1
|
Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol 2021; 11:599278. [PMID: 33613520 PMCID: PMC7886812 DOI: 10.3389/fimmu.2020.599278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mucosal nasal vaccine development, although ideal to protect from pathogens invading mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1 mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were assessed on human nasal mucosal models by measuring induction of cytokine and chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC) activation, and T cell proliferation. P1 adjuvant properties were evaluated by quantification of antigen-specific B cell responses against a model antigen in an in vitro immunization model. We now demonstrated that P1 has additional immunological properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant. Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro. Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
2
|
Chason KD, Jaspers I, Parker J, Sellers S, Brighton LE, Hunsucker SA, Armistead PM, Fischer WA. Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. J Gerontol A Biol Sci Med Sci 2018; 73:1643-1650. [PMID: 29878083 PMCID: PMC6230210 DOI: 10.1093/gerona/gly126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Older adults suffer a disproportionate burden of influenza-related morbidity and mortality typically attributed to defects in the aging immune system collectively known as immunosenescence. While the age-related decline in the adaptive immune system has been well characterized, little is known about how aging affects the principal site of influenza infection-the nasal epithelium. In human nasal epithelial cell cultures (hNECs) from older adults, we found similar or increased levels of cytokines during influenza infection compared with hNECs from younger individuals. However, hNECs from older individuals demonstrated decreased mRNA expression for several key proteins that affect clearance of infected cells, including MHC-I and transporter associated with antigen presentation (TAP). These findings were confirmed at the level of protein expression. In vivo studies corroborated the in vitro differences in MHC-I and TAP gene expression and also revealed important decreases in the expression of key influenza-specific antiviral mediators MX1 and IFITM1. Furthermore, epithelial cell-cytotoxic T lymphocyte co-cultures demonstrate that CTL cytotoxic activity is dose-dependent on MHC-I antigen presentation. Taken together, these results indicate that aging is associated with important changes in the nasal epithelium, including antigen presentation and antiviral pathways, which may contribute to increased severity of disease in older adults through impaired clearance of infected cells.
Collapse
Affiliation(s)
- Kelly D Chason
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine
| | - Ilona Jaspers
- Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine
| | - Joel Parker
- Department of Genetics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine
| | - Subhashini Sellers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine
| | - Louisa E Brighton
- Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine
| | - Sally A Hunsucker
- Department of Genetics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine
| | - Paul M Armistead
- Department of Genetics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine
| | - William A Fischer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine
| |
Collapse
|
3
|
Shi W, Kou Y, Jiang H, Gao F, Kong W, Su W, Xu F, Jiang C. Novel intranasal pertussis vaccine based on bacterium-like particles as a mucosal adjuvant. Immunol Lett 2018; 198:26-32. [PMID: 29601940 DOI: 10.1016/j.imlet.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
Pertussis, or whooping cough, has recently reemerged as a major public health threat despite high levels of vaccination. The development of a novel pertussis vaccine, especially an intranasal (i.n.) vaccine is undoubtedly necessary, and mucosal adjuvants have been explored to enhance the immune response. In the present study, bacterium-like particles (BLPs) were adopted as a mucosal adjuvant for an i.n. pertussis vaccine and evaluated on the ability to induce serum and mucosal antibodies as well as potency against i.n. challenge in mice. Groups with or without aluminum adjuvant were also evaluated through both i.n. and intraperitoneal inoculations. Vaccination with BLPs via the i.n. route led to rapid IgG and IgA production and provided strong protection against inflammation induced by infection. The results support an i.n. pertussis vaccine with BLPs adjuvant as a promising candidate to elicit protective immunity against whooping cough.
