1
|
Fu J, Wen L. Impacts of Quaternary glaciation, geological history and geography on animal species history in continental East Asia: A phylogeographic review. Mol Ecol 2023; 32:4497-4514. [PMID: 37332105 DOI: 10.1111/mec.17053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Continental East Asia has a mild Pleistocene climate and a complex recent geological history. Phylogeographic studies of animals over the last 30 years have produced several distinctive patterns. Glaciation refugia are numerous and are not restricted to any particular regions. Most of them are localized and species-specific, although several large refugia, for example the mountains of SW China, are shared by multiple species and have refugia-within-refugia. Furthermore, postglaciation range expansion events vary greatly in time, scale and direction. Large-scale south-to-north post-LGM expansions are few and mostly occurred in the northern regions. Additionally, several unique geographic features, including the three-step terrain of China and the northern arid belt, have significant impacts on many species histories. Overall, the impacts of Pleistocene glaciations, particularly the LGM, on species history vary drastically from nondetectable to significant. The impacts are the least for species from the southwestern region and are most dominant for species from the north. Geological events play a more significant role in shaping species history than Pleistocene climatic changes. Phylogeographic patterns among animals species are highly consistent with those of plants. Future phylogeographic endeavour in East Asia should be hypothesis-driven and seek processes that underlie common patterns. The wide use of genomic data allow accurate estimates of historical population processes and exploration of older history beyond the Pleistocene.
Collapse
Affiliation(s)
- Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Longying Wen
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Key Laboratory of Sichuan Institute for Protecting Endangered Birds in the Southwest Mountains, College of Life Sciences, Leshan Normal University, Leshan, China
| |
Collapse
|
2
|
Yan C, Song MH, Jiang D, Ren JL, Lv Y, Chang J, Huang S, Zaher H, Li JT. Genomic evidence reveals intraspecific divergence of the hot-spring snake (Thermophis baileyi), an endangered reptile endemic to the Qinghai-Tibet plateau. Mol Ecol 2023; 32:1335-1350. [PMID: 36073004 DOI: 10.1111/mec.16687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Understanding how and why species evolve requires knowledge on intraspecific divergence. In this study, we examined intraspecific divergence in the endangered hot-spring snake (Thermophis baileyi), an endemic species on the Qinghai-Tibet Plateau (QTP). Whole-genome resequencing of 58 sampled individuals from 15 populations was performed to identify the drivers of intraspecific divergence and explore the potential roles of genes under selection. Our analyses resolved three groups, with major intergroup admixture occurring in regions of group contact. Divergence probably occurred during the Pleistocene as a result of glacial climatic oscillations, Yadong-Gulu rift, and geothermal fields differentiation, while complex gene flow between group pairs reflected a unique intraspecific divergence pattern on the QTP. Intergroup fixed loci involved selected genes functionally related to divergence and local adaptation, especially adaptation to hot spring microenvironments in different geothermal fields. Analysis of structural variants, genetic diversity, inbreeding, and genetic load indicated that the hot-spring snake population has declined to a low level with decreased diversity, which is important for the conservation management of this endangered species. Our study demonstrated that the integration of demographic history, gene flow, genomic divergence genes, and other information is necessary to distinguish the evolutionary processes involved in speciation.
