first time in India from our laboratory based on the partial coat protein gene sequence. In present study, the full-length genomic sequence of CEVA-NBRI16 is determined which consists of 9942 nucleotides, excluding the polyA tail, and encodes a single large polyprotein of 3102 amino acids with the genomic features typical of a potyvirus. It shares highest 93% nucleotide sequence identity and closest phylogenetic relationship with sequences of CEVA-Marijiniup7-1 and CEVA-Marijiniup7-2, both reported from Australia on Cyrtanthus elatus host. The full-length genomic sequence of CEVA from narcissus plant is being reported for the first time from India.
Collapse
|
30
|
An Iranian genomic sequence of Beet mosaic virus provides insights into diversity and evolution of the world population. Virus Genes 2018; 54:272-279. [DOI: 10.1007/s11262-018-1533-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/03/2018] [Indexed: 11/26/2022]
|
31
|
The genetic diversity of narcissus viruses related to turnip mosaic virus blur arbitrary boundaries used to discriminate potyvirus species. PLoS One 2018; 13:e0190511. [PMID: 29300751 PMCID: PMC5754079 DOI: 10.1371/journal.pone.0190511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
Narcissus plants (Narcissus tazetta var. chinensis) showing mosaic or striping leaves were collected from around Japan, and tested for virus infections using potyvirus-specific primers. Many were found to be infected with a macluravirus and mixtures of different potyviruses, one third of them narcissus yellow stripe virus (NYSV)-like viruses. Genomes of nine of the NYSV-like viruses were sequenced and, together with four already published, provided data for phylogenetic and pairwise identity analyses of their place in the turnip mosaic virus (TuMV) phylogenetic group. Using existing ICTV criteria for defining potyvirus species, the narcissus viruses in TuMV group were found to be from five species; the previously described NLSYV, and four new species we call narcissus virus 1 (NV-1) and narcissus yellow stripe-1 to -3 (NYSV-1, NYSV-2 and NYSV-3). However, as all are from a single host species, and natural recombinants with NV-1 and NYSV-3 'parents have been found in China and India, we also conclude that they could be considered to be members of a single mega-species, narcissus virus; the criteria for defining such a potyvirus species would then be that their polyprotein sequences have greater than 69% identical nucleotides and greater than 75% identical amino acids.
Collapse
|
32
|
Li X, Zhu T, Yin X, Zhang C, Chen J, Tian Y, Liu J. The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China. Virol J 2017; 14:165. [PMID: 28851396 PMCID: PMC5575871 DOI: 10.1186/s12985-017-0832-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 11/21/2022] Open
Abstract
Background Turnip mosaic virus (TuMV) is one of the most widespread and economically important virus infecting both crop and ornamental species of the family Brassicaceae. TuMV isolates can be classified to five phylogenetic lineages, basal-B, basal-BR, Asian-BR, world-B and Orchis. Results To understand the genetic structure of TuMV from radish in China, the 3′-terminal genome of 90 TuMV isolates were determined and analyzed with other available Chinese isolates. The results showed that the Chinese TuMV isolates from radish formed three groups: Asian-BR, basal-BR and world-B. More than half of these isolates (52.54%) were clustered to basal-BR group, and could be further divided into three sub-groups. The TuMV basal-BR isolates in the sub-groups I and II were genetically homologous with Japanese ones, while those in sub-group III formed a distinct lineage. Sub-populations of TuMV basal-BR II and III were new emergent and in a state of expansion. The Chinese TuMV radish populations were under negative selection. Gene flow between TuMV populations from Tai’an, Weifang and Changchun was frequent. Conclusions The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China.
