1
|
Ikei M, Miyazaki R, Monden K, Naito Y, Takeuchi A, Takahashi YS, Tanaka Y, Murata K, Mori T, Ichikawa M, Tsukazaki T. YeeD is an essential partner for YeeE-mediated thiosulfate uptake in bacteria and regulates thiosulfate ion decomposition. PLoS Biol 2024; 22:e3002601. [PMID: 38656967 PMCID: PMC11073785 DOI: 10.1371/journal.pbio.3002601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Uptake of thiosulfate ions as an inorganic sulfur source from the environment is important for bacterial sulfur assimilation. Recently, a selective thiosulfate uptake pathway involving a membrane protein YeeE (TsuA) in Escherichia coli was characterized. YeeE-like proteins are conserved in some bacteria, archaea, and eukaryotes. However, the precise function of YeeE, along with its potential partner protein in the thiosulfate ion uptake pathway, remained unclear. Here, we assessed selective thiosulfate transport via Spirochaeta thermophila YeeE in vitro and characterized E. coli YeeD (TsuB) as an adjacent and essential protein for YeeE-mediated thiosulfate uptake in vivo. We further showed that S. thermophila YeeD possesses thiosulfate decomposition activity and that a conserved cysteine in YeeD was modified to several forms in the presence of thiosulfate. Finally, the crystal structures of S. thermophila YeeE-YeeD fusion proteins at 3.34-Å and 2.60-Å resolutions revealed their interactions. The association was evaluated by a binding assay using purified S. thermophila YeeE and YeeD. Based on these results, a model of the sophisticated uptake of thiosulfate ions by YeeE and YeeD is proposed.
Collapse
Affiliation(s)
- Mai Ikei
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Keigo Monden
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yusuke Naito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Azusa Takeuchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yutaro S Takahashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yoshiki Tanaka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Keina Murata
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takaharu Mori
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
2
|
Yokoyama K, Li D, Pang H. Resolving the Multidecade-Long Mystery in MoaA Radical SAM Enzyme Reveals New Opportunities to Tackle Human Health Problems. ACS BIO & MED CHEM AU 2022; 2:94-108. [PMID: 35480226 PMCID: PMC9026282 DOI: 10.1021/acsbiomedchemau.1c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023]
Abstract
![]()
MoaA is one of the
most conserved radical S-adenosyl-l-methionine
(SAM) enzymes, and is found in most organisms in
all three kingdoms of life. MoaA contributes to the biosynthesis of
molybdenum cofactor (Moco), a redox enzyme cofactor used in various
enzymes such as purine and sulfur catabolism in humans and anaerobic
respiration in bacteria. Unlike many other cofactors, in most organisms,
Moco cannot be taken up as a nutrient and requires de novo biosynthesis.
Consequently, Moco biosynthesis has been linked to several human health
problems, such as human Moco deficiency disease and bacterial infections.
Despite
the medical and biological significance, the biosynthetic mechanism
of Moco’s characteristic pyranopterin structure remained elusive
for more than two decades. This transformation requires the actions
of the MoaA radical SAM enzyme and another protein, MoaC. Recently,
MoaA and MoaC functions were elucidated as a radical SAM GTP 3′,8-cyclase
and cyclic pyranopterin monophosphate (cPMP) synthase, respectively.
This finding resolved the key mystery in the field and revealed new
opportunities in studying the enzymology and chemical biology of MoaA
and MoaC to elucidate novel mechanisms in enzyme catalysis or to address
unsolved questions in Moco-related human health problems. Here, we
summarize the recent progress in the functional and mechanistic studies
of MoaA and MoaC and discuss the field’s future directions.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Di Li
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Haoran Pang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Yang X, Liu H, Zhang Y, Shen X. Roles of Type VI Secretion System in Transport of Metal Ions. Front Microbiol 2021; 12:756136. [PMID: 34803980 PMCID: PMC8602904 DOI: 10.3389/fmicb.2021.756136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane protein nanomachine employed by many gram-negative bacteria to directly translocate effectors into adjacent cells or the extracellular milieu, showing multiple functions in both interbacterial competition and bacteria-host interactions. Metal ion transport is a newly discovered T6SS function. This review summarizes the identified T6SS functions and highlights the features of metal ion transport mediated by T6SS and discusses its regulation.