Collapse
Affiliation(s)
- Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Meng-Huan Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hussam Zaher
- Museu de Zoologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Mangkang Biodiversity and Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| |
Collapse
|
3
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Phylogeography of Triplophysa stenura (Nemacheilidae): Responded to the Mid-Pleistocene Climate Transition in the Qinghai-Tibetan Plateau. Zool Stud 2021; 59:e67. [PMID: 34140984 DOI: 10.6620/zs.2020.59-67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Pleistocene climatic oscillations have greatly influenced the evolutionary histories and distribution patterns of most extant species. In this study, the phylogeographic patterns and evolutionary history of Triplophysa stenura were investigated. A total of 359 individuals from 19 locations covering the species' distribution range were collected, and two mitochondrial genes (COI and Cyt b) and the recombination activating protein 1 gene (Rag1) were analyzed. Two deeply divergent lineages, corresponding geographically to the northern and southern Tanggula Mountain, were observed, and shallow divergences were found within the southern and central Qinghai-Tibetan plateau (QTP). The estimated divergence time between the northern and southern Tanggula lineages was around 1.07 Mya. Within the southern Tanggula Mountain lineages, the Nu and Subansiri rivers populations were split about 0.74 Mya, and the southwestern and central QTP populations were divided with the southeastern QTP ones approximately 0.67 Mya. The divergence times of the lineages were matched with two major glaciations in QTP (the Xixiabangma Glaciation, 1.17-0.80 Mya and Kunlun Glaciation, 0.72-0.62 Mya). Together with demographic history analyses, our results highlighted that major glacial cycles during the mid-Pleistocene played a major role in sculpting the distribution pattern of T. stenura, and led to the gene homogenization crossing the drainage populations in the southwestern and central QTP.
Collapse
|
5
|
Yu L, Zhao S, Shi Y, Meng F, Xu C. Evolutionary history of the oriental fire-bellied toad ( Bombina orientalis) in Northeast China. Ecol Evol 2021; 11:4232-4242. [PMID: 33976806 PMCID: PMC8093726 DOI: 10.1002/ece3.7318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
The evolutionary history of a species is generally affected by the combination of geological events and climate fluctuations. By analyzing the population features, genetic structure and the effective population historical dynamics of existing species, the population evolutionary history can be reestablished. In recent years, geological evidence shows that the Yilan-Yitong fault zone located in Northeast Asia experienced strong and frequent geological changes in the late Quaternary period. Species population history has been shaped by the combination of the complex climatic conditions of the Quaternary and Pleistocene glacial interglacial cycles and palaeogeological events in Northeast Asia and it has become a research focus for evolutionary biology researchers. In this study, mitochondrial and microsatellite molecular markers were used to reveal the population features, genetic structure, and the effective population historical dynamics of the Oriental fire-bellied toad (Bombina orientalis). The results showed that the strong seismic activity of the Yilan-Yitong fault zone in the late Quaternary period was the main reason for the population differentiation of Oriental fire-bellied toad in northeast China. The Quaternary Pleistocene glacial interglacial cycles led to the significant bottleneck effect of the western population located in the Maoer mountain area. As a result, the western population has low genetic diversity. Recent gene flow between eastern and western populations and historical evidence of population expansion proved that the dispersal behavior of the western populations was the main cause of the low genetic diversity and mitochondrial and nuclear discordance. Human economic activity may be the mainly driving factor. These evidences showed that the comprehensive influence of geology, climate, human activities and other factors should be considered in the process of exploring the evolutionary history of species.
Collapse
Affiliation(s)
- Liqun Yu
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Shuai Zhao
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Yanshuang Shi
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Fanbing Meng
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| | - Chunzhu Xu
- College of Life ScienceNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
6
|
Zheng Z, Li Y, Li M, Li G, Du X, Hongyin H, Yin M, Lu Z, Zhang X, Shrestha N, Liu J, Yang Y. Whole-Genome Diversification Analysis of the Hornbeam Species Reveals Speciation and Adaptation Among Closely Related Species. FRONTIERS IN PLANT SCIENCE 2021; 12:581704. [PMID: 33643339 PMCID: PMC7902934 DOI: 10.3389/fpls.2021.581704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Speciation is the key evolutionary process for generating biological diversity and has a central place in evolutionary and ecological research. How species diverge and adapt to different habitats is one of the most exciting areas in speciation studies. Here, we sequenced 55 individuals from three closely related species in the genus Carpinus: Carpinus tibetana, Carpinus monbeigiana, and Carpinus mollicoma to understand the strength and direction of gene flow and selection during the speciation process. We found low genetic diversity in C. tibetana, which reflects its extremely small effective population size. The speciation analysis between C. monbeigiana and C. mollicoma revealed that both species diverged ∼1.2 Mya with bidirectional gene flow. A total of 291 highly diverged genes, 223 copy number variants genes, and 269 positive selected genes were recovered from the two species. Genes associated with the diverged and positively selected regions were mainly involved in thermoregulation, plant development, and response to stress, which included adaptations to their habitats. We also found a great population decline and a low genetic divergence of C. tibetana, which suggests that this species is extremely vulnerable. We believe that the current diversification and adaption study and the important genomic resource sequenced herein will facilitate the speciation studies and serve as an important methodological reference for future research.