Collapse
Affiliation(s)
- Xiangdong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiansheng Zhu
- College of Plant Science and Technology, Tarimu University, Alar, 843300, China
| | - Xiao Yin
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chengling Zhang
- Xuzhou Sweet Potato Research Center of Jiangsu, Suzhou, 221121, China
| | - Jia Chen
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yanping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
33
|
Yasaka R, Fukagawa H, Ikematsu M, Soda H, Korkmaz S, Golnaraghi A, Katis N, Ho SYW, Gibbs AJ, Ohshima K. The Timescale of Emergence and Spread of Turnip Mosaic Potyvirus. Sci Rep 2017; 7:4240. [PMID: 28652582 PMCID: PMC5484681 DOI: 10.1038/s41598-017-01934-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 11/16/2022] Open
Abstract
Plant viruses have important global impacts on crops, and identifying their centre and date of emergence is important for planning control measures. Turnip mosaic virus (TuMV) is a member of the genus Potyvirus in the family Potyviridae and is a major worldwide pathogen of brassica crops. For two decades, we have collected TuMV isolates, mostly from brassicas, in Turkey and neighbouring countries. This region is thought to be the centre of emergence of this virus. We determined the genomic sequences of 179 of these isolates and used these to estimate the timescale of the spread of this virus. Our Bayesian coalescent analyses used synonymous sites from a total of 417 novel and published whole-genome sequences. We conclude that TuMV probably originated from a virus of wild orchids in Germany and, while adapting to wild and domestic brassicas, spread via Southern Europe to Asia Minor no more than 700 years ago. The population of basal-B group TuMVs in Asia Minor is older than all other populations of this virus, including a newly discovered population in Iran. The timescale of the spread of TuMV correlates well with the establishment of agriculture in these countries.
Collapse
Affiliation(s)
- Ryosuke Yasaka
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga, 840-8502, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Kagoshima, 890-0065, Japan
| | - Hirofumi Fukagawa
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga, 840-8502, Japan
| | - Mutsumi Ikematsu
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga, 840-8502, Japan
| | - Hiroko Soda
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga, 840-8502, Japan
| | - Savas Korkmaz
- Department of Plant Protection, Faculty of Agriculture, University of Canakkale Onsekiz Mart, Canakkale, Turkey
| | - Alireza Golnaraghi
- Department of Plant Protection, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box 14515-775, Iran
| | - Nikolaos Katis
- Plant Pathology Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 540 06, Greece
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Adrian J Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga, 840-8502, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Kagoshima, 890-0065, Japan.
| |
Collapse
|
34
|
Guerret MGL, Nyalugwe EP, Maina S, Barbetti MJ, van Leur JAG, Jones RAC. Biological and Molecular Properties of a Turnip mosaic virus (TuMV) Strain that Breaks TuMV Resistances in Brassica napus. PLANT DISEASE 2017; 101:674-683. [PMID: 30678573 DOI: 10.1094/pdis-08-16-1129-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A new resistance-breaking strain of Turnip mosaic virus (TuMV) overcomes TuMV resistance genes that currently suppress spread of this virus in Brassica napus crops in the Liverpool Plains region of eastern Australia. Isolates 12.1 and 12.5 of this strain and three other isolates in TuMV pathotypes 1 (NSW-2), 7 (NSW-1), and 8 (WA-Ap1) were inoculated to plants of 19 B. napus cultivars and one breeding line. All plants of these cultivars and the breeding line proved susceptible to 12.1 and 12.5 but developed only resistance phenotypes with WA-Ap1 or mostly resistance phenotypes with NSW-1 and NSW-2. Five different TuMV resistance phenotypes occurred either alone or segregating in different combinations. When these five isolates were inoculated to plants of nine other crop or wild Brassicaceae spp. and four indicator hosts in other families, 12.1 and 12.5 resembled the other three in inducing TuMV resistance phenotypes in some Brassicaceae spp. but not others, and by inducing extreme resistance phenotypes in all inoculated plants of B. oleracea var. botrytis and Raphanus sativus. Therefore, the overall resistance-breaking properties of 12.1 and 12.5 were restricted to B. napus. When isolates 12.1, 12.5, and WA-Ap1 and additional Australian isolate WA-EP1 were sequenced and complete genomes of each compared, 12.1 and 12.5 grouped separately from the other 2 and from all 23 Australian isolates with complete genomes sequenced previously. In addition, there was evidence for at least six separate TuMV introductions to Australia. Spread of this B. napus resistance-breaking strain poses a significant threat to the B. napus oilseed industry. Breeding B. napus cultivars with resistance to this strain constitutes a critical priority for B. napus breeding programs in Australia and elsewhere.