Collapse
Affiliation(s)
- Xiaobing Yang
- College of Applied Engineering, Henan University of Science and Technology (HAUST), Sanmenxia, China.,Medical College, Sanmenxia Vocational Technical School, Sanmenxia, China
| | - Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Yanxiong Zhang
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
4
|
Zhang X, Huang D, Zhao Z, Cai X, Cai W, Li G. Bis-molybdopterin guanine dinucleotide modulates hemolysin expression under anaerobiosis and contributes to fitness in vivo in uropathogenic Escherichia coli. Mol Microbiol 2021; 116:1216-1231. [PMID: 34494331 DOI: 10.1111/mmi.14809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 01/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongyan Huang
- Jiangxi Engineering Research Center for Animal Health Products, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zihui Zhao
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuwang Cai
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Zhang W, Yuan Y, Li S, Deng B, Zhang J, Li Z. Comparative transcription analysis of resistant mutants against four different antibiotics in Pseudomonas aeruginosa. Microb Pathog 2021; 160:105166. [PMID: 34480983 DOI: 10.1016/j.micpath.2021.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
The emergence of antibiotic resistance has severely impaired the treatment of infections caused by Pseudomonas aeruginosa. There are few studies related to comparing the antibiotics resistance mechanisms of P. aeruginosa against different antibiotics. In this study, RNA sequencing was used to investigate the differences of transcriptome between wild strain and four antibiotics resistant strains of P. aeruginosa PAO1 (polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone). Compared to the wild strain, 1907, 495, 2402, and 116 differentially expressed genes (DEGs) were identified in polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone resistant PAO1, respectively. After analysis of genes related to antimicrobial resistance, we found genes implicated in biofilm formation (pelB, pelC, pelD, pelE, pelF, pelG, algA, algF, and alg44) were significantly upregulated in polymyxin B-resistant PAO1, efflux pump genes (mexA, mexB, oprM) and biofilm formation genes (pslJ, pslK and pslN) were upregulated in ciprofloxacin-resistant PAO1; other efflux pump genes (mexC, mexD, oprJ) were upregulated in doxycycline-resistant PAO1; ampC were upregulated in ceftriaxone-resistant PAO1. As a consequence of antibiotic resistance, genes related to virulence factors such as type Ⅱ secretion system (lasA, lasB and piv) were significantly upregulated in polymyxin B-resistant PAO1, and type Ⅲ secretion system (exoS, exoT, exoY, exsA, exsB, exsC, exsD, pcrV, popB, popD, pscC, pscE, pscG, and pscJ) were upregulated in doxycycline-resistant PAO1. While, ampC were upregulated in ceftriaxone-resistant PAO1. In addition, variants were obtained in wild type and four antibiotics resistant PAO1. Our findings provide a comparative transcriptome analysis of antibiotic resistant mutants selected by different antibiotics, and might assist in identifying potential therapeutic strategies for P. aeruginosa infection.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yaping Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shasha Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaming Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhongjie Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
6
|
Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis. Cell Rep 2021; 35:108957. [PMID: 33852869 DOI: 10.1016/j.celrep.2021.108957] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria and functions as a versatile protein export machinery that translocates effectors into eukaryotic or prokaryotic target cells. Growing evidence indicates that T6SS can deliver several effectors to promote bacterial survival in harmful environments through metal ion acquisition. Here, we report that the Pseudomonas aeruginosa H2-T6SS mediates molybdate (MoO42-) acquisition by secretion of a molybdate-binding protein, ModA. The expression of H2-T6SS genes is activated by the master regulator Anr and anaerobiosis. We also identified a ModA-binding protein, IcmP, an insulin-cleaving metalloproteinase outer membrane protein. The T6SS-ModA-IcmP system provides P. aeruginosa with a growth advantage in bacterial competition under anaerobic conditions and plays an important role in bacterial virulence. Overall, this study clarifies the role of T6SS in secretion of an anion-binding protein, emphasizing the fundamental importance of this bacterium using T6SS-mediated molybdate uptake to adapt to complex environmental conditions.