Collapse
Affiliation(s)
- Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guiting Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hu Hongyin
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mou Yin
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Gao J, Liao PC, Huang BH, Yu T, Zhang YY, Li JQ. Historical biogeography of Acer L. (Sapindaceae): genetic evidence for Out-of-Asia hypothesis with multiple dispersals to North America and Europe. Sci Rep 2020; 10:21178. [PMID: 33273626 PMCID: PMC7712834 DOI: 10.1038/s41598-020-78145-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biogeography is the study of where, when, and how modern species evolved and diversified. Acer L. (maple) is one of the most diverse and widespread genera in the Northern Hemisphere. It comprises 124–156 species in the world, approximately 80% species of Acer are native in Asia. The current diversity center of Acer is not congruent with the distribution of the oldest fossils of the genus. Therefore, we herein used 84 species and subspecies to reconstruct the phylogeny and investigate the biogeographic history of Acer using nuclear ITS and three cpDNA fragments (psbA-trnH spacer, rpl16 intron, and trnL-trnF spacer) with maximum likelihood, maximum parsimony, and Bayesian inference methods. The analyses showed that the current diversity center and the origin center of Acer is Asia. Additionally, the North American and Euro-Mediterranean species originated from multiple sources from Asia via the North Atlantic Land Bridge and the Bering Land Bridge, and intercontinental migration has mainly occurred since the Miocene. This study not only provides a novel insight of the origin and dispersal routes of Acer but also exemplifies how past climatic changes affect the diversification-rates of Northern Hemisphere forest trees.
Collapse
Affiliation(s)
- Jian Gao
- Faculty of Resources and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Bing-Hong Huang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tao Yu
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Yu-Yang Zhang
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Jun-Qing Li
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China.
| |
Collapse
|
8
|
Zhang D, Hui H, Yu G, Song X, Liu S, Yuan S, Xiao H, Rao D. Shared response to changes in drainage basin: Phylogeography of the Yunnan small narrow-mouthed frog, Glyphoglossus yunnanensis (Anura: Microhylidae). Ecol Evol 2020; 10:1567-1580. [PMID: 32076534 PMCID: PMC7029061 DOI: 10.1002/ece3.6011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022] Open
Abstract
AIM With the late Cenozoic uplift of the Qinghai-Tibetan Plateau (QTP), drainage of the southeastern edge of the QTP changed significantly. However, the impact of this dramatic change on the geographical distribution and genetic diversity of endemic organisms is still poorly understood. Here, we examined the geographical patterns of genetic variation in the Yunnan small narrow-mouthed frog, Glyphoglossus yunnanensis (Microhylidae), and two alternative hypotheses were tested: That is, the geographical distribution of genetic variation was determined by either the contemporary drainage basin or historical drainage basins. LOCATION The Mountains of southwest China. MATERIALS AND METHODS Analyses were based on 417 specimens collected from across the distribution of the species. We reconstructed the genealogy (Bayesian and maximum parsimony methods) and assessed demographic history based on DNA sequencing data from mitochondrial and nuclear markers. We also mapped the genetic diversity and estimated the divergence times by a relaxed clock model. RESULTS The species has maintained a relatively stable population size without recent population expansion. Four major maternal lineages were identified with good support, one representing a possible cryptic species and the other three showing further subdivision. The distribution of these deeply differentiated lineages/sublineages corresponded well to geographical regions. The secondary contact zones and phylogeographic breaks in distinct lineages of G. yunnanensis were almost concordant with those of Nanorana yunnanensis. MAIN CONCLUSIONS Lineage division conformed to the hypothesis of drainage system evolution, that is, the phylogeographic pattern of G. yunnanensis was shaped by historical drainage patterns. Concordance in phylogeographic patterns may suggest a shared response to common hydrogeological history and also might indicate that there was more contribution of the drainage history than ecological or life-history traits in structuring genetic variation between these two disparate codistributed taxa G. yunnanensis and N. yunnanensis.