Collapse
Affiliation(s)
- Marine G L Guerret
- School of Agriculture and Environment and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Eviness P Nyalugwe
- School of Agriculture and Environment and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Solomon Maina
- School of Agriculture and Environment and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Martin J Barbetti
- School of Agriculture and Environment and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Joop A G van Leur
- New South Wales Department of Primary Industries, Tamworth Agricultural Institute, Calala, NSW 2340, Australia
| | - Roger A C Jones
- Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, and Department of Agriculture and Food Western Australia, South Perth, WA 6151 Australia
| |
Collapse
|
35
|
Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 2017; 8:14493. [PMID: 28205516 PMCID: PMC5316897 DOI: 10.1038/ncomms14493] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022] Open
Abstract
Vector-borne pathogens influence host characteristics relevant to host-vector contact, increasing pathogen transmission and survival. Previously, we demonstrated that infection with Turnip mosaic virus, a member of one of the largest families of plant-infecting viruses, increases vector attraction and reproduction on infected hosts. These changes were due to a single viral protein, NIa-Pro. Here we show that NIa-Pro responds to the presence of the aphid vector during infection by relocalizing to the vacuole. Remarkably, vacuolar localization is required for NIa-Pro's ability to enhance aphid reproduction on host plants, vacuole localization disappears when aphids are removed, and this phenomenon occurs for another potyvirus, Potato virus Y, suggesting a conserved role for the protein in vector-host interactions. Taken together, these results suggest that potyviruses dynamically respond to the presence of their vectors, promoting insect performance and transmission only when needed.
Collapse
Affiliation(s)
- Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Andrea L. Cheung
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Chunling Yang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| |
Collapse
|
36
|
Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 2017. [PMID: 28205516 DOI: 10.1038/ncomms14493c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Vector-borne pathogens influence host characteristics relevant to host-vector contact, increasing pathogen transmission and survival. Previously, we demonstrated that infection with Turnip mosaic virus, a member of one of the largest families of plant-infecting viruses, increases vector attraction and reproduction on infected hosts. These changes were due to a single viral protein, NIa-Pro. Here we show that NIa-Pro responds to the presence of the aphid vector during infection by relocalizing to the vacuole. Remarkably, vacuolar localization is required for NIa-Pro's ability to enhance aphid reproduction on host plants, vacuole localization disappears when aphids are removed, and this phenomenon occurs for another potyvirus, Potato virus Y, suggesting a conserved role for the protein in vector-host interactions. Taken together, these results suggest that potyviruses dynamically respond to the presence of their vectors, promoting insect performance and transmission only when needed.
Collapse
Affiliation(s)
- Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Andrea L Cheung
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Chunling Yang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Clare L Casteel
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| |
Collapse
|
37
|
Tugume AK, Mukasa SB, Valkonen JPT. Mixed Infections of Four Viruses, the Incidence and Phylogenetic Relationships of Sweet Potato Chlorotic Fleck Virus (Betaflexiviridae) Isolates in Wild Species and Sweetpotatoes in Uganda and Evidence of Distinct Isolates in East Africa. PLoS One 2016; 11:e0167769. [PMID: 28005969 PMCID: PMC5179071 DOI: 10.1371/journal.pone.0167769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/18/2016] [Indexed: 01/05/2023] Open
Abstract