Collapse
Affiliation(s)
- Wei Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Yiming Kou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Hao Jiang
- The Third Hospital of Jilin University, Jilin University, Changchun 130012, P.R. China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Fei Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
| |
Collapse
|
4
|
Cockx M, Gouwy M, Van Damme J, Struyf S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cell Mol Immunol 2017; 15:312-323. [PMID: 29176750 DOI: 10.1038/cmi.2017.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with primary ciliary dyskinesia (PCD) and cystic fibrosis (CF), two inherited disorders, suffer from recurrent airway infections characterized by persistent bacterial colonization and uncontrollable inflammation. Although present in high counts, neutrophils fail to clear infection in the airways. High levels of C-X-C motif chemokine ligand 8/interleukin-8 (CXCL8/IL-8), the most potent chemokine to attract neutrophils to sites of infection, are detected in the sputum of both patient groups and might cause the high neutrophil influx in the airways. Furthermore, in CF, airway neutrophils are highly activated because of the genetic defect and the high levels of proinflammatory chemoattractants and cytokines (e.g., CXCL8/IL-8, tumor necrosis factor-α and IL-17). The overactive state of neutrophils leads to lung damage and fuels the vicious circle of infection, excessive inflammation and tissue damage. The inflammatory process in CF airways is well characterized, whereas the lung pathology in PCD is far less studied. The knowledge of CF lung pathology could be useful to guide molecular investigations of the inflammatory processes in PCD lungs. Current available therapies can not completely remedy the chronic airway infections in these diseases. This review gives an overview of the role that chemoattractants and cytokines play in these neutrophil-dominated lung pathologies. Finally, the most frequently applied treatments in CF and PCD and new experimental therapies to reduce neutrophil-dominated airway inflammation are described.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
5
|
Cao Y, Zhang E, Yang J, Yang Y, Yu J, Xiao Y, Li W, Zhou D, Li Y, Zhao B, Yan H, Lu M, Zhong M, Yan H. Frontline Science: Nasal epithelial GM-CSF contributes to TLR5-mediated modulation of airway dendritic cells and subsequent IgA response. J Leukoc Biol 2017; 102:575-587. [PMID: 28522600 DOI: 10.1189/jlb.3hi0816-368rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/24/2022] Open
Abstract
Flagellin, as a TLR5 agonist, is an established mucosal adjuvant for enhancing mucosal IgA responses by i.n. immunization. Nasal epithelial cells (NECs) are the first sentinel cells to be exposed to antigen and adjuvant in i.n. immunization, and it is suggested that they play an important role in the mucosal adjuvant activity of flagellin. However, the molecular mechanism leading to modulation and the response by flagellin-activated NECs remain unknown. We aimed to identify the soluble mediator(s) from flagellin-activated NECs that modulate the functions of airway dendritic cells (DCs) and enhance subsequent IgA response. In vitro studies showed that compared with the TLR4 agonist LPS, flagellin directly triggered slight up-regulation of CD80 on airway DCs but was insufficient to affect CD86 expression and DC-mediated IgA response. With the use of an in vitro system for culturing mouse primary NECs (mNECs), we demonstrated that flagellin-activated mNECs could functionally modulate airway DCs, which manifested as significant up-regulation of CD80/CD86 and enhancement of IgA production. The functional modulation of airway DCs was dependent on TLR5 activation of mNECs rather than direct TLR5 activation of airway DCs. With the use of cytokine array and antibody-blocking assays, we further identified that GM-CSF, a cytokine secreted from TLR5-activated mNECs, contributes to the activation of mNECs to airway DCs and subsequent IgA enhancement. In vivo blocking experiments confirmed that GM-CSF is an important factor in recombinant flagellin derived from Salmonella typhi (FliC)-induced airway DC activation and antigen-specific IgA enhancement. Our data directly demonstrate that nasal epithelial GM-CSF contributes to TLR5-mediated modulation of airway DCs and a subsequent IgA response.
Collapse
Affiliation(s)
- Yuan Cao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Yang Xiao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Wei Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Dihan Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Yaoming Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| |
Collapse
|
6
|
Honoré I, Burgel PR. Primary ciliary dyskinesia in adults. Rev Mal Respir 2015; 33:165-89. [PMID: 26654126 DOI: 10.1016/j.rmr.2015.10.743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Primary ciliary dyskinesia is an autosomal recessive genetic disorder leading to structural and/or functional abnormalities of motor cilia. Impaired mucociliary clearance is responsible for the development of a multi-organ disease, which particularly affects the upper and lower airways. STATE OF THE ART In adults, primary ciliary dyskinesia is mainly characterized by bronchiectasis and chronic ear and sinus disorders. Situs inversus is found in half of patients and fertility disorders are commonly associated. Diagnosis is based on specialized tests: reduced level of nasal nitric oxide concentrations is suggestive of primary ciliary dyskinesia, but only a nasal or bronchial biopsy/brushing with analysis of beat pattern by videomicroscopy and/or analysis of cilia morphology by electronic microscopy can confirm the diagnosis. However, the diagnosis is difficult to achieve due to the limited access to these specialized tests and to difficulties in interpreting them. Genetic tests are under development and may provide new diagnostic tools. Treatment is symptomatic, based on airway clearance techniques (e.g., physiotherapy) and systemic and/or inhaled antibiotics. Prognosis is related to the severity of the respiratory impairment, which can be moderate or severe. PERSPECTIVES AND CONCLUSIONS Diagnosis and management of primary ciliary dyskinesia remain poorly defined and should be supported by specialized centers to standardize the diagnosis, improve the treatment and promote research.