Collapse
Affiliation(s)
- Dong‐Ru Zhang
- College of Life SciencesYunnan UniversityKunmingChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Hong Hui
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Guo‐Hua Yu
- College of Life SciencesGuangxi Normal UniversityGuilinChina
| | - Xin‐Qiang Song
- Yingjing Administration of Daxiangling Nature ReserveYaanChina
| | - Shuo Liu
- Kunming Natural History Museum of ZoologyKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Si‐Qi Yuan
- Bioengineering CollegeSichuan University of Science and EngineeringYibinChina
| | - Heng Xiao
- College of Life SciencesYunnan UniversityKunmingChina
| | - Ding‐Qi Rao
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| |
Collapse
|
9
|
Sun Z, Wang H, Zhou W, Shi W, Zhu W, Zhang B. How rivers and historical climate oscillations impact on genetic structure in Chinese Muntjac ( Muntiacus reevesi)? DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
- Department of Medicine; University of Utah; Salt Lake City Utah USA
| | - Hui Wang
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| | - Wenliang Zhou
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| | - Wenbo Shi
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| | - Weiquan Zhu
- Department of Medicine; University of Utah; Salt Lake City Utah USA
| | - Baowei Zhang
- School of Life Sciences; Anhui Key Laboratory of Eco-engineering and Bio-technique; Anhui University; Hefei Anhui China
| |
Collapse
|
10
|
Sun Z, Pan T, Wang H, Pang M, Zhang B. Yangtze River, an insignificant genetic boundary in tufted deer ( Elaphodus cephalophus): the evidence from a first population genetics study. PeerJ 2016; 4:e2654. [PMID: 27843712 PMCID: PMC5103815 DOI: 10.7717/peerj.2654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer (Elaphodus cephalophus) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline (T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Tao Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Hui Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Mujia Pang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Dahal N, Lissovsky AA, Lin Z, Solari K, Hadly EA, Zhan X, Ramakrishnan U. Genetics, morphology and ecology reveal a cryptic pika lineage in the Sikkim Himalaya. Mol Phylogenet Evol 2016; 106:55-60. [PMID: 27640954 DOI: 10.1016/j.ympev.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022]
Abstract
Asian pika species are morphologically ∼similar and have overlapping ranges. This leads to uncertainty and species misidentification in the field. Phylogenetic analyses of such misidentified samples leads to taxonomic ambiguity. The ecology of many pika species remains understudied, particularly in the Himalaya, where sympatric species could be separated by elevation and/or substrate. We sampled, measured, and acquired genetic data from pikas in the Sikkim Himalaya. Our analyses revealed a cryptic lineage, Ochotona sikimaria, previously reported as a subspecies of O. thibetana. The results support the elevation of this lineage to the species level, as it is genetically divergent from O. thibetana, as well as sister species, O. cansus (endemic to central China) and O. curzoniae (endemic to the Tibetan plateau). The Sikkim lineage diverged from its sister species' about 1.7-0.8myrago, coincident with uplift events in the Himalaya. Our results add to the recent spate of cryptic diversity identified from the eastern Himalaya and highlight the need for further study within the Ochotonidae.