Viruses infecting wild flora may have a significant negative impact on nearby crops, and vice-versa. Only limited information is available on wild species able to host economically important viruses that infect sweetpotatoes (Ipomoea batatas). In this study, Sweet potato chlorotic fleck virus (SPCFV; Carlavirus, Betaflexiviridae) and Sweet potato chlorotic stunt virus (SPCSV; Crinivirus, Closteroviridae) were surveyed in wild plants of family Convolvulaceae (genera Astripomoea, Ipomoea, Hewittia and Lepistemon) in Uganda. Plants belonging to 26 wild species, including annuals, biannuals and perennials from four agro-ecological zones, were observed for virus-like symptoms in 2004 and 2007 and sampled for virus testing. SPCFV was detected in 84 (2.9%) of 2864 plants tested from 17 species. SPCSV was detected in 66 (5.4%) of the 1224 plants from 12 species sampled in 2007. Some SPCSV-infected plants were also infected with Sweet potato feathery mottle virus (SPFMV; Potyvirus, Potyviridae; 1.3%), Sweet potato mild mottle virus (SPMMV; Ipomovirus, Potyviridae; 0.5%) or both (0.4%), but none of these three viruses were detected in SPCFV-infected plants. Co-infection of SPFMV with SPMMV was detected in 1.2% of plants sampled. Virus-like symptoms were observed in 367 wild plants (12.8%), of which 42 plants (11.4%) were negative for the viruses tested. Almost all (92.4%) the 419 sweetpotato plants sampled from fields close to the tested wild plants displayed virus-like symptoms, and 87.1% were infected with one or more of the four viruses. Phylogenetic and evolutionary analyses of the 3'-proximal genomic region of SPCFV, including the silencing suppressor (NaBP)- and coat protein (CP)-coding regions implicated strong purifying selection on the CP and NaBP, and that the SPCFV strains from East Africa are distinguishable from those from other continents. However, the strains from wild species and sweetpotato were indistinguishable, suggesting reciprocal movement of SPCFV between wild and cultivated Convolvulaceae plants in the field.
Collapse
Affiliation(s)
- Arthur K. Tugume
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Plant Sciences, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Settumba B. Mukasa
- Department of Agricultural Production, School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Iranian johnsongrass mosaic virus: the complete genome sequence, molecular and biological characterization, and comparison of coat protein gene sequences. Virus Genes 2016; 53:77-88. [PMID: 27632283 DOI: 10.1007/s11262-016-1389-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
Iranian johnsongrass mosaic virus (IJMV) is one of the most prevalent viruses causing maize mosaic disease in Iran. An IJMV isolate, Maz-Bah, was obtained from the maize showing mosaic symptoms in Mazandaran, north of Iran. The complete genomic sequence of Maz-Bah is 9544 nucleotides, excluding the poly(A) tail. It contains one single open reading frame of 9165 nucleotides and encodes a large polyprotein of 3054 amino acids, flanked by a 5'-untranslated region (UTR) of 143 nucleotides and a 3'-UTR of 236 nucleotides. The entire genomic sequence of Maz-Bah isolate shares identities of 84.9 and 94.2 % with the IJMV (Shz) isolate, the lone complete genome sequence available in the GenBank at the nucleotide (nt) and deduced amino acid (aa) levels, respectively. The whole genome sequences share identities of 51.5-69.8 and 44.9-74.3 % with those of other Sugarcane mosaic virus (SCMV) subgroup potyviruses at nt and aa levels, respectively. In phylogenetic trees based on the multiple alignments of the entire nt and aa sequences, IJMV isolates formed a separate sublineage of the tree with potyviruses infecting monocotyledons of cereals, indicating that IJMV is a member of SCMV subgroup of potyviruses. IJMV is most closely related to Sorghum mosaic virus and Maize dwarf mosaic virus and less closely related to the Johnsongrass mosaic virus and Cocksfoot streak virus. To further investigate the genetic relationship of IJMV, 9 other isolates from different hosts were cloned and sequenced. The identity of IJMV CP nt and aa sequences of 11 Iranian isolates ranged from 86.4 to 99.8 % and 90.5 to 99.7 %, respectively, indicating a high nt variability in CP gene. Furthermore, in the CP-based phylogenetic tree, IJMV isolates were clustered together with a maize potyvirus described as Zea mosaic virus from Israel (with 86-89 % nt identity), indicating that both isolates probably are the strains of the same virus.
Collapse
|
39
|
First Genome Sequence of Wild Onion Symptomless Virus, a Novel Member of Potyvirus in the Turnip Mosaic Virus Phylogenetic Group. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00851-16. [PMID: 27540073 PMCID: PMC4991718 DOI: 10.1128/genomea.00851-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nearly complete genome sequence of a new species of potyvirus was obtained from the symptomless wild onion (Allium sp.) in Turkey. This virus has less than 67% nucleotide sequence identities over the polyprotein to other known potyviruses. We propose the name wild onion symptomless virus for this novel potyvirus.