Collapse
Affiliation(s)
- I Honoré
- Department of respiratory medicine, Cochin hospital, Assistance publique-Hôpitaux de Paris, 75014 Paris, France
| | - P-R Burgel
- Department of respiratory medicine, Cochin hospital, Assistance publique-Hôpitaux de Paris, 75014 Paris, France; Paris Descartes university, Sorbonne Paris Cité, 75005 Paris, France.
| |
Collapse
|
7
|
Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr Opin Allergy Clin Immunol 2015; 15:98-103. [PMID: 25479313 DOI: 10.1097/aci.0000000000000133] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Allergic diseases are thought to be driven by aberrant immune responses. Epithelium responds to various environmental factors by releasing key cytokines, such as thymic stromal lymphopoietin (TSLP), IL-33, and IL-25. Although there are important differences among these cytokines, there are also similarities which confound a clear understanding of the exact roles of these cytokines. The purpose of this review is to analyze the advances in biology and functions of these cytokines over recent years, elucidate their differences and similarities, and provide new conceptual understanding as to their roles in allergic diseases. RECENT FINDINGS There are distinct differences in the timing, onset, and kinetics of the responses and perhaps in the potency of action of TSLP, IL-33, and IL-25. Newer roles of these cytokines have been described, including airway remodeling and fibrosis-related functions (TSLP, IL-33, and IL-25), fetal-maternal interface (IL-33 and TSLP), T-cell biology (TSLP), group 2 innate lymphoid cell biology (TSLP, IL-33, and IL-25), and mast cell-neutrophil axis (IL-33). Novel roles of these cytokines in the pathogenesis of atopic dermatitis and asthma have also been described. SUMMARY TSLP, IL-25, and IL-33 are increasingly recognized to play important roles in the pathophysiology of allergic diseases. More clear recognition of the differences and similarities of the immunological pathways mediated by these cytokines would help optimize the treatment for allergic diseases.
Collapse
|
8
|
Hui CCK, Yu A, Heroux D, Akhabir L, Sandford AJ, Neighbour H, Denburg JA. Thymic stromal lymphopoietin (TSLP) secretion from human nasal epithelium is a function of TSLP genotype. Mucosal Immunol 2015; 8:993-9. [PMID: 25515628 DOI: 10.1038/mi.2014.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/08/2014] [Indexed: 02/04/2023]
Abstract
Recent candidate gene and genome-wide association studies have identified "protective" associations between the single-nucleotide polymorphism (SNP) rs1837253 in the TSLP gene and risk for allergy, asthma, and airway hyperresponsiveness. The absence of linkage disequilibrium of rs1837253 with other SNPs in the region suggests it is likely a causal polymorphism for these associations, having functional consequences. We hypothesized that rs1837253 genotype would influence TSLP secretion from mucosal surfaces. We therefore evaluated the secretion of TSLP protein from primary nasal epithelial cells (NECs) of atopic and nonatopic individuals and its association with rs1837253 genotype. We found that although atopic sensitization does not affect the secretion of TSLP from NECs, there was decreased TSLP secretion in NECs obtained from heterozygous (CT; 1.8-fold) and homozygous minor allele (TT; 2.5-fold) individuals, as compared with NECs from homozygous major allele individuals (CC; P<0.05), after double-stranded RNA (dsRNA) stimulation (50 μg ml(-1)). Our novel results show that rs1837253 polymorphism may be directly involved in the regulation of TSLP secretion. This may help explain the protective association of this genetic variant with asthma and related traits. Identifying functional consequences of SNPs in genes with previously reported clinical associations is critical in understanding and targeting allergic inflammation.