Collapse
Affiliation(s)
- Nishma Dahal
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore 560065, India; Manipal University, Manipal-576104, Karnataka.
| | - Andrey A Lissovsky
- Zoological Museum of Moscow State University, B. Nikitskaya, 6, Moscow 125009, Russia
| | - Zhenzhen Lin
- Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, PR China
| | - Katherine Solari
- Stanford University, Department of Biology, 371 Serra Mall, Stanford, CA 94305-5020, United States
| | - Elizabeth A Hadly
- Stanford University, Department of Biology, 371 Serra Mall, Stanford, CA 94305-5020, United States; Woods Institute, Stanford University, Stanford, CA 94305, United States
| | - Xiangjiang Zhan
- Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, PR China
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
12
|
Li Y, Wu X, Zhang H, Yan P, Xue H, Wu X. Vicariance and Its Impact on the Molecular Ecology of a Chinese Ranid Frog Species-Complex (Odorrana schmackeri, Ranidae). PLoS One 2015; 10:e0138757. [PMID: 26394403 PMCID: PMC4578928 DOI: 10.1371/journal.pone.0138757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/03/2015] [Indexed: 11/26/2022] Open
Abstract
Paleogeological events and Pleistocene climatic fluctuations have had profound influences on the genetic patterns and phylogeographic structure of species in southern China. In this study, we investigated the population genetic structure and Phylogeography of the Odorrana schmackeri species complex, mountain stream-dwelling odorous frogs, endemic to southern China. We obtained mitochondrial sequences (1,151bp) of the complete ND2 gene and two flanking tRNAs of 511 individuals from 25 sites for phylogeographic analyses. Phylogenetic reconstruction revealed seven divergent evolutionary lineages, with mean pairwise (K2P) sequence distances from 7.8% to 21.1%, except for a closer ND2 distance (3.4%). The complex geological history of southern China drove matrilineal divergence in the O. schmackeri species complex into highly structured geographical units. The first divergence between lineage A+B and other lineages (C-G) had likely been influenced by the uplift of coastal mountains of Southeast China during the Mio-Pliocene period. The subsequent divergences between the lineages C-G may have followed the formation of the Three Gorges and the intensification of the East Asian summer monsoon during the late Pliocene and early Pleistocene. Demographic analyses indicated that major lineages A and C have been experienced recent population expansion (c. 0.045–0.245 Ma) from multiple refugia prior to the Last Glacial Maximum (LGM). Molecular analysis suggest that these seven lineages may represent seven different species, three described species and four cryptic species and should at least be separated into seven management units corresponding to these seven geographic lineages for conservation.
Collapse
Affiliation(s)
- Yongmin Li
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- School of Life Sciences, Fuyang Teachers College, Fuyang, Anhui, China
| | - Xiaoyou Wu
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huabin Zhang
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Peng Yan
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hui Xue
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xiaobing Wu
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- * E-mail:
| |
Collapse
|
13
|
Yao G, Li Y, Li D, Williams P, Hu J. Phylogenetic analysis of the endangered takin in the confluent zone of the Qinling and Minshan Mountains using mtDNA control region. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2594-605. [PMID: 26024129 DOI: 10.3109/19401736.2015.1041115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gang Yao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Institute of Rare Animals and Plants, China West Normal University, Shunqing District, Nanchong, Sichuan, P.R. China
| | - Yanhong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Institute of Rare Animals and Plants, China West Normal University, Shunqing District, Nanchong, Sichuan, P.R. China
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Institute of Rare Animals and Plants, China West Normal University, Shunqing District, Nanchong, Sichuan, P.R. China
| | - Peter Williams
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Institute of Rare Animals and Plants, China West Normal University, Shunqing District, Nanchong, Sichuan, P.R. China
| | - Jie Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Institute of Rare Animals and Plants, China West Normal University, Shunqing District, Nanchong, Sichuan, P.R. China
| |
Collapse
|
14
|
Grant WS. Problems and Cautions With Sequence Mismatch Analysis and Bayesian Skyline Plots to Infer Historical Demography. J Hered 2015; 106:333-46. [DOI: 10.1093/jhered/esv020] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
|
15
|