Collapse
|
40
|
Brenya E, Trusov Y, Dietzgen RG, Botella JR. Heterotrimeric G-proteins facilitate resistance to plant pathogenic viruses in Arabidopsis thaliana (L.) Heynh. PLANT SIGNALING & BEHAVIOR 2016; 11:e1212798. [PMID: 27454415 PMCID: PMC5022408 DOI: 10.1080/15592324.2016.1212798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterotrimeric G-proteins, consisting of Gα, Gβ and Gγ subunits, are important signal transducers in eukaryotes. In plants, G-protein-mediated signaling contributes to defense against a range of fungal and bacterial pathogens. Here we studied response of G-protein-deficient mutants to ssRNA viruses representing 2 different families: Cucumber mosaic virus (CMV) (Bromoviridae) and Turnip mosaic virus (TuMV) (Potyviridae). We found that development of spreading necrosis on infected plants was suppressed in the Gβ-deficient mutant (agb1-2) compared to wild type and Gα-deficient mutant (gpa1-4). In accordance, ion leakage caused by viral infection was also significantly reduced in agb1-2 compared to wild type and gpa1-4. Nevertheless, both viruses replicated better in agb1-2 plants, while gpa1-4 was similar to wild type. Analysis of pathogenesis-related genes showed that Gβ negatively regulated salicylic acid, jasmonic acid and abscisic acid marker genes during CMV and TuMV infections. Interestingly, analysis of salicylic acid deficient transgenic plants indicated that salicylic acid did not affect resistance against these viruses and did not influence the Gβ-mediated defense response. We conclude that heterotrimeric G-proteins play a positive role in defense against viral pathogens probably by promoting cell death.
Collapse
Affiliation(s)
- Eric Brenya
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ralf Georg Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
- CONTACT José Ramón Botella
| |
Collapse
|
41
|
Zhu F, Sun Y, Wang Y, Pan H, Wang F, Zhang X, Zhang Y, Liu J. Molecular Characterization of the Complete Genome of Three Basal-BR Isolates of Turnip mosaic virus Infecting Raphanus sativus in China. Int J Mol Sci 2016; 17:E888. [PMID: 27271614 PMCID: PMC4926422 DOI: 10.3390/ijms17060888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/16/2016] [Accepted: 05/27/2016] [Indexed: 11/23/2022] Open
Abstract
Turnip mosaic virus (TuMV) infects crops of plant species in the family Brassicaceae worldwide. TuMV isolates were clustered to five lineages corresponding to basal-B, basal-BR, Asian-BR, world-B and OMs. Here, we determined the complete genome sequences of three TuMV basal-BR isolates infecting radish from Shandong and Jilin Provinces in China. Their genomes were all composed of 9833 nucleotides, excluding the 3'-terminal poly(A) tail. They contained two open reading frames (ORFs), with the large one encoding a polyprotein of 3164 amino acids and the small overlapping ORF encoding a PIPO protein of 61 amino acids, which contained the typically conserved motifs found in members of the genus Potyvirus. In pairwise comparison with 30 other TuMV genome sequences, these three isolates shared their highest identities with isolates from Eurasian countries (Germany, Italy, Turkey and China). Recombination analysis showed that the three isolates in this study had no "clear" recombination. The analyses of conserved amino acids changed between groups showed that the codons in the TuMV out group (OGp) and OMs group were the same at three codon sites (852, 1006, 1548), and the other TuMV groups (basal-B, basal-BR, Asian-BR, world-B) were different. This pattern suggests that the codon in the OMs progenitor did not change but that in the other TuMV groups the progenitor sequence did change at divergence. Genetic diversity analyses indicate that the PIPO gene was under the highest selection pressure and the selection pressure on P3N-PIPO and P3 was almost the same. It suggests that most of the selection pressure on P3 was probably imposed through P3N-PIPO.