Collapse
Affiliation(s)
- C C K Hui
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| | - A Yu
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| | - D Heroux
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| | - L Akhabir
- Centre for Heart Lung Innovation, University of British Columbia, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - A J Sandford
- Centre for Heart Lung Innovation, University of British Columbia, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - H Neighbour
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - J A Denburg
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Petrarca C, Clemente E, Amato V, Pedata P, Sabbioni E, Bernardini G, Iavicoli I, Cortese S, Niu Q, Otsuki T, Paganelli R, Di Gioacchino M. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy 2015; 13:13. [PMID: 26180517 PMCID: PMC4503298 DOI: 10.1186/s12948-015-0020-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023] Open
Abstract
Almost all people in developed countries are exposed to metal nanoparticles (MeNPs) that are used in a large number of applications including medical (for diagnostic and therapeutic purposes). Once inside the body, absorbed by inhalation, contact, ingestion and injection, MeNPs can translocate to tissues and, as any foreign substance, are likely to encounter the innate immunity system that represent a non-specific first line of defense against potential threats to the host. In this review, we will discuss the possible effects of MeNPs on various components of the innate immunity (both specific cells and barriers). Most important is that there are no reports of immune diseases induced by MeNPs exposure: we are operating in a safe area. However, in vitro assays show that MeNPs have some effects on innate immunity, the main being toxicity (both cyto- and genotoxicity) and interference with the activity of various cells through modification of membrane receptors, gene expression and cytokine production. Such effects can have both negative and positive relevant impacts on humans. On the one hand, people exposed to high levels of MeNPs, as workers of industries producing or applying MeNPs, should be monitored for possible health effects. On the other hand, understanding the modality of the effects on immune responses is essential to develop medical applications for MeNPs. Indeed, those MeNPs that are able to stimulate immune cells could be used to develop of new vaccines, promote immunity against tumors and suppress autoimmunity.
Collapse
Affiliation(s)
- Claudia Petrarca
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy
| | - Emanuela Clemente
- Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| | - Valentina Amato
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy
| | - Paola Pedata
- Occupational Medicine, II University, Naples, Italy
| | - Enrico Sabbioni
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Molecular Biology, University of Insubria, Varese, Italy ; 'Protein Factory', Interuniversity Center of the Politecnico di Milano and University of Insubria, Milan, Italy
| | - Ivo Iavicoli
- Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Sara Cortese
- Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| | - Qiao Niu
- School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 7010192 Japan
| | - Roberto Paganelli
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy ; Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| | - Mario Di Gioacchino
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy ; Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
10
|
Wang DY, Li Y, Yan Y, Li C, Shi L. Upper airway stem cells: understanding the nose and role for future cell therapy. Curr Allergy Asthma Rep 2015; 15:490. [PMID: 25430951 PMCID: PMC7088825 DOI: 10.1007/s11882-014-0490-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nose together with the paranasal sinuses has an approximate surface area of 100 to 200 cm(2) in adults, which is lined with pseudostratified columnar ciliated epithelium. It serves several important physiological functions such as conditioning and filtration of the inspired air and the provision of end organ for the sense of smell. It is also a physical and immunological barrier as it is the first site of interaction between the host tissue and foreign invaders (viruses, bacteria, and allergens). Our understanding of the complex cellular events occurring in response to inhaled agents during the development of common airway diseases has been significantly enhanced by the current status of in vivo and in vitro nasal experimental models. This will allow the development of novel therapeutic strategies designed to improve the physiological and immune defense functions of the nasal epithelium, as well as novel therapies for other common nasal diseases.
Collapse
Affiliation(s)
- De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Yingying Li
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Chunwei Li
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Li Shi
- Department of Otolaryngology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012 People’s Republic of China
| |
Collapse
|
11
|
Boon M, De Boeck K, Jorissen M, Meyts I. Primary ciliary dyskinesia and humoral immunodeficiency--is there a missing link? Respir Med 2014; 108:931-4. [PMID: 24768622 DOI: 10.1016/j.rmed.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/05/2014] [Accepted: 03/17/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) and humoral mmunodeficiency (HID) are both rare disorders which cause recurrent upper and lower respiratory tract infections. OBJECTIVE To examine the concurrence of PCD and HID in a patient cohort with known PCD. METHODS Retrospective review of the patient files. RESULTS We describe 11 patients of a cohort of 168 patients with PCD (6.5%) with a combination of PCD and some form of HID. The patients all presented with typical clinical symptoms for PCD, however the role of the concomitant immunological abnormalities is not clear. CONCLUSION PCD and HID coincided in 6.5% of the patients. We suggest that a common pathophysiological pathway results in both disorders.
Collapse
Affiliation(s)
- Mieke Boon
- Department of Pediatrics, Pediatric Pulmonology, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium.
| | - Kris De Boeck
- Department of Pediatrics, Pediatric Pulmonology, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Mark Jorissen
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Gasthuisberg Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, Pediatric Immunology, University Hospital Gasthuisberg, Herestraat 49, Leuven, Belgium
| |
Collapse
|