Wang H, Luo X, Meng S, Bei Y, Song T, Meng T, Li G, Zhang B. The Phylogeography and Population Demography of the Yunnan Caecilian (Ichthyophis bannanicus): Massive Rivers as Barriers to Gene Flow. PLoS One 2015; 10:e0125770. [PMID: 25915933 PMCID: PMC4411157 DOI: 10.1371/journal.pone.0125770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/26/2015] [Indexed: 11/23/2022] Open
Abstract
Ichthyophis bannanicus is the only caecilian species in China. In this study, the phylogeography and population demography of I. bannanicus were explored, based on the mitochondrial DNA genes (cyt b and ND2) and 15 polymorphic microsatellite loci. Altogether 158 individuals were collected from five populations in Yunnan province, Guangxi province, Guangdong province, and Northern Vietnam. Phylogeographical and population structure analysis identified either two groups (Xishuangbanna, Northern Vietnam-Yulin-Yangchun-Deqing) or three groups (Xishuangbanna, Northern Vietnam-Yulin-Yangchun, and Deqing), indicating that the Red River and Pearl River systems may have acted as gene-flow barriers for I. bannanicus. Historical population expansion that happened 15–17 Ka ago was detected for mtDNA data and was possibly triggered by warmer weather after the Last Glacial Maximum. However, the Bayesian simulations of population history based on microsatellite data pinpointed population decline in all populations since 19,123 to 1,029 years ago, demonstrating a significant influence of anthropogenic habitat alteration on I. bannanicus.
Collapse
Affiliation(s)
- Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Xia Luo
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Shaoquan Meng
- College of Life Science & Technology, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Yongjian Bei
- College of Life Science & Technology, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Tao Song
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Tao Meng
- Guangxi Forestry Inventory and Planning Institute, Nanning, 530011, Guangxi, China
| | - Guifen Li
- College of Life Science & Technology, Yulin Normal University, Yulin, 537000, Guangxi, China
- * E-mail: (GL); (BZ)
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- * E-mail: (GL); (BZ)
| |
Collapse
|
16
|
Chen S, Sun Z, He K, Jiang X, Liu Y, Koju NP, Zhang X, Tu F, Fan Z, Liu S, Yue B. Molecular phylogenetics and phylogeographic structure of Sorex bedfordiae based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 2015; 84:245-53. [PMID: 25617490 DOI: 10.1016/j.ympev.2014.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
The southeastern margin of the Tibetan Plateau is characterized by complex topography and a discontinuous landscape, creating a sky island situation. However, the way topography shapes genetic structures and demographic histories of endemic species has not been well studied. We examined the phylogeographic pattern and demographic histories of Sorex bedfordiae, a dispersal-limited small mammal, using three nuclear genes [1977bp] and two mitochondrial genes [1794bp] with comprehensive molecular approaches. We recovered five well-supported clades whose distributions are along mountain ridges and roughly subdivided by large rivers. Demographic expansions in the middle Pleistocene were strongly supported by both nuclear and mitochondrial genes. Our results support the hypothesis that sky island topography and river systems strongly affect the genetic structure of non-aquatic terrestrial species. We further clarify that S. bedfordiae and S. cylindricauda are valid sibling species, whereas S. excelsus is most likely a geographic subspecies of S. bedfordiae.
Collapse
Affiliation(s)
- Shunde Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu 610064, China; College of Life Sciences, Sichuan Normal University, Chengdu 610066, China; Mammal Ecology and Evolution Research Group, State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhiyu Sun
- Sichuan Academy of Forestry, Chengdu 610081, China
| | - Kai He
- Mammal Ecology and Evolution Research Group, State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xuelong Jiang
- Mammal Ecology and Evolution Research Group, State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yang Liu
- Sichuan Academy of Forestry, Chengdu 610081, China
| | - Narayan Prasad Koju
- Mammal Ecology and Evolution Research Group, State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Feiyun Tu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Zhenxing Fan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Shaoying Liu
- Sichuan Academy of Forestry, Chengdu 610081, China.
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
17
|
|
18
|
Zhang M, Yu G, Yang M, Li Y, Wei J, Xu H, Yao Y, Wang L, Zhang X, Rao D, Yang J. Mitochondrial phylogeography of the red-tailed knobby newt (Tylototriton kweichowensis). BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|