Collapse
Affiliation(s)
- Fuxiang Zhu
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Yan Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
42
|
Ohshima K, Matsumoto K, Yasaka R, Nishiyama M, Soejima K, Korkmaz S, Ho SY, Gibbs AJ, Takeshita M. Temporal analysis of reassortment and molecular evolution of Cucumber mosaic virus: Extra clues from its segmented genome. Virology 2016; 487:188-97. [DOI: 10.1016/j.virol.2015.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/29/2015] [Accepted: 09/28/2015] [Indexed: 01/17/2023]
|
43
|
Sánchez F, Manrique P, Mansilla C, Lunello P, Wang X, Rodrigo G, López-González S, Jenner C, González-Melendi P, Elena SF, Walsh J, Ponz F. Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1304-1315. [PMID: 26646245 DOI: 10.1094/mpmi-05-15-0111-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence. Infectious viral chimeras covering the whole viral genome uncovered the P3 cistron as a major viral determinant of development alterations, excluding the involvement of the PIPO open reading frame. However, constitutive transgenic expression of P3 in Arabidopsis did not induce developmental alterations nor modulate the strong effects induced by the transgenic RNA silencing suppressor HC-Pro from either strain. This highlights the importance of studying viral determinants within the context of actual viral infections. Transcriptomic and interactomic analyses at different stages of plant development revealed large differences in the number of genes affected by the different infections at medium infection times but no significant differences at very early times. Biological functions affected by UK 1 (the most severe strain) included mainly stress response and transport. Most cellular components affected cell-wall transport or metabolism. Hubs in the interactome were affected upon infection.
Collapse
Affiliation(s)
- Flora Sánchez
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Manrique
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Mansilla
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Lunello
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Xiaowu Wang
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Guillermo Rodrigo
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Silvia López-González
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carol Jenner
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Pablo González-Melendi
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Santiago F Elena
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
- 4 The Santa Fe Institute, Santa Fe, New Mexico, U.S.A
| | - John Walsh
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Fernando Ponz
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
44
|
Chung BN, Choi KS, Ahn JJ, Joa JH, Do KS, Park KS. Effects of Temperature on Systemic Infection and Symptom Expression of Turnip mosaic virus in Chinese cabbage (Brassica campestris). THE PLANT PATHOLOGY JOURNAL 2015; 31:363-70. [PMID: 26673094 PMCID: PMC4677745 DOI: 10.5423/ppj.nt.06.2015.0107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/05/2015] [Accepted: 07/29/2015] [Indexed: 05/04/2023]
Abstract
Using the Chinese cabbage (Brassica campestris) cultivar 'Chun-goang' as a host and turnip mosaic virus (TuMV) as a pathogen, we studied the effects of ambient temperature (13°C, 18°C, 23°C, 28°C and 33°C) on disease intensity and the speed of systemic infection. The optimal temperature for symptom expression of TuMV was 18-28°C. However, symptoms of viral infection were initiated at 23-28°C and 6 days post infection (dpi). Plants maintained at 33°C were systemically infected as early as 6 dpi and remained symptomless until 12 or 22 dpi, depending on growth stage at the time of inoculation. It took 45 days for infection of plants grown at 13°C. Quantitative real-time polymerase chain reaction (q-PCR) results showed that the accumulation of virus coat protein was greater in plants grown at 23-28°C. The speed of systemic infection increased linearly with rising ambient temperature, up to 23°C. The zero-infection temperature was 10.1°C. To study the effects of abruptly elevated temperatures on systemic infection, plants inoculated with TuMV were maintained at 10°C for 20 d; transferred to a growth chamber at temperatures of 13°C, 18°C, 23°C, 28°C, or 33°C for 1, 2, or 3 d; and then moved back to 10°C. The numbers of plants infected increased as duration of exposure to higher temperatures and dpi increased.