Collapse
Affiliation(s)
- Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Xiao Du
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Linxuan Ji
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Yuying Han
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Jing Dang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Jing Wen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Yarong Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Qinqin Pu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Min Wu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China.
| |
Collapse
|
7
|
GigC, a LysR Family Transcription Regulator, Is Required for Cysteine Metabolism and Virulence in Acinetobacter baumannii. Infect Immun 2020; 89:IAI.00180-20. [PMID: 33077621 DOI: 10.1128/iai.00180-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/11/2020] [Indexed: 11/20/2022] Open
Abstract
A critical facet of mammalian innate immunity involves the hosts' attempts to sequester and/or limit the availability of key metabolic products from pathogens. For example, nutritional immunity encompasses host approaches to limit the availability of key heavy metal ions such as zinc and iron. Previously, we identified several hundred genes in a multidrug-resistant isolate of Acinetobacter baumannii that are required for growth and/or survival in the Galleria mellonella infection model. In the present study, we further characterize one of these genes, a LysR family transcription regulator that we previously named GigC. We show that mutant strains lacking gigC have impaired growth in the absence of the amino acid cysteine and that gigC regulates the expression of several genes involved in the sulfur assimilation and cysteine biosynthetic pathways. We further show that cells harboring a deletion of the gigC gene are attenuated in two murine infection models, suggesting that the GigC protein, likely through its regulation of the cysteine biosynthetic pathway, plays a key role in the virulence of A. baumannii.
Collapse
|
8
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
9
|
D'Amico K, Filiatrault MJ. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000. FEMS Microbiol Lett 2018; 364:fnx004. [PMID: 28073812 DOI: 10.1093/femsle/fnx004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. To better manage disease in the field, it is important to have an understanding of the underlying genetic mechanisms that mediate virulence. There are a substantial number of genes in sequenced bacterial genomes, including P. syringae, that encode for conserved hypothetical proteins; some of these have been functionally characterized in other Pseudomonads and have been demonstrated to play important roles in disease. PSPTO_3957 encodes a conserved hypothetical protein of unknown function. To evaluate the role of PSPTO_3957 in P. syringae pv. tomato DC3000, a PSPTO_3957 deletion mutant was constructed. Here, we show that PSPTO_3957 does not influence growth on rich media, motility or biofilm formation but is necessary for nitrate assimilation and full virulence in P. syringae. Our results have revealed an important role for PSPTO_3957 in the biology of P. syringae. Given the conservation of this protein among many bacteria, this protein might serve as an attractive target for disease management of this and other bacterial plant pathogens.
Collapse
Affiliation(s)
- Katherine D'Amico
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Ithaca, NY 14853, USA
| | - Melanie J Filiatrault
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Nye MD, King KE, Darrah TH, Maguire R, Jima DD, Huang Z, Mendez MA, Fry RC, Jirtle RL, Murphy SK, Hoyo C. Maternal blood lead concentrations, DNA methylation of MEG3 DMR regulating the DLK1/MEG3 imprinted domain and early growth in a multiethnic cohort. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv009. [PMID: 28123784 PMCID: PMC5258134 DOI: 10.1093/eep/dvv009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Prenatal exposure to lead (Pb) is known to decrease fetal growth; but its effects on postnatal growth and mechanistic insights linking Pb to growth are not clearly defined. Genomically imprinted genes are powerful regulators of growth and energy utilization, and may be particularly vulnerable to environmental Pb exposure. Because imprinting is established early and maintained via DNA methylation, we hypothesized that prenatal Pb exposure alters DNA methylation of imprinted genes resulting in lower birth weight and rapid growth. Pb was measured by inductively coupled plasma mass spectrometry (ICP-MS) in peripheral blood of 321 women of the Newborn Epigenetic STudy (NEST) obtained at gestation ~12 weeks. Linear and logistic regression models were used to evaluate associations between maternal Pb levels, methylation of differentially methylated regions (DMRs) regulating H19, MEG3, PEG3, and PLAGL1, measured by pyrosequencing, birth weight, and weight-for-height z score gains between birth and age 1yr, ages 1-2yrs, and 2-3yrs. Children born to women with Pb levels in the upper tertile had higher methylation of the regulatory region of the MEG3 DMR imprinted domain (β= 1.57, se= 0.82, p= 0.06). Pb levels were also associated with lower birth weight (β= -0.41, se= 0.15, p= 0.01) and rapid gains in adiposity (OR= 12.32, 95%CI=1.25-121.30, p= 0.03) by age 2-3 years. These data provide early human evidence for Pb associations with hypermethylation at the MEG3 DMR regulatory region and rapid adiposity gain-a risk factor for childhood obesity and cardiometabolic diseases in adulthood.