Collapse
Affiliation(s)
- Bong Nam Chung
- National Institute of Horticultural & Herbal Science, RDA, Jeju 690-150,
Korea
| | - Kyung San Choi
- National Institute of Horticultural & Herbal Science, RDA, Jeju 690-150,
Korea
| | - Jeong Joon Ahn
- National Institute of Horticultural & Herbal Science, RDA, Jeju 690-150,
Korea
| | - Jae Ho Joa
- National Institute of Horticultural & Herbal Science, RDA, Jeju 690-150,
Korea
| | - Ki Seck Do
- National Institute of Horticultural & Herbal Science, RDA, Jeju 690-150,
Korea
| | - Kyo-Sun Park
- National Institute of Horticultural & Herbal Science, RDA, Jeju 690-150,
Korea
| |
Collapse
|
45
|
Vassilakos N, Simon V, Tzima A, Johansen E, Moury B. Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus. Mol Biol Evol 2015; 33:541-53. [PMID: 26503941 DOI: 10.1093/molbev/msv222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses.
Collapse
Affiliation(s)
- Nikon Vassilakos
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Aliki Tzima
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Elisabeth Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | - Benoît Moury
- INRA, UR407 Pathologie Végétale, Montfavet, France
| |
Collapse
|
46
|
Zhou GC, Shao ZQ, Ma FF, Wu P, Wu XY, Xie ZY, Yu DY, Cheng H, Liu ZH, Jiang ZF, Chen QS, Wang B, Chen JQ. The evolution of soybean mosaic virus: An updated analysis by obtaining 18 new genomic sequences of Chinese strains/isolates. Virus Res 2015; 208:189-98. [PMID: 26103098 DOI: 10.1016/j.virusres.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Soybean mosaic virus (SMV) is widely recognized as a highly damaging pathogen of soybean, and various strains/isolates have been reported to date. However, the pathogenic differences and phylogenetic relationships of these SMV strains/isolates have not been extensively studied. In the present work, by first obtaining 18 new genomic sequences of Chinese SMV strains/isolates and further compiling these with available data, we have explored the evolution of SMV from multiple aspects. First, as in other potyviruses, recombination has occurred frequently during SMV evolution, and a total of 32 independent events were detected. Second, using a maximum-likelihood method and removing recombinant fragments, a phylogeny covering 83 SMV sequences sampled from all over the world was reconstructed and the results showed four separate SMV clades, with clade I and II recovered for the first time. Third, the population structure analysis of SMV revealed significant genetic differentiations between China and two other countries (Korea and U.S.A.). Fourth, certain SMV-encoded genes, such as P1, HC-Pro and P3, exhibited higher non-synonymous substitution rate (dN) than synonymous substitution rate (dS), indicating that positive selection has influenced these genes. Finally, four Chinese SMV strains/isolates were selected for inoculation of both USA and Chinese differential soybean cultivars, and their pathogenic phenotypes were significantly different from that of the American strains. Overall, these findings have further broadened our understanding on SMV evolution, which would assist researchers to better deal with this harmful virus.
Collapse
Affiliation(s)
- Guang-Can Zhou
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhu-Qing Shao
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fang-Fang Ma
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ping Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Yi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhong-Yun Xie
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Zhi-Hua Liu
- College of Resources and Environment, Northeast Agriculture University, Harbin 150030, China
| | - Zhen-Feng Jiang
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
47
|
Casteel CL, De Alwis M, Bak A, Dong H, Whitham SA, Jander G. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector. PLANT PHYSIOLOGY 2015; 169:209-18. [PMID: 26091820 PMCID: PMC4577379 DOI: 10.1104/pp.15.00332] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/17/2015] [Indexed: 05/19/2023]
Abstract
Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations.
Collapse
Affiliation(s)
- Clare L Casteel
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Manori De Alwis
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Haili Dong
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Steven A Whitham
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Georg Jander
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| |
Collapse
|
48
|
Gibbs AJ, Nguyen HD, Ohshima K. The 'emergence' of turnip mosaic virus was probably a 'gene-for-quasi-gene' event. Curr Opin Virol 2015; 10:20-6. [PMID: 25559881 DOI: 10.1016/j.coviro.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
Abstract
Turnip mosaic potyvirus is a virus of brassicas that emerged from a lineage of monocotyledon-infecting potyviruses about 1000 years ago. In vivo and in silico studies all indicate that sites, primarily in its protein 3 (P3) and cylindrical inclusion protein (CI) genes, but also its small 6 kDa 2 protein (6K2) and genome-linked viral protein (VPg) genes, control host specificity in a dynamic way. It is most likely that non-unique combinations of transient viral genomic single nucleotide polymorphisms (SNPs), not all of them non-synonymous, allowed the host switch to occur. These SNPs were probably ephemeral and replaced over time by other combinations as the population subsequently diverged within, and adapted to, the brassica host population.
Collapse
Affiliation(s)
- Adrian J Gibbs
- Australian National University Emeritus Faculty, Canberra, ACT 2601, Australia.
| | - Huy Duc Nguyen
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan; Department of Plant Pathology, Faculty of Agronomy, Vietnam National University of Agriculture, Trauquy, Gialam, Hanoi, Viet Nam
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| |
Collapse
|
49
|
Migration of plant viruses: Time correlations with the agriculture history and human immigration. Uirusu 2015; 65:229-238. [PMID: 27760921 DOI: 10.2222/jsv.65.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this review, I made the phylodynamic comparisons of three plant viruses, Turnip mosaic virus (TuMV), Cauliflower mosaic virus (CaMV) and Cucumber mosaic virus (CMV), using the genomic sequences of a large numbers of isolates collected worldwide. We analyzed these genomic nucleotide sequences, in combination with published sequences, to estimate the timescale and rate of evolution of the individual genes of TuMV, CaMV and CMV. The main hosts of the viruses are Brassicaceae crops. We also compared these estimates from complete sequences with those from which non-synonymous and invariate codons had been removed. Our analyses provided a preliminary definition of the present geographical structure of three plant virus populations in the world, and showed that the time of migration of three plant viruses correlate well with agriculture history and human immigration.
Collapse
|
50
|
Yasaka R, Ohba K, Schwinghamer MW, Fletcher J, Ochoa-Corona FM, Thomas JE, Ho SYW, Gibbs AJ, Ohshima K. Phylodynamic evidence of the migration of turnip mosaic potyvirus from Europe to Australia and New Zealand. J Gen Virol 2014; 96:701-713. [PMID: 25481753 DOI: 10.1099/jgv.0.000007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Turnip mosaic virus (TuMV) is a potyvirus that is transmitted by aphids and infects a wide range of plant species. We investigated the evolution of this pathogen by collecting 32 isolates of TuMV, mostly from Brassicaceae plants, in Australia and New Zealand. We performed a variety of sequence-based phylogenetic and population genetic analyses of the complete genomic sequences and of three non-recombinogenic regions of those sequences. The substitution rates, divergence times and phylogeographical patterns of the virus populations were estimated. Six inter- and seven intralineage recombination-type patterns were found in the genomes of the Australian and New Zealand isolates, and all were novel. Only one recombination-type pattern has been found in both countries. The Australian and New Zealand populations were genetically different, and were different from the European and Asian populations. Our Bayesian coalescent analyses, based on a combination of novel and published sequence data from three non-recombinogenic protein-encoding regions, showed that TuMV probably started to migrate from Europe to Australia and New Zealand more than 80 years ago, and that distinct populations arose as a result of evolutionary drivers such as recombination. The basal-B2 subpopulation in Australia and New Zealand seems to be older than those of the world-B2 and -B3 populations. To our knowledge, our study presents the first population genetic analysis of TuMV in Australia and New Zealand. We have shown that the time of migration of TuMV correlates well with the establishment of agriculture and migration of Europeans to these countries.
Collapse
Affiliation(s)
- Ryosuke Yasaka
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Kagoshima 890-0065, Japan
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Kiho Ohba
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Mark W Schwinghamer
- New South Wales Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Tamworth, NSW 2340, Australia
| | - John Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Francisco M Ochoa-Corona
- Investigation & Diagnostic Centre (IDC), Plant Health & Environment Laboratory (PHEL), Biosecurity New Zealand, Ministry of Agriculture & Forestry, 231 Morrin Road, St Johns, Auckland 1140, New Zealand
| | - John E Thomas
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Adrian J Gibbs
- Emeritus Faculty, Australian National University, ACT 2601, Australia
| | - Kazusato Ohshima
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Kagoshima 890-0065, Japan
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|