Collapse
Affiliation(s)
- Monica D. Nye
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University, B226 LSRC, Box 91012, Research Drive, Durham, NC 27708, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Street, CB 7295, UNC, Chapel Hill, NC 27599, USA
- Department of Environmental Sciences and Engineering, Curriculum in Toxicology, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB 7431, UNC, Chapel Hill, NC 27599, USA
| | - Katherine E. King
- Environmental Public Health Division, U.S. Environmental Protection Agency and Department of Community and Family Medicine, Duke University, Durham, NC 27708, USA
| | - Thomas H. Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Maguire
- Department of Biological Sciences, Center for Human Health and Environment, Campus Box 7633, NC State University, Raleigh, NC 27695, USA
| | - Dereje D. Jima
- Department of Biological Sciences, Center for Human Health and Environment, Campus Box 7633, NC State University, Raleigh, NC 27695, USA
| | - Zhiqing Huang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University, B226 LSRC, Box 91012, Research Drive, Durham, NC 27708, USA
| | - Michelle A. Mendez
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Street, CB 7295, UNC, Chapel Hill, NC 27599, USA
- Department of Nutrition, Gillings School of Public Health Fellow, Carolina Population Center, University of North Carolina at Chapel Hill, 2101G McGavran-Greenberg Hall Chapel Hill, NC 27599-7461, USA
| | - Rebecca C. Fry
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Street, CB 7295, UNC, Chapel Hill, NC 27599, USA
- Department of Environmental Sciences and Engineering, Curriculum in Toxicology, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB 7431, UNC, Chapel Hill, NC 27599, USA
| | - Randy L. Jirtle
- Department of Biological Sciences, Center for Human Health and Environment, Campus Box 7633, NC State University, Raleigh, NC 27695, USA
- Randy L. Jirtle,
http://orcid.org/0000-0003-1767-045X
| | - Susan K. Murphy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University, B226 LSRC, Box 91012, Research Drive, Durham, NC 27708, USA
- Susan K. Murphy,
http://orcid.org/0000-0001-8298-7272
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- *Correspondence address. Department of Biological Sciences, Center for Human Health and Environment, Campus Box 7633, NC State University, Raleigh, NC 27695, USA. E-mail:
| |
Collapse
|
11
|
Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses. Appl Environ Microbiol 2015; 82:51-61. [PMID: 26452555 DOI: 10.1128/aem.02602-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023] Open
Abstract
Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library from Pseudomonas stutzeri strain RCH2 was grown under denitrifying conditions, using nitrate or nitrite as an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. The dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.
Collapse
|
12
|
Higgins KA, Peng H, Luebke JL, Chang FMJ, Giedroc DP. Conformational Analysis and Chemical Reactivity of the Multidomain Sulfurtransferase, Staphylococcus aureus CstA. Biochemistry 2015; 54:2385-98. [DOI: 10.1021/acs.biochem.5b00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Khadine A. Higgins
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Hui Peng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Graduate Program in Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Justin L. Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Feng-Ming James Chang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
13
|
Filiatrault MJ, Tombline G, Wagner VE, Van Alst N, Rumbaugh K, Sokol P, Schwingel J, Iglewski BH. Pseudomonas aeruginosa PA1006, which plays a role in molybdenum homeostasis, is required for nitrate utilization, biofilm formation, and virulence. PLoS One 2013; 8:e55594. [PMID: 23409004 PMCID: PMC3568122 DOI: 10.1371/journal.pone.0055594] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is a clinically important opportunistic pathogen. Herein, we demonstrate that the PA1006 protein is critical for all nitrate reductase activities, growth as a biofilm in a continuous flow system, as well as virulence in mouse burn and rat lung model systems. Microarray analysis revealed that ΔPA1006 cells displayed extensive alterations in gene expression including nitrate-responsive, quorum sensing (including PQS production), and iron-regulated genes, as well as molybdenum cofactor and Fe-S cluster biosynthesis factors, members of the TCA cycle, and Type VI Secretion System components. Phenotype Microarray™ profiles of ΔPA1006 aerobic cultures using Biolog plates also revealed a reduced ability to utilize a number of TCA cycle intermediates as well as a failure to utilize xanthine as a sole source of nitrogen. As a whole, these data indicate that the loss of PA1006 confers extensive changes in Pae metabolism. Based upon homology of PA1006 to the E. coli YhhP protein and data from the accompanying study, loss of PA1006 persulfuration and/or molybdenum homeostasis are likely the cause of extensive metabolic alterations that impact biofilm development and virulence in the ΔPA1006 mutant.
Collapse
Affiliation(s)
- Melanie J. Filiatrault
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Gregory Tombline
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Victoria E. Wagner
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Nadine Van Alst
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Kendra Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Pam Sokol
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Johanna Schwingel
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Barbara H. Iglewski
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|